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ABSTRACT 

Glaucoma is a disease that occurs after a certain age due to damage to the optic nerves. Today, 

machine learning methods can be successfully applied to detect such diseases. Instead of using the 

image data directly, the classification process is carried to a new representation space, positively 

affecting the classification performance. In this study, principal component analysis (PCA), linear 

discriminant analysis (LDA), and vision transformation (ViT) methods are used for feature extraction.   

In addition, the CLAHE filtering technique before ViT B16 was used in one of the proposed models. 

The classification process was performed with six different models using these methods alone or in 

combination, and the results are presented comparatively.  Fine Tuned ViT-PCA-SVM and Fine 

Tuned ViT-LDA-SVM models achieved 92% classification success. As a result, the combination of 

ViT, which is a deep learning method, and PCA or LDA, which are machine learning methods, as 

feature extraction methods increased the classification success. 

 

Keywords: Glaucoma, Classification, Vision transformer, Principal Component Analysis, Linear 

discriminant analysis 
 

ViT Tabanlı Hibrit Öğrenme Yöntemleri ile Göz Tansiyonu 

Hastalığının Tespiti 

ÖZET 

Glokom, belirli bir yaştan sonra görme sinirleri üzerinde oluşan bir hasardan dolayı ortaya çıkan bir 

rahatsızlıktır. Bu tür hastalıkların tespitini yapmada günümüzde makine öğrenmesi yöntemleri 
başarıyla uygulanabilmektedir. Görüntü verilerinin doğrudan kullanımı yerine yeni bir temsili uzaya 

taşınarak sınıflandırma işleminin gerçekleştirilmesi sınıflandırma performansını olumlu 

etkilemektedir. Bu çalışmada öznitelik çıkartmada temel bileşen analizi (PCA), doğrusal ayırım analizi 

(LDA) ve görü dönüştürücü (ViT) yönteminden yararlanılmıştır.   Ayrıca önerilen modellerden birinde 

ViT B16 öncesi CLAHE filtremele tekniği kullanılmıştır. Bu yöntemlerin tek başına veya bir araya 

getirildiği altı farklı model ile sınıflandırma işlemi gerçekleştirilmiş olup sonuçlar karşılaştırmalı 

olarak verilmiştir.  Fine Tuned ViT-PCA-SVM ve Fine Tuned ViT-LDA-SVM modelleri %92 

oranında sınıflandırma başarısı elde etmiştir. Sonuç olarak derin öğrenme yöntemi olan ViT ve makine 

öğrenmesi yöntemlerinden olan PCA veya LDA’nın öznitelik çıkartma olarak bir arada kullanıldığı 

yöntemler sınıflandırma başarısını arttırmıştır.  
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I. INTRODUCTION 
 

Glaucoma is a disorder caused by damage to the main visual nerve (optic nerve), which has a 

significant proportion among the causes of vision loss in middle age [1]. The main factor in glaucoma 

is long-term increased intraocular pressure [2]. However, there are also factors, such as lack of blood 

supply to the optic nerve head, that cause this condition [3, 4, 5]. When the diagnosis and treatment of 

glaucoma are delayed, it can result in blindness [1]. In this respect, Glaucoma is an important 

condition that should be taken seriously. According to estimates in the literature, approximately 64.3 

million people in the 40-80 age group were diagnosed with glaucoma worldwide in 2013, and this 

number is expected to reach 112 million by 2040 [14]. 
 

Fundus is a term used in ophthalmology and refers to the posterior region of the inner part of the eye. 

This area includes the retina, optic disc (the beginning of the optic nerve), and blood vessels on the 
posterior wall of the eye. The first fundus imaging was performed with devices available in the 1960s. 

Fundus examination is used for disorders related to eye vessel structures, neurological problems, and 

retinal-optic nerve problems that cause vision loss. Fundus imaging provides images of structures such 

as the optic nerve, retina, and eye vessels [6].  

 

Using machine learning and deep learning methods in medical imaging and disease diagnosis is 

becoming increasingly important [7, 8]. Deep learning segmentation applications for muscle pathology 

image analysis [9], tumor growth prediction using convolutional neural networks [10], automatic 

classification and reporting of multiple common thoracic diseases using chest radiographs [11], and 

early detection of epidemics are just a few of the applications.  

 

Many successful machine learning methods exist for both classification and clustering problems in 

obtaining meaningful results from medical data [12]. However, various data transformation methods 

can be applied to these data before using classification and clustering methods. Data transformation 

can significantly improve classification performance by extracting more meaningful information from 

the data [13]. In this sense, various machine learning methods have proven their success in the 

literature. These transformations include principal component analysis (PCA) and linear discriminant 

analysis (LDA). Recently, deep learning methods have been used on large datasets, going beyond the 

disease diagnosis experiments of computer technologies and providing results with high accuracy 

rates. Vision transformer models also achieve very successful results for image data in the literature.  

 

In this study, vision transformer b16 model (ViT), principal component analysis (PCA), and linear 

discriminant analysis (LDA) methods were used together and separately to obtain new features for the 

detection of glaucoma disease using a large dataset consisting of 17,292 fundus images from different 
hospitals. SoftMax or SVM was used in the proposed models to perform the classification process 

after feature extraction. 

In our study, we used a hybrid model that we believe has not adequately detected glaucoma disease 

from model fundus images. The hybrid model combines the strengths of classical image processing 

techniques and deep learning algorithms, allowing us to analyze glaucoma findings in fundus images 

more successfully. 

 

 

II. LITERATURE REVIEW 
 

A summary of the studies in the literature is given below, including different approaches to detect 

Glaucoma.  Some studies classified fundus images using transfer learning methods in convolutional 

neural networks. In the second group of studies, other clinical data were used instead of fundus 
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images, and classification studies were performed using machine learning models such as SVM. In the 

third group of studies, the authors developed deep learning models and trained them with fundus 

images. In the fourth group of studies, segmentation data alone or with fundus images were used for 

classification.  

 

In their study, Şatır et al. performed data reduction with the rough sets method using the data of 168 

individuals, followed by classification using decision trees and artificial neural networks. The study 

used parameters such as intraocular pressure, central corneal thickness, disc area, and age. When 

decision trees were used in the study, a success rate of 93.45% was achieved. In the classification 

using artificial neural networks, a success rate of 91.67% was achieved [1].  

 

Yıldırım and Ozbay worked with AlexNet, ResNet-18, VGG16, SqueezeNet, and GoogleNet 

convolutional neural network models using 1000 images of people obtained from the open-source 

Origa (-light) dataset. In the study, the results were compared with many metrics. In terms of accuracy 
metric, the best value was obtained from GoogleNet with 97.98%, and the lowest value was obtained 

from the SqueezeNet model with 93.43% [14].  

 
Uçar used a dataset of 4854 fundus images in his study. He used a transfer learning method with 

VGG16, Inception-V3, EfficientNet, DenseNet, ResNet50, and MobileNet architectures. He compared 

model performance with different validation metrics and cross-validation. As a result of the study, the 

models gave similar results. The highest accuracy value was obtained from the DenseNet architecture, 

with 96.19%. The lowest value was obtained from the MobileNet architecture, with 92.79% [15].  

 

Dey et al. first applied some preprocessing to 100 fundus images, and feature extraction was 

performed using principal component analysis (PCA). The outputs were subjected to binary 

classification using support vector machine (SVM). The RBF kernel was used when applying SVM, 

and the gamma parameter was set to 1.5. The study, 10-fold cross-validation was used, and success 

was evaluated using different metrics. As a result of the study, 86% accuracy was achieved [16]. 

 

Karrothu et al. preprocessed the fundus images obtained from the Rim-One-R2 dataset, consisting of 

248 images, by applying a CLAHE filter and then trained the VIT model to detect disease. Depending 

on whether the fundus images are left-eye or right-eye images, cropping was applied from the 

appropriate position and left the parts with the optic disc. As a result of the study, the success rate of 

95.7% was obtained in CLAHE-applied images and 91.4% in unapplied images [17].  

 

In the Wu et al. study, an SVM model was trained with 10-fold cross-validation using 114 OCT 

features and three clinical features (age, gender, and refraction) divided into nine groups in which 

values such as average thickness of the retina and nerve fiber layer were determined region by region 

from 752 Spectralis optical coherence tomography (OCT) data obtained from a hospital in Taiwan and 

performance evaluation was performed with various metrics. In this study, each OCT feature and three 

clinical features (age, gender, refraction) were evaluated for their association with glaucoma using the 
mutual information method. From these features, the top 20 features with the highest performance 

according to their mutual information values were selected and trained with the SVM model. The best-

performing features were continuously added, and this process continued iteratively until ten features 

were selected. Only features that improved the model's performance compared to the previous steps 

were considered for the final subset. As a result of the study, with 96% accuracy in the advanced 

disease group and 92% in the intermediate disease group, the highest success rate was obtained, while 

a 73% success score was obtained in the early stage. [18].  

 

In Phasuk et al.'s study, the network considers disease image information at two levels: the global 

image and the local disk region. In this paper, the DenseNet-121 model was used to learn the global 

image, and then a second part was used to segment the disc and cupping region using a residual 

deconvolution neural network. The ResNet-50 architecture was utilized in the second part. Horizontal 

translation and rotation were used for data augmentation to ensure generalization. In some neural 

networks, a maximum filter was applied to remove the blood vessel image. In addition, the contrast-
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limited adaptive histogram equalization (CLAHE) method was also used to increase the contrast in the 

fundus image and prevent over-amplification noise. The results show that the data augmentation used 

affects the training time. Two streams were used to train the network in the optical disk region. After 

the local disk region is cropped, the local disk and cup region are labeled using segmentation. These 

data, which have the same structure as the network in the global image, were then imported into the 

Densenet-121 model. The second flow focuses on the polar coordinates of the optical and cup 

structures. Data augmentation was achieved with polar center shift and polar radius parameters in this 

part. The final classification was performed with a classical artificial neural network. As a result of the 

study, a 94.0% success rate was obtained [19].  

 

Li et al. used 39,745 image data for classification in their study. After dividing the dataset into training 

and test data, the data was normalized and resized to 299x299, and local area averaged color 

subtraction was applied to ensure color stability.  Horizontal shifting and random rotation operations 

were performed for data augmentation. Inception-v3 architecture was utilized in the study. The images 
misclassified as a result of the training were also examined by experts, and it was found that many of 

the patients had different eye problems. A high AUC value of 0.986 was obtained in the study [20].  

 
Fu et al. derived their M-Net model from the U-Net architecture. In this architecture, an image is 

taken, and a polar transformation is applied to the optical disk region. The output is sent to a series of 

convolution layers. The model outputs maps segmenting the optic disc and optic cup. M-Net is a 

network designed explicitly for multi-label segmentation in fundus disease images. An automated 

method is used to localize the optic disc region. Then, the original fundus image is transformed into a 

polar coordinate system based on the detected disc center. The M-Net model has side outputs, and 

combining these outputs provides the final result. The study was performed using ORIGA and SCES 

datasets containing 2326 images, including 214 glaucoma-positive images, and an AUC value of 0.89 

was achieved [21].  

 

The DENet model, designed in Fu et al.'s study, performs classification by considering the fundus 

image's global and local disk region. This architecture includes four streams. These are the global 

image stream that produces the result based on the whole fundus image, the segmentation guidance 

network that detects the optic disc region and provides the disc-segmentation representation by 

estimating a probability, the disc region stream that works on the disc region cropped by the disc-

segmentation map obtained from the segmentation guidance network, and the disc polar stream that 

transfers the disc region image to the polar coordinate system. The outputs of these four streams are 

then combined into the final glaucoma screening result. ResNet and U-Net architectures were used to 

realize these streams. The study used three datasets, ORIGA, SCES, and SINDI, containing 8109 

images, 327 of which were glaucoma-positive, resulting in an AUC of 0.91 [22]. 

 

When the studies in the literature are examined, it is seen that very successful models have been 

obtained. However, the success rates of these models have not yet reached the success and stability 

that can be used in medical applications. This shows the necessity of artificial intelligence studies on 
glaucoma disease. In our study, we have made significant contributions to the subject based on this 

need identified in the literature and the health sector, and a successful model has been put forward 

with a hybrid model we have developed with a different approach to solving the problem. The multi-

layered data analysis in fundus images of our hybrid artificial intelligence model brings an important 

innovation to the knowledge in the field by using the hybrid artificial intelligence model approach, 

which has not been sufficiently studied in the literature in diagnosing glaucoma. 
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III. MACHINE LEARNING AND DEEP LEARNING 

METHODS 

 
A. VISION TRANSFORMER (VIT) 

 
Vision Transformer is one of the deep learning architectures used in image processing. While the 

Transformer architecture was originally developed for natural language processing (NLP) tasks, ViT is 

one of the first major works to apply this architecture to image processing tasks [23]. Figure 1 shows 

the basic structure of a vision transformer model. 

 

Vision Transformer divides images into small patches and processes these patches as an array. Each 

patch is treated like words in natural language processing. The attention mechanisms of the 

Transformer architecture then process the patches. The attention mechanisms allow it to focus on the 

relationships between different image regions, allowing the model to understand which regions are 

more important. While CNNs focus on local features, ViT can model the overall connections between 

all image regions.  When trained on large amounts of data, ViT goes beyond the limitations of 

Convolutional Neural Networks (CNNs), which focus on local features, by breaking images into small 

chunks, processing these chunks as a sequence, and modeling the overall connections between regions 

through attentional mechanisms; therefore, ViT can achieve more impressive results on large datasets. 

 
 

Figure 1. Model Overview of Vision Transformer [23] 

 

 

B. PRINCIPAL COMPONENT ANALYSIS (PCA) 
 

PCA is a statistical method that simplifies data by identifying the most important features in data sets 

[24]. Its main purpose is to find the principal components that maximize the variance in the data set 

and reduce its size by multiplying the data by a matrix of these components. The resulting new data set 

is usually smaller than the original dataset, discarding redundant information and noise while retaining 

the most important features.  The implementation of PCA involves first centering the data around the 

mean value, then calculating the covariance matrix, finding the eigenvalues and eigenvectors of this 

matrix, and finally projecting the data onto these eigenvectors. This method reveals hidden structures 

and relationships, especially in large data sets, to facilitate visualization and make the data more 

understandable. PCA has been applied in many fields, such as face recognition, image processing, 

genetics, and financial analysis. In the PCA method, the calculation steps are done in 5 steps as 

follows; 

First, the data is centralized by extracting the mean of each feature. If our data matrix X is of size n×p, 

where n is the number of samples and p is the number of features, we calculate the mean �̃� for each 

feature and subtract this mean from the data matrix 



 253 

 x̅  =  
1

n
 ∑𝑥𝑖

n

i=1

   

𝑋′ = 𝑋 − 1𝑛�̅� 

Here, (1n) is a unit vector of length n, and Xl denotes the centralized data matrix. In the second step, 

we calculate the covariance matrix of the centralized data matrix. Denote the covariance matrix by it is 

calculated as: 

 

Σ =
1

𝑛 − 1
(𝑋′)𝑇𝑋′ 

 

In the third step, we need to find the eigenvalues and eigenvectors of the covariance matrix. With 

eigenvalues  and eigenvectors v and  being the covariance matrix: 

 

Σ𝑣 = λ𝑣 

 

To find the eigenvalues and corresponding eigenvectors of the covariance matrix. The fourth step is to 

select the Principal Components. We sort the eigenvalues from largest to smallest and select the 

eigenvectors usually associated with the largest eigenvalues. These selected eigenvectors transform the 

data into a less dimensional space.  

 

In the final stage, we transform the data by multiplying it by the selected eigenvectors. Denote the 

transformed data matrix by Xnew: 

 

𝑋𝑛𝑒𝑤 = 𝑋′𝑊 

 

W is a size p x k matrix formed by the selected eigenvectors, and k is the number of principal 

components selected. 

 

C. LINEAR DISCRIMINANT ANALYSIS (LDA) 
LDA is a dimensionality reduction and classification technique used to classify samples from a dataset 

into classes [25]. Its main goal is to find a transformation that maximizes the separation between 

different classes. This process aims to maximize the distance between classes while minimizing the 

distance between instances belonging to the same class. LDA is beneficial for classification and data 

analysis. This is because it emphasizes the separation between classes, helping to achieve more 

accurate classification results. Unlike PCA, it is a supervised method and uses class labels. LDA 

analyzes how the data is distributed to distinguish specific classes. Therefore, it is more suitable for 

classification processes. 

 

In LDA, the intra-class and inter-class scatter matrices are first calculated. The intra-class scatter 

matrix shows how the samples of the same class are distributed concerning the class average, while 
the inter-class scatter matrix shows how different classes differ from the overall average. These 

matrices are then used to find the discriminant axes that maximize class separation. Dimensionality 

reduction is performed by projecting the data onto these axes. LDA is used in supervised learning 

scenarios and has applications in fields as diverse as face recognition, biological data analysis, and 

finance.  

The computation in the LDA method can be divided into several stages. Let X represent the features in 

a dataset. Let each sample contain an array denoted by xi divided into c classes. 

 

Let xi be the sequence of each sample and, c be the classes, k be the mean vector of each class is 

calculated as; 

  

μ𝑘 =
1

𝑁𝑘
∑ 𝑥𝑖
𝑖∈𝐶𝑘
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  Nk denotes the number of samples in the kth class, and Ck is the set of all data samples belonging to 

the kth class. 

 

The mean vector  for all data is calculated as follows. 

   

μ =
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 

 

Where N is the total number of samples, the within-class variance matrix SW is calculated as follows. 

𝑆𝑊 = ∑ ∑(𝑥𝑖 − μ𝑘)(𝑥𝑖 − μ𝑘)
𝑇

𝑖∈𝐶𝑘

𝑐

𝑘=1

 

   

  In this way, the variance of the samples within each class is found. The between-class variance 

matrix SB is calculated as follows.  

   

   

𝑆𝐵 = ∑𝑁𝑘(μ𝑘 − μ)(μ𝑘 − μ)𝑇
𝑐

𝑘=1

 

   

    Thus, it finds the separation between classes. LDA finds the best linear projection to separate 

classes. 

 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
 

 

This ratio represents the ratio of between-class variance to within-class variance. The w that 

maximizes this ratio represents the best linear discriminator. To solve this problem, we solve the 

eigenvalue problem, usually expressed as follows. 

 

𝑆𝑊
−1𝑆𝐵𝑤 = λ𝑤 

 

 

Here  is the eigenvalue, and w is the corresponding eigenvector. These eigenvectors are used as 

separating lines for the linear projection of the data. After this step, the eigenvectors corresponding to 

the m largest eigenvalues are selected. A projection matrix 𝑊 = [𝑢1, 𝑢2,… , 𝑢𝑚]  is created with the 

selected eigenvectors. The input vectors are projected into a lower dimensional space by applying 

𝑋′ = 𝑋𝑊 to this projection matrix. The projection reduces the dataset size while increasing the 

separation between classes. X is the original data matrix, and X' is the projected data matrix. 

 
 

D. SUPPORT VECTOR MACHINES (SVM) 
 

Support Vector Machines (SVM) is a powerful and flexible machine learning algorithm that 

is one of the supervised learning models used for classification tasks. It performs particularly 

well in high-dimensional data spaces and marginally separable data sets. The basic principle 

of SVM is to find the best decision boundary (hyperplane) to classify the examples in the 

dataset into classes. This decision boundary is chosen to maximize the marginal distance 

between instances belonging to different classes. The examples that are closest to the 

boundary and determine the position of this boundary are called “support vectors.” Figure 2 

shows a simple SVM implementation in two dimensions. The figure shows the optimal 
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hyperplane, the optimal margin, and the data points in red and blue. The red and blue data 

points represent different classes, and the optimal hyperplane is positioned to maximize the 

separation between these two classes. 

 
Figure 2. A simple two-dimensional SVM example. 

 

SVM uses the kernel trick technique to process data sets that cannot be linearly separated. This 

technique transforms the data points from the original feature space into a higher-dimensional space, 

allowing linear separation in the new space. Standard kernel functions include polynomial, radial basis 

function (RBF), and sigmoid functions. The SVM algorithm is known for its high accuracy in many 

situations and its ability to create highly generalizable models. Therefore, it is successfully used in 

many fields. 

 

E. CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION (CLAHE) 
 

CLAHE is a method for improving contrast in images. It is particularly effective in low-contrast 

images and is widely used in medical imaging, satellite imagery, and photography. 

 

CLAHE is based on the Histogram Equalization method. Histogram Equalization increases the 

contrast of an image by expanding its histogram, i.e., its color distribution, over the entire image. 

However, in some cases, it can result in excessive contrast enhancement and the appearance of noise. 

To solve this problem, CLAHE operates in a contrast-limited and adaptive way. CLAHE limits 

contrast increases above a certain threshold to prevent too high contrast enhancement. This prevents 

excessive increase of noise in the image. In addition, the image is divided into small regions to enable 

adaptive processing. Histogram equalization is applied separately for each region. Thus, a more 

balanced contrast enhancement is applied by considering the regional contrast differences of the 

image. Figure 3 shows an original fundus image from the dataset after the CLAHE application. Figure 

3 clearly shows the positive effect of CLAHE application on contrast. 

 
Figure 3. CLAHE filter applied to RGB fundus image. a) Original image, b) CLAHE applied fundus image 
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IV. MATERIAL AND PROPOSED MODELS 
 

In this study, glaucoma disease was detected by classification with hybrid models. For this purpose, 

ViT, PCA, LDA, CLAHE, and SVM methods were utilized. 

 

A. DATASET 
 

SMDG-19 open-source dataset was used in our study. Information about this dataset is shown in Table 

1. 
 

Tablo 1. SMDG-19 dataset 

Data 

Number 

of 

Glaucoma 

Positive 

Images 

Number 

of 

Glaucoma 

Negative 

Images 

Total 

Number 

of 

training 

samples 

3328 5293 8621 

Number 

of 

validation 

samples 

2208 3539 5747 

Number 

of test 

samples 

1120 1754 2874 

Total 6656 10586 17242 
 

 Depending on the dataset's size, the model's requirements, and the results of the preliminary studies, 

the dataset was divided into 50% training, 33% validation, and 17% test data. The original images in 

the dataset are at a standardized scale of 512x512. The images were obtained by merging and 

standardizing 19 different open-source datasets. Figure 5 shows a sample of glaucoma-positive and 

glaucoma-negative images from the dataset. 
 

  

Figure 5. Sample Glaucoma negative (left) and Glaucoma positive (right) images from the SMDG-19 dataset. 

 

B. DATA PREPROCESSING 
 

One of the most important steps to increasing the success of deep neural network methods is to train 

the models with as much data as possible. Increasing data provides better learning and increases the 

model's reliability. For this reason, data augmentation was performed on the dataset before training the 
data. The data augmentation process can have different perspectives depending on the models applied, 

and each model, and the data augmentation techniques used in these models are given in Table 2. 
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Table 2. Preprocessing and data augmentation for models. 

Model Image size Preprocessing and Data Augmentation 

Fine Tuned ViT 224x224 Random horizontal and vertical flip 

CLAHE-Fine Tuned Vit 224x224 
CLAHE filter on the green channel, Random 

horizontal and vertical flip 

Fine Tuned ViT-PCA-

SVM 
224x224 Random horizontal and vertical flip 

Fine Tuned ViT-LDA-

SVM 
224x224 Random horizontal and vertical flip 

ViT-PCA-SVM 224x224 Random horizontal and vertical flip 

Incremental PCA - SVM 224x224 - 

 

The SMDG-19 dataset used in the study increases the generalizability of the model. It is expected to 

provide a high degree of relevance to clinical applications thanks to its high number of images and the 

application of various preprocessing techniques. The large scope and standardization of the dataset 

increases the likelihood of adequately representing variations in real-world conditions, which aims to 

strengthen the expectation of supporting the clinical validity of the model. 

 

C. VIT B16 MODEL 
 

In our study, transfer learning was mainly performed on the pre-trained weights of the ViT B16 model 

using the fundus images in our dataset. To see the difference, we directly used the pre-training weights 

of the ViT B16 model without transfer learning in our ViT-PCA-SVM model. In our classification and 

transfer learning studies, the final layer of the model was set to have a softmax activation function, and 

a dense layer with two outputs was utilized. The images were first preprocessed and then trained with 

the specified parameters. A summary of our ViT model is given in Table 3. 

 
Table 3. ViT Model Summary 

Layer (type)   Output Shape   Parameter Count 

Input Layer (224, 224, 3) 0 

Vit-b16 (Functional)  768 85798656 

Flatten 768 0 

*Dense (Feature) 64 49216      

Dense 32 2080 

Dense 2 66 

 

D. PROPOSED MODELS 

 
In this study, we first focus on feature extraction and then classification of fundus images. Feature 

transformation methods have provided outstanding solutions for moving the data to a better 
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representation space. After feature extraction, SoftMax or SVM methods were used to predict the data 

category. 

 

This study tried six different hybrid models, with the aim of obtaining the best result by combining 

different models. Figure 4 shows the structure of the hybrid models used. 

 

In the first model, Fine-Tuned ViT and PCA methods were used for feature extraction, while SVM 

was used for classification. In the second model, Fine-Tuned ViT was first used for feature extraction. 

Then, a new transformation was made with LDA, and in the last stage, SVM was used for 

classification. In the third model, the CLAHE approach was first used on fundus images, and then the 

Fine-Tuned ViT model was preferred.  

 

The data was trained and classified in the fourth model with Fine Tuned Vit B16. In the fifth model, 

data transformation was performed with Incremental PCA, and then SVM was used for classification. 
Finally, in the sixth model, feature extraction was performed on the fundus images first with ViT, then 

with PCA, and then with SVM classification. 

 

Figure 4. Used model structures. 

 

E. PARAMETER SETTINGS 
 

Parameters suitable for the structure of the model were selected for the models we used in our study. 

In the training of ViT models, Sparse Categorical Crossentropy was used as the loss function, and 

Adam with Weight Decay (AdamW) was used as the optimization algorithm. In the classification 

layer of ViT models, softmax was used as the activation function. The ViT models' batch size was 16, 

and the models were trained in 5 epochs. In the model with Incremental PCA, 256 was used as a batch 

size. Since the PCA method is based on statistical calculations, large batch sizes are preferred to 

analyze high-dimensional data together and increase efficiency. In contrast, smaller batch sizes are 

used because ViT models provide better generalization and computational efficiency with smaller 
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batches. Radial Basis Function Kernel (RBF) was used as Kernel in all SVM classifier models. The 

RBF kernel was chosen because it can learn efficient separation boundaries in high-dimensional data 

space and provides flexibility and robust performance for modeling complex relationships between 

data points. The number of components was chosen as 41. In cases where LDA was used as a 

classifier model, the number of components was set to “1” since the number of classes was 2. 

 

F. PERFORMANCE EVALUATION METRICS 

 
Our study used accuracy, precision, recall, and F1-score metrics to evaluate the classification 

performance. In addition, model performance was evaluated with the complexity matrix. Accuracy 

refers to the overall performance of the classification model. It shows how much of the total 

predictions are made correctly. It is usually used when the class distribution is balanced, and all 

classes are equally important. Mathematically, it is calculated as the ratio of correct predictions to total 

predictions, as in Equation 1. 

 

Precision measures how many of the positively predicted samples are positive. In other words, it 
shows how “accurate” the model is. It is preferred when false positives (FP) are significant. Precision 

is preferred when correct positive predictions are more important than errors in the negative class. Its 

mathematical expression is as in Equation 2.  

 

Recall measures how much of the samples that are actually positive are correctly predicted to be 

positive. It shows how well the model “remembers” positive cases. It is calculated using the 

expression in Equation 3. 

 

The F1-Score is a metric that balances precision and sensitivity. It is calculated as the harmonic mean 

of both values and indicates the overall balance of the model. It is used when a trade-off between 

precision and sensitivity needs to be considered and is calculated using the expression in Equation 4. 

 

The confusion matrix shows the performance of a classification model in detail. It presents the model's 

correct and incorrect predictions for each class in matrix form. It is used to examine the model's 

performance for each class in detail. Usually, the matrix rows represent the actual classes, and the 

columns represent the predicted classes. Four basic terms are usually used in the matrix.  

 

True Positive (TP, True Positive): Situations that are positive and correctly predicted as positive. 

 

False Positive (FP, False Positive): Situations that are actually negative but incorrectly predicted as 

positive. 

 

True Negative (TN, True Negative): Situations that are negative and correctly predicted as negative. 

 

False Negative (FN, False Negative): Cases that are actually positive but incorrectly predicted as 

negative. The representation of the complexity matrix is as in Table 4. 

 

Table 4. Confusion matrix. 

 Actual 

P
r
e
d

ic
te

d
 TP FP 

FN TN 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

 
 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
The plots of the accuracy and loss graphs at each epoch for the train and validation data of the 6 

different models applied in our study are shown in Figure 6. 
 

 

 

Figure 6. Accuracy-epochs, Loss-epoch graphs of train and validation data. a) ViT fine tuning, b) ViT fine 

tuning after CLAHE filter. 

 

When the loss and accuracy graphs are analyzed, it is seen that the loss value decreases significantly 

for the train data and the accuracy value increases as expected as the epoch increases. However, this 

situation is not as clear for validation data. Since we train on pre-trained weights, the accuracy value 

rises above 84% after the first epoch. When Accuracy starts with a high value from the beginning, the 

changes in the subsequent iterations are not very significant. Still, there is a decrease in loss and an 

b) 

a) 
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increase in accuracy between the initial and final values, as desired. The confusion matrixes of our 

models are given in Figure 7. 
 

 

 

 

 

 

 

Fine Tuned Vit Model CLAHE-Fine Tuned Vit Model 

  

Fine-Tuned ViT-PCA-SVM 

Model 

Fine-Tuned ViT-LDA-SVM 

Model 

  

ViT-PCA-SVM Model Incremental PCA - SVM Model 
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Figure 7. Confusion matrices of the models used. 

 

The performance metrics calculated using the confusion matrixes are given in Table 5. 
 

 

 

 

 

Table 5. Classification performance of models. 

Method Accuracy Precision Recall F1- Score 

Fine Tuned Vit 0.88 0.88 0.88 0.88 

CLAHE-Fine Tuned Vit 0.90 0.90 0.90 0.90 

Fine Tuned ViT-PCA-

SVM 
0.92 0.92 0.92 0.92 

Fine Tuned ViT-LDA-

SVM 
0.92 0.92 0.92 0.92 

ViT-PCA-SVM 0.84 0.85 0.84 0.84 

Incremental PCA - SVM 0.81 0.83 0.88 0.86 

 

When the results are examined, it is seen that the best score of 0.92 is obtained in the models that 

follow the process steps of feature extraction from ViT models trained with the transfer learning 

method, reduction of these features with LDA or PCA, and then classification with SVM. In the “Fine 

Tuned Vit” and “CLAHE-Fine Tuned Vit” models, where classification is performed with dense 

layers after transfer learning is applied, the scores increase when we apply the CLAHE filter. In the 

ViT-PCA-SVM model, where we classify directly with the results of the pre-trained model without 

applying the transfer learning stage, the scores are lower than the other ViT models, as expected. It is 

important to see the benefit of transfer learning.  

In the case where the images are directly classified with SVM after data reduction with PCA without 

using deep learning methods, although the results are lower than the other methods, it is seen that it is 

close to the values in the case where transfer learning is not applied and even surpasses this model in 

sensitivity and F1 score. This indicates that using deep learning without transfer learning is not very 

beneficial. In the Incremental PCA SVM model, direct PCA could not be applied due to memory 

problems. Incremental PCA, where the data is processed piece by piece, had to be applied. 
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When other studies in the literature are examined, it is seen that most of the studies have worked with 

smaller data sets. In addition, it is seen that many studies use data from patients in a specific hospital 

[16], [17], [18], [19]. This will negatively affect the generalizability of the results obtained. In the 

dataset we used, images from different hospitals in different countries were used. In this respect, it can 

be said that the models we obtained are more generalizable. Our study obtained an 81.0% accuracy 

when we applied Incremental PCA and SVM without ViT. Dey et al. [16] applied a similar method in 

their study and achieved 86% accuracy on a smaller dataset.  

 

In our study, the success scores increase slightly when the CLAHE filter is applied, which is in line 

with Karrothu et al.'s study [17], which shows the study's reliability. With a large dataset, this study 

achieved a high success rate of 92% in detecting glaucoma disease, providing strong potential for 

earlier and more accurate patient diagnosis in clinical applications. Future studies with larger data sets 

are expected to pave the way for the direct use of the model in clinical studies. 

 

 

VI. CONCLUSION 
This study used six models to detect glaucoma disease using the SMDG-16 dataset of 17242 fundus 

images.  Different approaches were applied to our models, and the results were analyzed. These 

approaches show the effects of transfer learning and using the CLAHE filter in ViT models. We also 

show the effects of classification with a dense layer or using combinations of PCA/LDA-SVM on the 

performance. Finally, it is shown how success scores would change in the absence of deep learning.  

 

The study's results showed that the highest scores were 92% for the Fine Tuned ViT-PCA-SVM and 

Fine Tuned ViT-LDA-SVM models. The lowest scores were seen in the Incremental PCA-SVM 

model without deep learning and the ViT-PCA-SVM model without pre-trained weights. 
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