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ABSTRACT 

The mathematical content knowledge (MCK) and pedagogical content knowledge (PCK) of primary and elementary 

teachers at all levels of experience is under scrutiny. This article suggests that content knowledge and the way in which 

it is linked to effective pedagogies would be greatly enhanced by viewing mathematical content from the perspective of 

the ‘big ideas’ of mathematics, especially of number. This would enable teachers to make use of the many connections 

and links within and between such ‘big ideas’ and to make them explicit to children. Many teachers view the content 

they have to teach in terms of what curriculum documents define as being applicable to the particular year level being 

taught. This article suggests that a broader view of content is needed as well as a greater awareness of how concepts are 

built in preceding and succeeding year levels. A ‘big ideas’ focus would also better enable teachers to deal with the 

demands of what are perceived to be crowded mathematics curricula. The article investigates four ‘big ideas’ of number 

– trusting the count, place value, multiplicative thinking, and multiplicative partitioning – and examines the ‘micro-

content’ that contributes to their development. 
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Introduction 

The case for ‘Big Idea Thinking’ 

Teacher content knowledge for teaching mathematics has been the subject of much recent discussion, 

particularly in Australia (Callingham et al., 2011; Clarke, Clarke & Sullivan, 2012), New Zealand (Anakin & 

Linsell, 2014) and USA (Thanheiser et al., 2013; Green, 2014). Such discourse has been broad and has 

encompassed knowledge of teachers at all levels from pre-service teachers (PSTs) and newly graduated 

teachers to experienced teachers. One key reason for this has been the view that school students in western 

nations like Australia and USA are not faring as well in high stakes international testing as they might, 

especially when compared to Asian and Scandinavian nations.  

 

Time for change 

Tatto et al. (2008) noted in response to the TEDS-M study that one aspect of the concern was in relation 

to pedagogies. Many teacher preparation courses focused too much on ‘general pedagogies’ – non-subject-

matter-specific theoretical aspects of teacher education programs – rather than on domain-specific 

pedagogies needed to effectively teach mathematics. The other aspect of the current dilemma is the 

mathematical content knowledge of teachers and how this needs to be organised in a more connected way. 
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Over the last fifty years or so, many educators and researchers have written about this explicitly and 

implicitly and this will be discussed later in this paper. However, whilst new curriculum documents for 

teaching mathematics have been developed in both Australia and USA, they have not stemmed the levels of 

concern being expressed about teacher knowledge or about how mathematics should be taught. In fact, the 

Common Core State Standards for Mathematics (NGA Center, 2010) and the Australian Curriculum: 

Mathematics (ACARA, 2012) are widely viewed as being ‘lost opportunities’ (Atweh & Goos, 2011; Atweh, 

Miller & Thornton, 2012; Hurst, 2014a).   

In Australia, the concern has been manifest in recent federal government initiatives including a review 

of the Australian Curriculum and an inquiry into teacher education (Government of Australia, 2013, 2014). 

These are important initiatives but unless there is a shift in how mathematics is perceived and organised, 

then nothing is likely to change in terms of teacher knowledge. The notion of ‘big ideas’ of mathematics is 

not new but it has, in recent years, been afforded some prominence (Charles, 2005; Clarke, Clarke & Sullivan, 

2012; Siemon, Bleckley & Neal, 2012). It is suggested here that a focus on the ‘big ideas’ of mathematics, in 

particular of number, is the key to developing teachers’ mathematical content knowledge and their capacity 

to respond effectively to curriculum documents. Charles (2005, p. 10) defines a ‘big idea’ as ‚a statement of 

an idea that is central to the learning of mathematics, one that links numerous mathematical understandings 

into a coherent whole‛. He contends that ‘big ideas’ are important because they enable us to see mathematics 

as a ‚coherent set of ideas‛ that encourage a deep understanding of mathematics, enhance transfer, promote 

memory and reduce the amount to be remembered (Charles, 2005, p. 10).  

Green (2014) noted recently when observing methods for teaching mathematics that ‚The Americans 

might have invented the world’s best methods for teaching math to children but it was difficult to find 

anyone actually using them‛ (p. 2). This comment is clearly related to pedagogies but it is necessarily bound 

up with content knowledge. One reason for this could be that many teachers see the curriculum as ‚a mile 

wide and an inch deep‛ (NGA Center, 2010, p. 3), a problem reflected in the Australian context as noted by 

Siemon, Bleckey & Neal (2012) – ‚A focus on the big ideas is needed to ‘thin out’ the overcrowded 

curriculum‛ (p. 20). The recent curricula developed in Australia and USA have continued to present content 

in a familiar linear fashion which does little to give teachers reason to consider that mathematics may be 

more than unconnected ‘silos’ of information. The view here is that presenting mathematical content 

knowledge using ‘big ideas’ as focal points is the way to deepen the understanding of teachers and to have a 

positive effect on their pedagogies. This view is supported by Gojak (2013) who noted that it is time to 

change the way in which mathematics education is viewed and that children need to be taught by teachers 

who deeply understand mathematical concepts.  

Developmental, not linear 

If change is to occur it needs to be based on a view of the ‘big ideas’ of number being developmentally 

linked. This clashes with the traditional linear way of presenting curriculum content. The latter encourages 

teachers to teach only the content ‘designated’ to their particular year level without necessarily ensuring that 

children have the pre-cursor knowledge required to be able to understand it. The situation where children 

may lack specific knowledge or may develop misconceptions is exacerbated the further they move through 

school. What needs to happen is for teachers to be encouraged to use ‘big ideas’ as a series of coherent 

concepts connected in developmental ways. That is, the foundations for some later concepts are being laid 

years before full understanding of the concept may manifest itself.  

Big . . . little . . . big ideas 

If this is to occur, teachers need to understand the ‘micro content’ that makes up each ‘big idea’ or key 

concept. These points of ‘micro content’ could also be described as ‘content descriptors’ or ‘key learning 

criteria’ for each ‘big idea’. If a teacher knows about ‘micro content’ and can recognise when a child knows it 

or otherwise, s/he is in a better position to help that child develop a richer understanding of the key concept 

or ‘big idea’. As well, the developmental relationship between the ’big ideas’ of number will then help to 

ensure that the child is building a solid foundation for her/his future learning of the ‘big ideas’ that follow. 

Notwithstanding the importance of such ‘micro content’, Major (2012) noted how children’s 

misconceptions can be masked by apparent understanding. For example, a teacher could misinterpret the 

depth of a child’s understanding of a key concept (or ‘big idea’) because the child might demonstrate 
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knowledge of one particular criterion which may lead a teacher to assume that a more complete 

understanding is present. If the teacher had a deep, rich, and connected understanding of the particular 

concept, or ‘big idea’, then s/he would likely be prompted to further investigate and probe the child’s 

thinking.  

Conceptual development 

The focus on ‘big ideas’ is not new and can be traced back at least to the work of Bruner (1960) with his 

emphasis on concepts. Bruner described four essential functions of concepts – they provide structure for a 

discipline, provide a framework for more easily understanding and recalling details, act as bridges for 

transfer of learning, and hence provide a structure for on-going learning. These features are quite obviously 

common to what are called ‘big ideas’. Noting Bruner’s work, Clark (2011) provided his own definition of a 

concept: 

My working definition of ‚concept‛ is a big idea that helps us makes sense of, or connect, 

lots of little ideas. Concepts are like cognitive file folders. They provide us with a framework or 

structure within which we can file an almost limitless amount of information. One of the unique 

features of these conceptual files is their capacity for cross-referencing (Clark, 2011, p. 32) 

In 1993, Brooks and Brooks (as cited by Clark, 2011) said that there was a further function of concepts, 

that being the provision of a framework with which individuals can construct their own understanding. This 

is inherently linked to the earlier work of Skemp (1976) who described relational understanding  as a 

‚building up *of+ a conceptual structure (schema) from which its possessor can (in principle) produce an 

unlimited number of plans for getting from any starting point within his schema to any finishing point‛(p. 

14). More recently Van de Walle, Karp and Bay-Williams (2013) represented  Skemp’s ideas on a continuum, 

illustrating relational understanding at one end of the continuum being characterised by multiple 

connections within and between ideas and instrumental understanding characterised by no or very few such 

connections. 

Connectedness and transfer 

It was noted earlier that the ‘connectedness’ of mathematical content knowledge has been explicitly and 

implicitly discussed by numerous educators and researchers. In his seminal paper about knowledge growth, 

Schulman (1986) discussed ‚substantive structures *as being the+ ways in which the basic concepts and 

principles of the discipline are organized to incorporate its facts‛ (p. 9). These ‘structures’ could be said to be 

akin to the links and connections of ‘big ideas’ (Hurst, 2014b). Later, Hiebert and Carpenter (1992) noted 

how understanding depends on a ‘network of representations’ and Ma (1999) identified ‘knowledge 

packages’ where ideas are connected through ‘concept knots’. Given the depth and breadth of informed 

comment about the connected nature of knowledge within a conceptual structure such as ‘big ideas’, Clark’s 

(2011) comment about transfer of learning is somewhat chilling –‚The primary reason that so many adults 

are unable to transfer what has been learned in one situation to a different situation, is because they have 

been programmed to think linearly, inductively, and in little boxes‛ (p. 34). Clark’s comment may have been 

written long before the development of the Common Core State Standards for Mathematics and the 

Australian Curriculum: Mathematics but it describes the contemporary situation well. Curriculum content is 

still presented in the same linear fashion as it was in previous curriculum documents and, as a consequence, 

many teachers continue to teach it in the same unconnected way and inevitably, many children learn it in the 

same unconnected way.  

What are the ‘Big Ideas’? 

In deciding what ‘big ideas’ might be and/or look like, it is necessary to consider Charles’s (2005) work 

in which he described twenty one ‘big ideas’ of mathematics and noted, as did Clarke, Clarke & Sullivan 

(2012), that it would be unlikely to obtain universal agreement amongst teachers and teacher educators 

about what precisely such ‘big ideas’ should be. Siemon, Bleckly & Neal (2012) took a more particular stance 

in discussing the ‘big ideas’ of number in terms of how they were presented in the Australian Curriculum: 

Mathematics and described six ‘big ideas of number’ which form the basis of the graphic illustration that 
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follows (Figure 1). None of the six ideas presented by Siemon et al. are the same as any of those presented by 

Charles (2005) apart from Proportional Reasoning which Charles termed Proportionality. However, the ideas 

presented by Siemon et al. are embedded in Charles’ ‘big ideas’ in various ways.  

Charles’ (2005) first ‘big idea’ is termed Numbers and he discusses ‘counting numbers’ which effectively 

describes what Siemon et al. (2012) discuss as Trusting the Count. Charles’ second ‘big idea’ is The Base Ten 

Numeration System in which he includes what Siemon et al. (2012) have termed Place Value. However, as part 

of his second ‘big idea’, Charles also discusses the idea that ‚each place value to the left of another is ten 

times greater than the one to the right‛ (2005, p. 13) which is an essential element of the idea of Multiplicative 

Thinking as described by Siemon et al. (2012). In a similar way, Charles has embedded elements of Siemon et 

al.’s (2012) Multiplicative Partitioning in his first ‘big idea’ of Numbers where he discusses fractions and 

rational numbers and in his fourth ‘big idea’(Comparison) where he discusses fractions and percent. 

A developmental, hierarchical view 

Charles’ (2005) discussion of the ‘big ideas’ highlights the important connections that exist within and 

between the ideas and across various content areas of mathematics. Notwithstanding that, any given 

number of people might consider the ‘big ideas’ in a range of ways, the discussion of the ‘six big ideas’ of 

number’ by Siemon et al. (2012) has one particular strength. It highlights that there is a hierarchical aspect to 

the development of the six ideas which is presented in a table showing approximate age levels at which it is 

reasonably expected children would have an understanding of each ‘big idea’. This has been adapted to 

form the graphic that is Figure 1. This also shows how there are elements of each ‘big idea’ that necessarily 

develop alongside other ideas. For example, Siemon et al. (2012) note that Multiplicative Partitioning should 

be well developed by the end of Year Six, yet it is clear that many aspects or pre-conditions for its full 

development are present when children learn about Trusting the Count, Place Value and Multiplicative 

Thinking.  

 

Figure 1. Development of the big ideas of number 

The relationship between the ‘big ideas’ as depicted in Figure 1, should be considered alongside the set 

of criteria for determining the extent of development of children’s understanding of each idea. This is shown 

later in this article as a series of lists which accompany each ‘big idea’ and highlights ‘landmark’ or critical 

points of development within each of the ‘big ideas’. These lists were constructed using the article by 

Siemon, Bleckley and Neal (2012) as a reference point and is also informed by diagnostic maps from First 

Steps in Mathematics (Department of Education, Western Australia, 2013b) (FSiM) and by the work of Van 

de Walle, Karp and Bay-Williams (2013), Siemon, Beswick, Brady, Clark, Faragher and Warren (2011), and 

Reys et al. (2012).  

Of the six ‘big ideas’, four of them; trusting the count, place value, multiplicative thinking and 

(multiplicative) partitioning, are firmly rooted in the primary school setting. The final two, proportional 

reasoning and generalizing algebraic reasoning are developmentally more suitable in secondary school 

(Siemon et al, 2012). Even so, the rudiments of algebraic reasoning are very much underpinned by an 
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understanding of pattern which constitutes much of essential early number experiences children should 

have (Siemon et al., 2011). Similarly, many aspects of proportional reasoning are directly attributable to 

multiplicative thinking and develop simultaneously with it, and multiplicative partitioning, as children 

work flexibly with fractions. An example of this is how links are made between the concept of equal shares 

and the fraction construct for division. Connections such as this are explored further later in this article. 

The remainder of this paper will examine the ‘big ideas’ situated in the primary school years, with a 

particular emphasis on multiplicative thinking. It will briefly examine each of the big ideas, how they are 

inter-related and how they become apparent and are enacted in the primary classroom. In keeping with the 

position stated earlier about the central importance of teacher content knowledge, each ‘big number idea’ 

has been examined to determine the required ‘micro content’. It is essential to identify the key components 

of each ‘big number idea’ for teachers to be better positioned to assist students in moving through the 

trusting the count phase to place value, to multiplicative thinking and to multiplicative partitioning. It needs 

to be recognized at the outset that this progression through the ideas is not a linear process, but a 

developmental one. 

Making explicit connections: Identifying connecting conduits 

In order to develop fully each of the big ideas of number, the myriad connections that exist within and 

between them need to be identified and understood. This means knowing about underpinning concepts and 

ideas and how they are linked. As well, certain critical aspects of thinking and where they fit into the 

developmental sequence also need to be identified. For instance, it is vital that children understand the 

principles of counting and can count fluently in different ways. However, it is even more important that they 

move on from an additive approach and begin to think multiplicatively if they are to progress beyond a 

basic level of mathematical understanding. What then, are the ideas, concepts, and associated experiences 

that are the conduits by which connections are made? That is, how are trusting the count, place value, and 

multiplicative thinking connected and related?  

It is evident that certain key ideas need to be in place for children to ‘trust the count’. The quantification 

goal of both counting and subitizing depends upon ample early experiences with sorting, classification, 

grouping and patterns, as children learn about conservation of number (Reys et al., 2012; Department of 

Education, 2013b). Once children ‘trust the count’, they are able to understand place value through the entity 

of the ‘ten group’. At this stage, a number of connected ideas loom large and the development of these ideas 

positions children to think multiplicatively and hence proportionately and algebraically. Numerous 

mathematics educators and researchers (for example, Jacob & Mulligan, 2014; Young-Loveridge, 2005) have 

identified the multiplicative array as a key idea in developing children’s thinking.  

It is not just the construct of the array but the way it links to other ideas that is important. There are 

obvious connections between it and the notion of equal sharing and grouping, and hence multiplication and 

division, as well as the commutative and distributive properties of multiplication and the ideas of part-part-

whole understanding and flexible partitioning. Jacob & Mulligan (2014) also specifically note how teachers 

can use the array pattern ‚to focus students’ attention on all three quantities at once  . . .  the number of 

groups, the number in each group, and the whole amount, as well as the associated language‛ (p. 37). 

Indeed, the use of the terms ‘factor’ and ‘multiple’ needs to be an integral part of working and learning with 

arrays.  

Hence it is important for teachers to deeply understand how the ‘big number ideas’ are inextricably 

linked through representations such as arrays. This is the essence of ‘big idea thinking’, part of which is to be 

able to identify particular points of ‘micro content’ that underpin to some extent the development of later 

ideas. Examples of this will be given throughout the next section which deals with four of the ‘big number 

ideas’ and their component parts. 

Trusting the count 

The first of the ‘big number ideas’ is trusting the count. Originally the term trusting the count was 

coined by Willis (2002) to highlight how students may not understand that the number said at the end of the 

counting act represented the total, and was invariant, in that if counted again the same number would be 

reached. In more recent times the definition of trusting the count has broadened from just being the 
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invariant result, to also mean ‚<a child’s capacity to access flexible mental objects for the numbers 0 -10‛ 

(Siemon, Beswick, Brady, Clark, Faragher & Warren, 2011, p.197). 

Although a detailed account of trusting the count will not be pursued here it is not to underestimate the 

importance of trusting the count or the difficulty in the teaching and learning of it. It is however an 

acknowledgement that there is much research and literature (for example, Department of Education, 

Western Australia, 2013b; Gelman &Gallistel, 1978) available to guide, particularly the early childhood 

teacher, through good pedagogical practices to position the students to be able to achieve this particular ‘big 

idea’. As already noted, ‘big ideas’ are constructed from many ‘little ideas’ or ‘micro content’, and so it is 

with trusting the count. Siemon, Bleckly and Neal (2012) identify a number of such ideas which support the 

development of trusting the count, and these  are further enhanced through a study of First Steps in 

Mathematics materials (Department of Education, Western Australia, 2013b) and the work of Reys et al. 

(2012), and Van de Walle, Karp and Bay-Williams (2013). The following list has been developed as an 

indication of the points of ‘micro content’ or key understandings that together comprise the ‘big number 

idea’ of trusting the count. The addition of the italicised phrases is to illustrate some of the links which exist 

between the ‘big ideas’. 

 Early number experiences – Classifying, grouping, ordering, patterns – underpin the development 

of this idea 

 Each object is counted once – one to one correspondence 

 Collections can be compared on a one-one basis 

 Arrangement of objects in a count does not change the quantity 

 In a count, the last number signifies quantity 

 Purpose of counting or subitizing is to quantify 

 Counting numbers (the number string) are always said in the same order 

 Counting on and back can be used to solve simple problems 

 

Other aspects of trusting the count can be shown to directly link to aspects of ‘big number ideas’ that 

follow as shown below in the second part of the list. 

 Subitizing or instant recognition of small groups can be a means of quantifying – directly informs the 

concept of the ‘ten group’ which underpins place value 

 Small numbers can be seen as the combination of other numbers 

 There are multiple ways of seeing grouping of objects 

 The part-part-whole relationship can be used as the basis for operating 

 Basic addition facts always give the same result irrespective of arrangement – these four points inform 

the ideas of flexible partitioning and the distributive property of multiplication 

 Addition and subtraction situations can be considered in terms of a whole and two parts, one of 

which is unknown or missing 

 Additive thinking is employed to solve problems with small numbers – these points are important 

precursors to understanding the links between multiplication and division and operating with numbers 

 Skip counting to find the total will give the same result as one-one counting – this informs the 

understanding of patterns in the base ten number system and patterns in multiplication facts 

 Share portions from a quantity and know that there more portions there are, the smaller will be the 

portions – this informs the understanding of the relationship between multiplication and division, 

multiplicative partitioning, and proportional reasoning.  

 

Most teachers, particularly those in the early childhood setting would recognise the elements in the 

above list, appreciate their place in the development of trusting the count and have a clear understanding of 

appropriate pedagogy. They would also acknowledge the understandings developed during the trusting the 

count phase have implicit links, and overlaps, even if not immediately developed, with the second ‘big idea’ 

place value and beyond. This is the importance of ‘big idea thinking’ in that it helps teachers realise the 

extent to which seemingly simple ideas are the building blocks for other more complex and powerful ideas. 

Trusting the count underpins the essential element of place value, that is, the ‘ten group’ which can be 

counted and manipulated as an entity. At the time of moving the students into numbers beyond ten it is 
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highly likely that such understandings will be emerging and in need of attention in the teaching and 

learning. 

Place Value 

What some teachers may find less obvious is the importance of making the connections between trusting 

the count and place value more explicit. A view that students will intuitively develop an understanding of 

place value perhaps deserves further scrutiny. Place value is a complex process which is ‚<subject to 

considerable inter-individual variability‛ (Moeller, Pixner, Zuber, Kaufmann & Nuerk, 2011, p. 1839), and 

the list that follows is an indication of this complexity, showing the variety of criteria which need to be 

understood. Major (2012) wrote about how this complexity is quite often masked by condensing all of these 

key criteria into one seemingly simple construct, that of defining place value as a way to say, read and write 

numbers. Further Major alludes to the fact that because students can achieve the act of saying, reading and 

writing numbers this can often mask the fact that they are unable to generalize the multiplicative 

relationships within the place value system, an issue also recognised by other researchers (Irwin, 1996; 

Kamii, 1986; Thomas, 2004). The following list is a composite of ideas from a range of sources: Department of 

Education, Western Australia (2013b); Reys et al. (2012); Ross (1989); Siemon, Bleckley & Neal (2012); 

Siemon, Beswick, Brady, Clark, Faragher and Warren (2011); and Van de Walle, Karp and Bay-Williams 

(2013).  

 

 Order of digits makes a difference 

 Additive property – The quantity represented by the whole numeral is the sum of the values 

represented by the individual digits  

 Positional property – The quantities represented by the individual digits are determined by the 

position they hold within the whole numeral 

 Base ten property – The value of columns or positions increases by a power of ten moving from right 

to left and decreases by a power of ten moving from left to right – informs the understanding of the 

multiplicative relationship in the base ten system 

 Multiplicative property – The value of a number is determined by the product of its face and place 

values – informs the understanding of the multiplicative relationship in the base ten system 

 There are patterns in the way we read and say numbers 

 There are patterns in the way we write numbers 

 Patterns in the number system can help us to build other numbers 

 Place value columns have names – the above four points inform the understanding of the multiplicative 

nature of the cyclic pattern in the number system 

 Zero can hold a place 

 A Ten group is seen as a special entity which can be counted  

 The term Ten group can be applied to ‘ten tens’ or ‘ten hundreds’ and so on 

 We can skip count by ten, hundred both forwards and backwards (in place value parts) – the above 

four pointsinform the understanding of the multiplicative relationship in the base ten system 

 Numbers can be partitioned in flexible ways using standard and non-standard partitions – is linked 

to the idea of part-part-whole and informs the understanding of the distributive property, and the 

understanding of the multiplicative situation (division and multiplication), factors and multiples  

 Number partitioning can be shown as indicative of digit value and place value. For example, 26 = 20 

+ 6 or (2 x 10) + (6 x 1) – informs the understanding of the distributive property 

 

Not only does a developing understanding of place value have an impact on the immediate success of 

students when moving from single to multi-digit numbers, it also has impact on future mathematical 

attainment. Ketterlin-Geller & Chard (2011) suggest that place value is fundamental to the eventual 

development of algebraic reasoning, especially a conceptual understanding of the base ten number system 

and a facility with basic number properties. This is another illustration of the overlap and parallel 

development between the six ‘big number ideas’. 

Teacher knowledge of mathematics is an essential component of effective teaching (Ball, Hill & Bass, 

2005; Young-Loveridge & Mills, 2009) and effective teaching of place value requires an understanding of the 
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learning progression. There are several ways of viewing the development of place value. One view is 

described by Ross (1989) who asserted that there were four properties of the numeration system. There are 

the additive property, whereby the value of a numeral is determined by the sum of the values of individual 

digits; the positional property, where the position of a digit within a numeral determines its value; the base 

ten property, where there is a ten times relationship between each place and those to its left and right; and 

the multiplicative property, where the total value of a digit is determined by the product of its place and face 

values (Ross, 1989). 

Another way of viewing place value development is through three phases. The first phase is unitary 

value, being the placement of the number in the number string (i.e. 37 is after the number 36). This is a 

concept which is perhaps not as easy as it might seem, as Moeller et al. (2011) insisted that children must 

automatically apply place value rules to place the tens and ones in the correct ‘bins’; something which 

according to Gervasoni and Sullivan (2007), 27% of Year 2 students find problematic. Being able to place the 

numbers into ‘bins’ is important, as students who are better in determining which of two symbolic numbers 

is the larger, enjoy higher achievement in mathematics (De Smedt, Noël, Gilmore & Ansari, 2013). 

The second phase is quantity value, that is, 36 is 30 + 6. This phase is built on additive thinking and 

employs standard partitioning along place value lines. Thompson (2009) stated that this understanding of 

place value is particularly important in employing mental computation strategies. 

He concluded that for all of the four operations, the digits in the tens (and hundreds) column are seen as 

quantities in their own rights, 40 is not seen as four in the tens column or even 4 x 10, but forty. Further, he 

concludes that this is highly desirable until formal written algorithms are required (Thompson, 2009). 

The third and final phase is a column value understanding of place value. That is that 36 is 3 x 10 and 6 x 

1, the kind of understanding that is vital in being fluent with many standard written algorithms. Many lower 

and middle primary school teachers are well versed in the use of trading games and structured and 

unstructured materials to promote the first and second phases of place value but can at times find the third 

phase a challenge. This third understanding of place value is an important pre-requisite for developing an 

understanding of the multiplicative relationship between places in the number system (Thomas, 2004). As 

stated previously, it should be understood that there is a certain amount of multiplicative thinking which is 

developing simultaneously with trusting the count, and an increased amount with working towards an 

understanding of place value (See Figure 1).  

The column value understanding of place value relies on a developing understanding of multiplication. 

There is an argument (Graveiimeijer & van Galen, 2003) to suggest that a combination of procedural 

(memorisation of basic multiplication and division facts)and a conceptual understanding of multiplication 

are both required. To move the students through quantity value place value, which is mostly additive in 

nature, an alternative approach emphasising the significance of the size of the unit and the number of those 

units in determining quantity is required (Confrey & Maloney, 2010). Larsson (2013) cautioned that if 

students who use additive thinking are left to practise multiplication facts, algorithms and other procedures, 

this may not provide them with the opportunity to develop the understanding of multiplication as 

something more than repeated addition of equal groups. Traditionally, teaching multiplication and division 

begins with the relationship between repeated addition and multiplication (Confrey & Smith, 1995) an 

approach which reflects a ‘repeated addition’ understanding of multiplication. This ‘repeated addition’ 

understanding does not necessarily provide the required broader view and the qualitative change in 

students thinking which is ultimately required (Barmby, Harries, Higgins & Suggate, 2009). This broader 

view is characterised as requiring: replication (rather than joining as in addition/subtraction); the binary 

rather than unary nature of multiplication, and the notion of two distinct and different inputs; 

commutativity for multiplication but not division; and distributivity (Barmby, Harries, Higgins & Suggate, 

2009). 

One method for trying to build a conceptual understanding of multiplication is the multiplicative array 

which will be more fully discussed in the next section. Whilst this article focuses on multiplicative arrays, it 

should be noted that other representations, such as the number-line also need to be employed to develop a 

rich understanding of column value place value. Moseley (2005) called for the use of multiple 

representations in mathematics education suggesting that students who experience a broader range of 

representations have an increased understanding of concepts. Similarly, Young-Loveridge (2005) described 



Chris Hurst & Derek Hurrell 

9 

the need for children to have access to both counting-based strategies derived from number lines and 

collection-based strategies using arrays. 

Both research (Ma, 1999) and anecdotal evidence would suggest that the complexity of the 

understandings of place value required to assist the students towards further mathematical understandings 

is not well understood by many teachers. This rich understanding of the specialised content knowledge 

(Hill, Ball and Schilling, 2008) of place value seems to elude some teachers. It is suggested here that adopting 

‘big idea thinking’ with its inherent connections may help teachers to articulate both the complexity of place 

value, and how it is linked to other ‘big number ideas’. 

Multiplicative thinking 

According to Siemon, Bleckly and Neal (2012), the third big idea is multiplicative thinking. In their 

research Clark & Kamii (1996) found that 52% of fifth grade students were not sound multiplicative thinkers, 

and the work of Siemon, Breed, Dole, Izard, and Virgona (2006) showed that up to 40% of Year 7 and 8 

students performed below curriculum expectations in multiplicative thinking and at least 25% were well 

below expected level. Further, Siemon et al. declared that the students who are not well established with 

multiplicative thinking do not have the foundational knowledge and skills needed to participate effectively 

in further school mathematics, or to access some post-compulsory training opportunities. If we accept, that 

in order to understand multiplication we need the flexibility which place value affords in dealing with larger 

numbers, then the progression from trusting the count, through place value, and into multiplicative thinking 

is a reasonable one.  

Multiplicative thinking is fundamental to the development of important mathematical concepts and 

understandings such as algebraic reasoning, proportional reasoning, rates and ratios, measurement, and 

statistical sampling (Mulligan & Watson, 1998; Siemon, Izard, Breed & Virgona, 2006). Siegler et al. (2012) 

advocate that knowledge of division and of fractions (another part of mathematics very much reliant on 

multiplicative thinking) are unique predictors of later mathematical achievement. However multiplicative 

thinking is not only a pre-cursor for later important ideas, but the beginnings of multiplicative thinking 

underpin place value, which in turn informs and underpins multiplicative thinking. This is a strong example 

for the use of ‘big idea thinking’. Teachers need to understand the ‘micro content’ that connects big number 

ideas and how such ideas are ‘mutually supportive’ of one another. For instance, children need to 

understand that there is a ten times relationship that exists between places in the number system if they are 

to understand place value and apply it to large numbers and operations. This is the ‘base ten property’ 

(Ross, 1989) referred to earlier. 

Multiplicative arrays are considered to be powerful ways in which to represent multiplication. They 

refer to representations of rectangular arrays in which the multiplier and the multiplicand are exchangeable. 

(Barmby, Harries, Higgins & Suggate, 2009; Young-Loveridge & Mills, 2009). Young-Loveridge (2005) 

asserted that they have the potential to allow students to visualize commutativity, associativity and 

distributivity, and added that array representation of multiplication should be employed alongside other 

representations, to ‚allow students to develop a deeper and more flexible understanding of 

multiplication/division and to fully appreciate the two-dimensionality of the multiplicative process‛ (p. 38-

39). Nunes and Bryant’s (1995) research supported the strength of arrays in relation to developing a 

conceptual understanding of commutativity. Wright (2011) states that multiplicative arrays embody the 

binary nature of multiplication, and contended that as a representation they have value in that they also 

connect to other mathematical ideas of measurement of area and volume and Cartesian products.  

Certainly many of the points listed below as important criteria for indicating multiplicative thinking can 

be addressed through the use of multiplicative arrays. As with the previous lists for trusting the count and 

place value, there are some indications of how the specific criteria link to the other ‘big number ideas’ and 

the links shown are exemplary rather than exhaustive. The number of important criteria serves to indicate 

the significance of multiplicative thinking as critical ‘big number idea’.  

 

 Cyclical pattern of 100-10-1 is repeated from ones to thousands  

 Cyclical pattern of 100-10-1 is repeated beyond 1000s to millions 

 Ten times multiplicative relationship exists between places  

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7005862070&zone=
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 The multiplicative relationship extends to numbers less than one, that is to the right of the decimal 

point 

 There is symmetry in the place value number system based around the ones place so that the pattern 

in naming wholes is reflected in naming decimals – The above five points are both informed by and 

underpin place value.  

 Double count by representing one group (e.g., hold up four fingers) and counting repetitions of that 

group, simultaneously keeping track of the number of groups and the number in each group. 

 The multiplicative relationship between quantities is expressed as ‘times as many’ and ‘how many 

times larger or smaller’ a number is than another number 

 Numbers move a place each time they are multiplied or divided by 10 – These two points directly 

inform the development of multiplicative partitioning and ratio and proportion. 

 Basic number facts to 10 X 10 are recalled and patterns in number facts are investigated 

 Number facts can be extended by powers of ten – These points directly inform the development of mental 

computation strategies and the understanding of operations. 

 Multiplicative situations can be represented as equal-groups problems, comparison problems, 

combinations (Cartesian) problems and area/array problems. 

 The multiplicative situation is understood factor X factor = multiple with the meanings of the terms 

clearly understood 

 Multiplicative arrays are used to visualize and represent multiplicative situations 

 Division and multiplication are known as the inverse of one another 

 The commutative property of multiplication is understood and can be shown to be linked to arrays - 

This is also an important foundation for algebraic reasoning. 

 Partition division involves finding the size of each group and quotition division involves finding the 

number of groups and can also be expressed in terms of factors and multiple – These ideas directly 

inform the understanding of operations and the use of algorithms. 

 Quotition division can be considered in terms of fractions so that a quantity can be split by ‘halving’, 

‘thirding’, ‘fifthing’ etc. - Informs the understanding of operations, particularly division. It also underpins 

multiplicative partitioning and the development of proportional reasoning. 

 Prime and composite numbers can be linked to multiplicative arrays – prime numbers can be made 

only with a single row array - Informs the understanding of operations, particularly division. 

 Distributive property of multiplication over addition is applied and shown by a multiplicative array 

- Informs the understanding of operations, particularly division, as well as the development of mental 

computation strategies. As well, it is an important foundation for algebraic reasoning. 

 Multiplicative arrays are linked to the concepts of area and volume 

 Measurement units have the same multiplicative relationship as the Base Ten Number System – 

There are obvious links to understanding measurement concepts which can be used as a context for developing 

aspects of multiplicative thinking and place value. 

 Cartesian products can be represented symbolically and in tree diagrams - It underpins multiplicative 

partitioning and the development of proportional reasoning. 

 

Multiplicative thinking is not easy to teach or to learn. Whereas most students enter school with 

informal knowledge that supports counting and early additive thinking (Sophian & Madrid, 2003) students 

need to re-conceptualise their understanding about number to understand multiplicative relationships 

(Wright, 2011). Multiplicative thinking is distinctly different from additive thinking even though it is 

constructed by children following on from their additive thinking processes (Clark & Kamii, 1996). Devlin 

(2008 a, b, c) also noted that ‘multiplication is a tricky concept’ and suggested that much of the difficulty can 

be attributed to teaching it as ‘repeated addition’. Devlin discusses what he calls the ‘first model 

phenomenon’ in saying  

As most math teachers are probably aware, when you teach a new mathematical concept to someone, 

the way you first introduce it is almost certainly going to be the one the student retains, no matter how much 

you stress that the concept will later be changed in some way (Devlin, 2008c, p. 3).  

The point Devlin makes here is, that if multiplication is taught as ‘repeated addition’, that is likely how 

many children will continue to remember it. Unfortunately however, the longer that multiplication as 



Chris Hurst & Derek Hurrell 

11 

‘repeated addition’ lingers as a dominant image, the harder it will be for students to need to understand 

about ratios, proportions, algebraic relationships, and other ‘big number ideas’ that follow. Also, Askew & 

Brown (2003), in citing the work of Hart (1981), pointed out that ‚understanding multiplication only as 

repeated addition may lead to misconceptions such as ‘multiplication makes bigger’ and ‘division makes 

smaller’‛ (p. 10). This underlines the importance of teachers adopting ‘big idea thinking’ so that they are able 

to look beyond the immediate horizon of what they are teaching and see how it connects to and underpins 

other ‘big number ideas’ that follow.  

Multiplicative thinking is more than the capacity to remember and utilize multiplication facts. What is 

required is the development of the ability to apply these facts to a variety of situations which are founded on 

multiplication. Jacob and Willis (2003) proposed five broad stages for the development of multiplicative 

thinking: One-to-One Counting; Additive Composition; Many-to-One Counting; Multiplicative Relations; 

and Operating on the Operator. 

In the one-to-one counting phase the students are grappling with the basics of counting and do not see 

the relevance of the many-to-one count, that is, they may know what it means to hand out a given quantity 

but this is viewed additively and not multiplicatively (Jacob & Willis, 2003). At this point students are not 

able to use a row by column structure (an array) to work out a number of squares, and they resort to 

additive strategies (Batista, 1999). Stage 2, additive composition, is when the students understand the 

principle of trusting the count, that is, that the last number said indicates the quantity. At this stage, through 

skip-counting, the students can use groups to count more efficiently (Jacob & Willis, 2003). It is important at 

this stage that the children manipulate materials to facilitate the move to recognising the multiplicative 

situation, as the materials will help them to: recognise and then count the number in each group, the number 

of groups and the total; describe multiplicative situations without necessarily finding a total; and transfer 

these understandings to the division situations (Jacob & Willis, 2003).  

The third stage is the development of many-to-one counting. Jacob & Willis suggest that this is a key 

transitional phase between additive and multiplicative thinking. It is dependent on children trusting the 

count and understanding that they can keep track of two things simultaneously – the number of groups and 

the number in each group. ‚Children know that they can represent one group and count repetitions of that 

same group‛ (Jacob & Willis, 2003, p. 5). At this stage they do not necessarily understand the relationship 

between multiplication and division in that they may not transfer all of the understandings gained with 

multiplication to the division situation, and they may not consistently employ the inverse relationship 

between the two operations or the commutative property of multiplication. At the fourth stage, 

multiplicative relations, the students are able to employ the commutative, distributive and inverse properties 

of multiplication and division (Jacob & Willis, 2003; Mulligan & Watson, 1998). They are also aware that the 

three aspects of multiplication; the multiplicand, the multiplier and the product, are involved in the 

multiplicative situation (Jacob & Willis, 2003). It is at this stage that the need for manipulative materials is 

decreasing, as students need to describe when the operations of multiplication and division became objects 

of thought rather than actions (Sophian & Madrid, 2003; Wright, 2011). This is the stage which is described 

by Jacob and Willis (2003) as one in which students treat the numbers in a problem situation as variables, a 

concept which is quite abstract in nature. 

As already noted, the traditional approach has been to facilitate students’ multiplicative thinking 

through a process of making links with repeated addition (Confrey & Smith, 1995). This is an approach 

which may stand to reinforce additive rather than multiplicative thinking and may be detrimental to the 

variety of situations to which multiplication needs to be applied (Wright, 2011). This concern has led some 

researchers to look for alternative constructs to create this bridge (Confrey & Smith, 1995; Sophian & Madrid, 

2003). Rather than building from an additive construct, some researchers have advocated the use of ‚a 

primitive multiplicative operation‛, a splitting construct (Confrey and Smith, 1995, p. 66). A splitting 

construct is where multiple versions of an original are made such as is seen in a tree-diagram or in doubling 

and halving (Confrey and Smith, 1995). By adopting the splitting construct, teachers may be able alleviate 

some of the issues where students will wrongly apply additive thinking to multiplicative situations, and in 

the case of older students, multiplicative thinking (particularly proportional strategies) in additive situations 

(Van Dooren, De Bock & Verschaffel, 2010).  

Siemon et al. (2011) advocate that there needs to be a greater emphasis in the early years of schooling on 

sharing and splitting as an approach to developing multiplication and division rather than through repeated 
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addition. They argue that ‘splitting’ is ‚inherently tied to multiplicative operations of replicating, 

magnifying, and shrinking‛ (Siemon et al., 20011, p. 357). This is supported by Downton (2008) who cited 

earlier work by Sullivan, Clarke, Cheeseman & Mulligan (2001) and Killion & Steffe (2002) in asserting that 

‚the acquisition of an equal-grouping (composite) structure is at the core of multiplicative thinking‛ (p. 171). 

Indeed, the multitude of connections between the notion of division/multiplication and other ideas such as 

fraction, ratio, proportion etc. provide a clear case for utilizing ‘big idea thinking’ to make such connections 

explicit. 

Multiplicative partitioning 

The fourth ‘big number idea’ of multiplicative partitioning is underpinned by much of what has already 

been discussed yet aspects of it also inform place value and multiplicative thinking. Again, what is 

important for teachers is the understanding of the ‘micro-content’ that constitutes each ‘big number idea’ 

and the ways in which the content is connected and linked. It is evident from the list of criteria for 

multiplicative partitioning that many of the points contained therein develop alongside aspects of the three 

other ideas so far discussed. This further underlines the importance of teachers adopting ‘big idea thinking’ 

to see how these ideas are inextricably linked and how they develop over time. 

Siemon, Bleckley & Neal (2012) make the distinction between additive partitioning as characterized by 

part-part-whole reasoning and multiplicative partitioning which involves the creation of equal parts of a 

single whole or a collection, or of combinations of wholes and parts. Confrey, Maloney, Nguyen, Mojica & 

Myers (2009) referred to this as equipartitioning or splitting which was discussed earlier in the context of 

multiplicative thinking. Equipartitioning is essential when starting to work in the difficult to teach and learn 

area of rational numbers and their various representation (Anthony & Ding, 2011; Capraro, 2005; Nunes & 

Bryant, 2009; Usiskin, 2007), and is the foundation of division and multiplication and, ratio and rate (Siemon 

et al., 2011). As previously noted, children learn about equipartitioning or splitting at a young age when they 

are exposed to the notion of halving and come to realise that both halves of an object or collection must be 

the same. Some of the complexity in this ‘big number idea’ may be illustrated through the fact that in 

constructing a learning trajectory for equipartitioning, Confrey (2012) outlines 16 levels of cognitive 

proficiency beginning with equipartitioning collections and single wholes and progressing to 

equipartitioning of multiple wholes. 

The following list of points has again been developed from multiple sources (Department of Education, 

Western Australia; Siemone et al.; Reys et al.; Van de Walle, Karp & Bay-Williams). The points are indicative 

of the ‘micro-content’ that comprises the ‘big number idea’ of multiplicative partitioning and are not 

presented in any particular order.   

 

 Objects, quantities and collections can be shared to create equal parts 

 There is a relationship between the number of parts and the size and name of the parts and the 

number of parts increases as the size or share decreases 

 Objects, quantities and collections can be repeatedly halved and doubled – e.g., use successive splits 

to show that one half is equivalent to 2 parts in 4, 4 parts in 8 etc. 

 An object, quantity or collection can be partitioned into a number of equal portions to show unit 

fractions so that say one third is more than one fourth etc. 

 The relative magnitude of a fraction is dependent on the relationship between the numerator (how 

many parts) and denominator (total parts) 

 Fractions are renamed as equivalents where the total number of parts (denominator) and required 

number of parts (numerator) are increased by the same factor 

 Fractions with unlike denominators can be compared and ordered  

 Common fractions and decimal fractions can be compared, ordered and renamed in conceptual 

ways 

 Construct of fraction as division can be used to produce equal parts (equipartitioning) 

 Fractions are used to describe quotients and operators  

 Fractions are used to describe part-whole relations  

 Fractions are used to describe simple ratios 

 Percentages, fractions and decimals express the relationship between two quantities.  
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 Percentages are special part: whole ratios based on 100.  

 Any given percentage can be used as a ratio to generate an infinite number of equivalent fractions 

(e.g., 50% = ½, 2/4, 3/6 etc.) 

 Multiplicative arrays can be used to represent fractions, decimals and percentages  

 Benchmark fractions, decimals and percentages, which are the equivalents of one another, can be 

used to estimate and to solve problems 

 

Charalambous (2010) proposed that ‚...strong mathematical knowledge for teaching supports teachers in 

using representations to attach meaning to mathematical procedures...‛ (p. 273). He further asserted that 

‚...strong MKT [mathematical knowledge for teaching] supports teachers in giving and co-constructing 

explanations that illuminate the meaning of mathematical procedures‛ (p. 274). If these propositions are 

correct then it is not unreasonable to suggest that the reverse may also be true. Weak mathematical 

knowledge for teaching would impede teachers in using representations to attach meaning to mathematical 

procedures, and impede teachers in co-constructing explanations that illuminate the mathematics. Indeed, 

teaching through procedures likely indicates a lack of mathematical knowledge for teaching. Given that 

research points to teachers having difficulty with the topic of rational numbers (Moseley, Okamoto & Ishida, 

2007; Tirosh, 2000; Zhou, Peverly & Xin, 2006) this is problematic. It indicates that the big idea of 

multiplicative partitioning may not be being taught and learned as effectively as it should. Again this 

underlines the importance of teachers adopting ‘big idea thinking’, identifying the key ‘micro-content’ that 

comprises each ‘big number idea’, and understanding and using the myriad connections that exist within 

each big idea and between it and other big ideas.  

 

Big idea thinking: Making connections 

Multiplicative thinking could to some extent be considered the ‘biggest’ of the ‘big number ideas’. While 

Figure 1 depicts a developmental relationship between the six ‘big number ideas’, this perhaps only shows 

part of the picture. Figure 1 also intentionally shows the ellipses for place value and multiplicative thinking 

stretching back to the beginning of the ellipse for trusting the count indicating that foundation aspects of 

those two ideas develop simultaneously with aspects of trusting the count. Indeed, as has been suggested 

earlier, aspects of multiplicative thinking help develop place value understanding.  

For instance, as children learn to think additively, they understand and can partition numbers into the 

hundreds. However, many children initially experience difficulty in moving beyond that, particularly 

beyond the thousands and a common misconception is that millions follow thousands. This part of place 

value understanding coincides with the development of multiplicative thinking, specifically that the cyclical 

pattern in reading and writing numbers continues and that there is a ten times multiplicative relationship 

between the places in the number system. This is encapsulated in Ross’s (1989) notion of the base ten 

property of the numeration system. If teachers adopt ‘big idea thinking’, they will be aware of this, and be in 

a better position to help children develop their understandings of key concepts and ideas. In a similar way, 

there is considerable overlap between multiplicative thinking and multiplicative partitioning. These links 

also extend to the next ‘big number idea’ of proportional reasoning with much of the connectivity centred on 

the multiplicative array or region. Following is a list of specific ideas that can be demonstrated with a five by 

three array or region. 

 Multiplication facts 5 X 3 = 15, 3 X 5 = 15. Commutativity is shown by rotating the region. 

 Division facts 15 ÷ 3 = 5, 15 ÷5 = 3, and inverse relationship. 

 For both multiplication and division, the model shows the relationship and terminology of factor 

X factor = multiple. 

 The ‘times as many’ relationship – the total of squares in the region is five times each row of 

three and three times each column of five. 

 Fraction relationship – each row of three is one fifth of the total and each column of five is one 

third of the total. This can be called ‘fifthing’ and ‘thirding’. 

 Equivalent fractions – each row of three is one fifth or five fifteenths of the total and each 

column is one third or five fifteenths of the total. 

 The representation of fraction as part/whole can be shown as a/b.  
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 Ratio – the relationship between each row of three and the total can be shown as a ratio of 1:5 

(ratio of column to total is 1:3). 

 Each row of three is increased by a factor of five, and each column of five by a factor of three to 

produce the total of 15. 

 The total can be reduced by a factor of five to show the total in each row and by a factor of three 

to show the column total. 

 Cartesian Products can be demonstrated. Combinations of five shirts (A, B, C, D, E) and three 

shorts (F, G, H) can be shown as AF, AG, AH, BF, BG, BH etc.  

 The area of the region is 5 X 3 = 15 units. 

 A larger array or region, say 14 X 6 = 84 can be used to show flexible partitioning of 84, and the 

distributive property by splitting into 10 X 6 and 4 X 6. The flexible partitioning can be linked to 

different factor pairs for 84 (84 X 1, 42 X 2, 28 X 3, 21 X 4, 14 X 6, 12 X 7). The distributive 

property is linked to the formal algorithm for multiplication and later grid representations for 

multiplication with larger numbers. 

 Prime numbers can be demonstrated as arrays/regions with only one row/column. 

 

Conclusion 

One of the purposes for developing the Australian Curriculum: Mathematics was to make the 

curriculum ‘deep’ rather than ‘wide’ (National Curriculum Board, 2009). Similarly, it has already been noted 

that the Common Core State Standards were needed to address a curriculum seen as ‘a mile wide and an 

inch deep’ (NGA Centre, 2010). Even so, if each of the content descriptors is taken individually the capacity  

of any teacher to cover all of the content would be severely strained. What may be of benefit is for teachers to 

think at more of a ‘macro level’ in terms of ‘big number ideas’. They could then attach to those big ideas the 

content descriptors, or ‘micro-content’ as we have termed it here, rather than teach to the content descriptors 

with the notion that the big ideas will emerge. To do this, teachers need to be given the professional courtesy 

of being helped towards an understanding of the big ideas and their importance. As noted by Clarke, Clarke 

and Sullivan (2012), this has significant implications for professional learning initiatives. In this paper we 

have attempted to give some insight to what the ‘big number ideas’ may be, what they mean to the 

classroom practitioner and how they develop through and within each other. As was indicated earlier, the 

final two big ideas, proportional reasoning and generalizing or algebraic reasoning are developmentally 

more suitable in secondary school (Siemon et al, 2012) and consequently were not be addressed in this paper. 

‘Big idea’ thinking has the capacity to develop teacher knowledge along the lines of Schulman’s (1986) 

‘substantive structures’ and Ma’s (1999) ‘knowledge packages’ and ‘concept knots’ as described earlier. Such 

deep and connected knowledge would be likely to lead to more effective concept-based teaching rather than 

a reliance on teaching procedures, irrespective of where a teacher might be teaching. The focus here has been 

predominantly the Australian Curriculum: Mathematics (ACARA, 2012) with some reference to the 

Common Core State Standards for Mathematics (NGA Center, 2010).However, it is suggested that the focus 

on ‘big ideas’ with their myriad links and connections would greatly enhance pedagogies for delivering 

mathematics curricula in any country. 
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