
 

Araştırma	Makalesi	
Adıyaman	Üniversitesi	

Mühendislik	Bilimleri	Dergisi	
23 (2024) 363-377 	

 

EFFICIENT BUSBAR SLIP DEFECTS DETECTION IN 
PHOTOVOLTAIC CELL ELECTROLUMINESCENCE IMAGES 

Sahra ŞİMŞEK KAYA1*, Abdülkadir GÜMÜŞÇÜ2, Nurettin BEŞLİ3 

1,2,3 Harran Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü, Şanlıurfa, 63000, Türkiye  

      Geliş Tarihi/Received Date: 03.06.2024 Kabul Tarihi/Accepted Date: 20.08.2024 DOI: 10.54365/adyumbd.1494765 

ABSTRACT 

PV panel quality control is crucial for their efficient and long-lasting operation. Detecting defects in PV panels 
during production is essential. Electroluminescence imaging is a commonly used method for fault detection in PV 
panels. This study focuses on detecting busbar slippage, a specific PV panel malfunction. Automatic error 
detection was researched using machine learning methods on a dataset of 500 EL images taken from the production 
line. Feature extraction was performed using two pre-trained deep learning architectures: ResNet and SqueezeNet. 
Additionally, the study aimed to observe the impact of combining features from different deep learning 
architectures on success parameters. The highest accuracy rate of 0.9920 was achieved using deep features 
extracted by Relu34 and Relu25+Conv10 layers. 

Anahtar Kelimeler: Deep Learning, Busbar Slip, Defect Detection, Electroluminescence, Solar cell 
classification. 

 

FOTOVOLTAİK HÜCRE ELEKTROLÜMİNESANS 
GÖRÜNTÜLERİNDE VERİMLİ BARA KAYMA KUSURLARININ 
TESPİTİ 

ÖZET 

PV panellerin kalite kontrolü, verimli ve uzun ömürlü çalışmaları için çok önemlidir. PV panellerdeki kusurların 
üretim sırasında tespit edilmesi de ayrıca önem arz etmektedir. Elektrolüminesans görüntüleme, PV panellerde 
arıza tespiti için yaygın olarak kullanılan bir yöntem olarak karşımıza çıkmaktadır. Bu çalışma, spesifik bir PV 
panel arızası olan bara kaymasının tespitine odaklanmaktadır. Üretim hattından alınan 500 EL görüntüsünden 
oluşan bir veri seti üzerinde makine öğrenmesi yöntemleri kullanılarak otomatik hata tespiti araştırılmıştır. Özellik 
çıkarma, önceden eğitilmiş ResNet ve SqueezeNet derin öğrenme mimarileri kullanılarak gerçekleştirilmiştir. 
Ayrıca çalışmada, farklı derin öğrenme mimarilerindeki özellikleri birleştirmenin başarı parametreleri üzerindeki 
etkisini gözlemlenmiştir. En yüksek doğruluk oranı olan 0,9920, Relu34 ve Relu25+Conv10 katmanları tarafından 
çıkarılan derin özellikler kullanılarak elde edilmiştir. 

Anahtar Kelimeler: Derin Öğrenme, Bara Kayması, Elektrolüminesans, Güneş Hücreleri Sınıflandırma 

1. Introduction 

One of the most important problems of the world is the need for energy, which is largely met by 
carbon-based energy sources. In addition, the negative effects of carbon-based energy systems on the 
environment are more evident today. Recently, there has been intense use of energy due to the increase 
in industrial production, the increase in consumption, the rapid increase in the population and the 
advancement of technology. In addition, with the growing environmental awareness and the more 
pronounced damage to the environment, all countries have started to make investments, projects and 
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cooperation to find solutions and to strive to reduce the carbon impact in all fields. These developments 
have led to a serious increase in interest in renewable energy sources with the aim of reducing carbon 
emissions. 

The demand for renewable energy has also led to an increase in the demand for PV solar panels 
[1]. Today, the PV panel production sector is among the fastest growing sectors in the world. 
Advancement in the technologies, decrease in the cost and increase in the productivity are among the 
most important reasons for this. The installed power in the world has increased 30 times even between 
2009-2019 [2]. Thus, PV panel production gains more attractions. As seen in Figure 1, PV panel 
production stages are a complex process. In order for the production of the PV panels to be flawless, all 
of the process steps must be completed accurately. EL imaging is performed to find some cell defects 
especially during the production phase. These images are reviewed and labeled by experts. Thus, the 
PV panels produced can be partitioned into different quality classes. 

Quality control in the production process of panels, which is the most basic building component 
of a PV system, is very important. PV panels are exposed to thermal and mechanical stresses during 
production and later life stages. These stresses cause cracks and other defects in modules that can affect 
power output [3]. To understand the effect of a defective cell in PV panels, M. Köntges et al. analyzed 
the effects of microcracks experimentally after artificial aging. With an accelerated aging test, it is 
observed that the crack resistance between cracked cells increased, and the number of cracked cells was 
linearly time dependent and associated with the power drop after the accelerated aging test. They 
concluded that inspection is critical to prevent the inclusion of defective cells in the panel, thereby 
ensuring high efficiency and reliable performance of the panels produced [4] 

 

 

Fig.1 PV Panel Production Stages 

 

When the panels, which come out of production as defective, are passed to the operation stage in 
the field, they do not work at the desired quality and efficiency. For this reason, in order to achieve 
maximum output, modules should be monitored in the production line and the subsequent stages, and 
defect detection should be performed by checking each cell one by one [5].  

Defects seen on PV cells at the production stage may or may not be visible to the naked eye. 
Visible defects are dirt, active fractures, etc. And another group of defect types is invisible defects. Some 
methods have been developed for the detection of these invisible defect types. Today, one of the most 
used techniques to detect these defects is Electroluminescence imaging, which provides high resolution 
images in which the defects are highlighted. In this way, these defective cells can be removed from 
production line before reaching the final product. EL images are grayscale images acquired in the dark. 
Although EL imaging is an advanced method, its interpretation is a time-consuming process that requires 
expertise. In order to improve this challenging inspection process, work is being done on a model that 
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automatically analyzes EL images and detects defects. In addition, very successful results have been 
obtained in many areas with artificial intelligence methods [6-8]. 

In this study, we focused on busbar slip defect on PV cell. Busbar slippage is the defect of the 
conductive paths (busbars) that carry the direct current produced on the PV cells from the solder pads 
on the cell. PV cells have solder pads for the busbars to be soldered, depending on the technology of the 
cell. These pads are ways that facilitate the adhesion of the conductive busbar and also determine its 
positioning on the cell by collecting better current.  

The current that occurs in all active areas where electricity is generated on the cell is carried to 
the busbars first by the finger lines, which are carrier paths thinner than the busbars. The current is 
carried from the fingers to the busbars, which are the main collector. Fingers and busbars on the cell 
have a standardized design, taking into account the cell size and the number of busbars, in order to keep 
the losses at the lowest level while carrying the current. The reason why the position of the busbars on 
the cell is important is that there are power losses in non-standard busbar positions. Because the increase 
in the distance of the fingers to the busbars means the length of the path where the current is carried and 
therefore the decrease in its power. In this case, the first solution that can come to mind would be to 
shorten the busbar distance. However, shortening these distances in cells with standard dimensions 
means increasing the number of busbars on this fixed area. The increase in the number of busbars causes 
resistance losses and power losses as there will be more shadowing on the cell. In this context, there are 
some studies of leading companies in the PV production sector, and modules produced with multibusbar 
technology consisting of twelve busbars are one of these studies. Studies that include the idea of 
increasing the number of bars like this support the importance of finger-bar distance. It should be noted 
that as the number of busbars increases, the cross-sections should decrease. Otherwise, when the number 
of busbars increases with the same cross-sections, the resistance losses will increase and the power of 
the cell will decrease contrary to what is desired, since the areas on the cell that produce active current 
will be occupied. It can be said that two concepts such as the area covered by the busbar on the cell and 
the location of the busbar are very important. The need to detect the type of defect, which we call busbar 
slip, is also very important from these two issues.   

 In a switchgear with busbar slippage, the current will not be collected as well as it should, as 
the busbar will deviate from the solder pad. For this reason, there will be losses in the 
transmission of the generated power. 

 With the busbar slip, there will be a decrease in the power production due to the busbar 
occupying the active area on the cell.  

Since the cells in PV panels are connected in series with each other, the importance of detecting 
these defects is clearly seen when it is considered that the power loss in a single cell will reduce the 
entire current. In addition, it is not preferred in terms of visuality, since the busbar slides create an image 
that breaks the symmetry on the cell. In addition, since a single cell affects the entire panel power, a 
faulty installed panel will affect all the modules to which it is connected in series within the panel array, 
and the effect of a single defective cell can be quite serious. For these reasons, automatic detection of 
busbar slippage defects on the cell is very important during module manufacturing. 

Since controlling each module individually in a PV panel production line would be a somewhat 
difficult and time-consuming process, the necessity of an automatic defect detection system emerges. In 
EL images of PV panels, the scarcity of defective cell samples and the very similarity of images of 
successive industrial products make deep learning algorithms more prone to application. Deep learning 
is one of the applications where image analysis shows its full potential, and it has proven to greatly 
improve the results of solutions using traditional vision techniques regarding precision, robustness and 
flexibility [9-11]. In this context, in this study, studies were carried out with deep learning algorithms, 
which have been shown to be effective among different methodologies developed when the literature is 
examined, in order to detect busbar slips.  
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In this study, it is aimed to classify busbar slippage, which is one of the PV panel manufacturing 
defects, from EL images by feature extraction with pre-trained deep learning networks. For this purpose, 
an image dataset consisting of EL images was created and features were obtained by sending these 
images to pre-trained deep learning networks. Obtained features were classified by k-NN and Bayes 
classification methods. The classification results showed that busbar slip defects can be found in the EL 
imaging step, which is a processing step in the production phase. 

The remainder of this article is organized as follows: In Chapter 2, the literature review on the 
subject is given. In Chapter 3, the methods and materials used in the study are explained. In Chapter 4, 
the experimental results for the study are presented. In Chapter 5, the results obtained in the study are 
discussed. In the last section, the contributions obtained in the study are emphasized. 

2. Literature Review 

There have been many studies investigating the automatic detection of PV manufacturing defects. 
When the studies are considered in general, it is possible to say that they are divided into two main 
groups: methods that find the defect rate and methods that find the defect type. 

When we consider the studies aiming to classify the defect rate, we come across two-class 
(defective, flawless) [12] or multi-class studies [13]. It was noticed that in most of the models examined, 
binary classification was used to determine whether cells were defective or flawless, and models 
examining multiclass classification were less common than binary classification. Multiscale detection 
of defects in electroluminescence images of PV cells is difficult. Many researchers have developed 
various hybrid models to solve this problem [14-16]. Demirci et al. in their study, they divided PV cell 
images from a general EL image dataset containing 2624 individual cell images into two classes 
(defective, flawless) using deep convolutional neural networks. They used the AlexNet, GoogleNet, 
MobileNetv2 and SqueezeNet architectures for transfer learning in their studies in which they chose the 
transfer learning method due to the limited data. The results showed that convolutional neural networks 
and transfer learning can be successfully used for PV cell defect detection [12].  

In addition, M. Demirci et al. proposed a new classification model for multiclass defect detection. 
Here classification means the effect of defects as a percentage (4 classes: perfect (0 percent), possibly 
faultless (33 percent), possibly faulty (66 percent), faulty (100 percent) 2 classes: faultless (0 percent), 
faulty (100 percent). By determining the best features obtained from different layers of deep neural 
networks, results were obtained for both 4-class and 2-class datasets. Classification success rates were 
taken as 0.9057 and 0.9452 for the 4-class and 2-class dataset, respectively [13].   

Studies aiming to find defect types vary greatly. In this context, many methods and methodologies 
have been developed in the literature for the detection of many different types of defects. Some studies 
focused on only one type of defect, while other studies identified more than one type of defect. It is seen 
that studies are mostly carried out for the detection of cell breaks in studies with uniform defect detection 
[17-19]. In studies with multiple defect detection, it is seen that mostly fractures, microcracks and finger 
cuts are tried to be detected [19-21]. However, there are studies in which different cell defects such as 
soldering problems are detected using EL images [23],[24]. 

 There are many types of defects that can occur in a production line. Yang Zhao et al. They 
conducted a study using deep learning-based automatic detection of multi-type defects to meet the 
inspection requirements of a production line. First, they created a dataset of 5983 labeled EL images of 
defective PV modules, introducing 19 types of defects and dividing them into four groups according to 
their degree of influence. The performance of the best model in the test set was measured and a value of 
0.702 was reached. They noted that scratches and finger cuts were the two most difficult flaws for CNN 
to learn. They also stated that they are one of the rare studies examining the busbar slip problem in the 
cell, and they have difficulty in detecting these defects due to the lack of data. For this reason, in our 
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study, a higher success rate was obtained by creating a data set with a more balanced and sufficient 
number of samples for busbar slip [24].  

In addition, if we evaluate the studies according to the methods they use, we come across studies 
using machine learning methods and deep learning methods. Natasha Mathias et al. detected 
microcracks in PV cells using EL images. The classification accuracy obtained using SVM and BPNN 
is 0.9267 and 0.9367, respectively. Here, it has been seen that Back Propagation Neural Network 
(BPNN) outperforms SVM for classification by making binary classification, and it is one of the sample 
studies showing that deep learning will give better results than classical machine learning methods [25].  

In addition to this study, Sergiu Deitsch et al. used a Support Vector Machine (SVM) and an end-
to-end deep Convolutional Neural Network (CNN). Both approaches were trained on 1968 cells 
extracted from EL images. The CNN-based methodology achieved a higher success rate, with an average 
accuracy of 0.8842. The SVM-based methodology, on the other hand, achieved a slightly lower average 
accuracy of 0.8244 [20]. Examining Convolutional Neural Network (CNN) for classifying EL images, 
Z. Luo et al. presented a method to augment the existing dataset of EL images and proposed a model 
named Generative Adversarial Network (GAN) that targets this. Three CNN models (AlexNet, 
SqueezeNet, ResNet) were used to examine the effectiveness of the proposed GAN model. The models 
were used to detect four different types of defects (finger defect, material defect, microcrack, active 
cracks). In the augmented data set created with the proposed model, it was observed that the 
classification accuracy improved and the maximum improvement was up to 0.14. In the CNN models 
used, SqueezeNet had the worst performance and ResNet had the best classification results in all 
categories with the highest accuracy [21]. 

It has been confirmed that training the developed models can be improved by applying data 
augmentation procedures for the recognition of PV cell defects [26][3],. With data augmentation, it is 
possible to create or modify completely new images by capturing the required features from the image 
and expanding the training set. In addition, applying different transformations can greatly expand the 
initial training set [27]. In the studies examined, it was seen that the most frequently used procedures 
for data augmentation were translation and rotation operations. Fawzi et al. confirms the importance of 
data augmentation in deep learning (DL) methods for two purposes; The first is lack of data: in training 
DL models, especially in multilevel classifications. Another is because the images are in different 
formats from the trained images (not visible to the model) because new images affect the model and 
lead to incorrect results. 

In conclusion; it was observed that most of the studies examined focused on deep learning models. 
Although the application of deep learning methods in detecting PV cell defects is relatively new, it has 
been observed that deep learning methods are more successful [28]. In most of the deep learning 
approach models, classification results with an accuracy exceeding 0.90 are seen [3],[10],[28]. However, 
the performance of other models [9],[25] is lower due to the inappropriate nature of the models or their 
ability to separate input features. It should be noted that the results of the hybrid models outperform the 
standard models and this depends on the methods included [16],[22],[29]. In this study, machine learning 
methods will be run by using the features obtained with the deep learning model in order to find the 
busbar slip defect. 

3. Materials and Methods 

3.1. Dataset 

The data set used in the study was created with PV panel electroluminescence images with and 
without busbar-slip defect. In the study, due to the fact that the busbar slip was tried to be determined 
from the Electroluminescence images, the Electroluminescence images were examined one by one by 
the expert and labeled as busbar slip present or absent. A total of 500 EL images were studied on the 
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dataset. These images consist of 300 flawless EL images and 200 EL images with busbar slip defects. 
Figure 2 shows one EL image that is flawless and the other has a busbar slip defect. 

 

Fig 2. Two Sample Images from the Image Set (a) Normal PV Cell (b) PV Cell with Busbar 
Slip Defect 

 

As can be seen in Figure 2, in cells with busbar slippage defect, the current will not be collected 
as well as it should, since the busbar will deviate from the solder pad. In addition, the transmission line 
with the slip defect will cause a decrease in power since it will occupy the active area on the cell. 
Considering that this powerful dream is in series connected cells, it can be said that all cells and all panel 
arrays in macro dimension can be relatively affected. Therefore, the busbar slip defect is important for 
PV panel production and it will be possible to automatically find it in the production phase with this 
data set. 

3.2. Deep Learning Models 

Today, Artificial Neural Network (ANN)-based machine learning approaches have made 
remarkable contributions in many different research areas [30],[31]. With the increase in the 
developments in GPU technologies and the significant improvement of the processing capacities of the 
processors, the use of deep learning algorithms has intensified instead of ANN-based systems.  

DL models are instantaneous object recognition from images, person recognition, etc. can be a 
solution to problems. The simplest deep learning model architecture can be built with convolution, 
pooling, dropout, fully connected layers. In this study, deep features will be obtained from EL images 
by using Res-Net, Squeeze.Net, which are pre-trained deep learning architectures. 

3.2.1. ResNet Architecture 

ResNet Deep learning architecture won the ILSVRC 2015 competition by providing the lowest 
error rate [32]. There are many different types of ResNet DL architecture. In this study, the most widely 
used ResNet50 architecture will be used. The ResNet50 architecture consists of 72 sub-layers. The 
general structure of the ResNet50 architecture is shown in Figure 3. 

 

 

Fig 3. ResNet50 Deep Learning Architecture 
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3.1.2.SqueezeNet Architecture 

Another popular architecture among deep learning architectures is SqueezeNet architecture. The 
SqueezeNet architecture was developed in 2016 by researchers at DeepScale, University of California, 
Berkeley, and Stanford University. The aim of this architecture is to create a neural network with fewer 
parameters and to provide accuracy at the level of other architectures with 50 times fewer parameters 
[33]. The advantage of the SqueezeNet architecture is that thanks to more effectively distributed layers, 
the processing load in the neural network is reduced and thus it works faster. It generally differs from 
other architectures by reducing filter sizes and subsampling in deeper layers. 

3.3. Deep Feature Extraction with Deep Learning Models 

Deep learning has been used frequently in many different fields recently and successful results 
have been obtained. Deep learning methods are used in decision-making in many areas, especially due 
to successful results. In addition, in order to obtain successful results from deep learning models, a very 
high amount of examples is needed for training. These dependencies limit the use of deep learning 
methods in areas where many examples cannot be produced. In order to overcome this limitation, pre-
trained deep learning architectures have been used frequently recently. In this study, due to the scarcity 
of EL image samples containing busbar slip, features were extracted using pre-trained deep learning 
methods and classification was made. Thus, the feature extraction feature of deep learning architectures 
and the simplicity of machine learning methods are combined. In the study, different features were taken 
from the ResNet50 pre-trained deep learning model from 3 different layers. These three different layers 
were chosen from ReLU4, ReLU25 and ReLU34 layers as little deep, deep and very deep. The feature 
extraction process from different layers is used to observe how the success parameters will change with 
the features at different depth levels in the EL image classification problem. 

 
 

 
 

Fig 4. Deep Feature Extraction Steps 

 

In Figure 4, the feature extraction procedure from pre-trained deep learning architectures is 
summarized. In addition, feature extraction was performed from the Squeeze.net pre-trained deep 
learning architecture. In order to observe how the success rates of EL image classification will be 
affected by combining the features obtained from these architectures, the classification was made by 
combining the features obtained from different layers. 
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Fig 5. Combined Features Workflow 

 

In Figure 5, new feature sets obtained by combining features extracted from different layers of 
pre-trained deep learning architectures are shown. With this merging process, the effect of different pre-
trained deep learning architectures on the EL image bus slip classification problem can be measured. 

3.4. Machine Learning Methods 

Machine learning is a sub-application of artificial intelligence. It focuses on predictions made 
from learned data based on known features. They are models obtained by the development of algorithms 
that can learn structurally and make predictions on data. Such algorithms work by constructing statistical 
models to make inferences and decisions with sample input data instead of explicit instructions, and 
they can predict the results. Machine learning algorithms are basically designed to classify events, find 
examples, and predict results. 

3.4.1. k-NN Classification Method 

The k-NN classification algorithm is one of the most frequently used classification methods in 
many fields, thanks to its simplicity and ease of use [34]. In the k-NN classification algorithm, the 
distances between the test sample and the training samples are calculated. According to the calculated 
distances, the classes of the k training samples closest to the test sample are considered and it is estimated 
that whichever class is the closest neighbor, the test sample belongs to that class. In this study, the 
Euclidean distance criterion was chosen as the distance criterion. Euclidean distance criterion is 
formulated in a D-dimensional space in formula 1. 

 
 

 𝑑 𝐴,𝐵 ∑ |𝑎 𝑥 𝑎 𝑦 | /          (1) 

 
 

In Equation 1, 𝑎 𝑥  represents the numerical value in the ith dimension of the x point determined 
for each attribute. 𝑎 𝑦  represents the numerical value in the ith dimension of the y point determined 
for each attribute. In addition, the k value was taken as 1 in the study. 

 



371                                                                                                  S. Şimşek Kaya, A. Gümüşçü, N. Beşli 

ADYU Mühendislik Bilimleri Dergisi 23 (2024) 363-377 

3.4.2. Naive Bayes Classification Method 

Classification with the Naive Bayes method is one of the probability-based classification 
methods. This method is used to determine the probability that a particular set of attributes belongs to a 
particular class. The classification references Bayes' theorem [35]. The probability of finding the tested 
sample based on all classes and training samples is calculated and it is estimated that the test sample 
belongs to the class with the highest probability value. While calculating probability, probabilities are 
calculated according to formula 2. 

 

 
𝑃 𝐶𝑖|𝑋

𝑃 𝑋 𝐶𝑖  𝑃 𝐶𝑖
𝑃 𝑋

  
(2) 

 
 

In formula 1, the probability that the sample  𝑃 𝐶 |𝑋  X belongs to class i is given. 𝑃 𝐶  
represents the probability that class i is found among all classes, P(X) represents the probability of 
finding X in all samples, and 𝑃 𝑋|𝐶  represents the probability that a sample belonging to class i is X. 
Thus, according to the probability of being found in the training data set, it is estimated to which class 
the test sample, which has not been seen before, belongs. 

4. Experimental Results 

In this study, it is aimed to find the busbar drift defects in PV panels with deep features extracted 
from EL images. Studies carried out for this purpose are shown in Figure 6. In the study, firstly, El 
image set was created with EL images taken from PV panel production facilities. The EL image set was 
composed of a total of 500 EL images, consisting of 300 flawless and 200 busbar shift EL images. Deep 
features were extracted from 500 EL images using Resnet-50 and Squeeze.Net pre-trained deep learning 
networks. The obtained deep features were combined to observe the effects of features in different depth 
layers and different pre-trained deep learning models on classification success parameters, and success 
parameters were calculated with different combinations. 

Probability and distance-based methods were chosen for classification, so that the effect of 
different classification methods could be observed. Naïve Bayes was chosen as the probability-based 
classification method, and k-NN methods were chosen as the distance-based classification method. 
While using these methods, 125 images (75 flawless - 50 busbar shift flawed) were used for testing. The 
remaining images were used for training. In addition, accuracy, precision, sensitivity and f-score values 
were calculated for the evaluation of classification methods. 

 
Recall=  TP/(TP+FN)                             (3) 
Accuracy=  (TP+TN)/(TP+TN+FP+FN)      (4) 
Precision=TP/(TP+FP)                     (5) 
f-score=2*(( Precision *Recall)/( Precision +Recall))                  (6) 
 

Given in equations 3,4,5 and 6, (TP) is the number of EL images with busbar slip imperfection 
estimated as busbar slip imperfection ; (FP) is the number of flawless EL images classified as busbar 
slip defective; (FN) number of EL images with flawless estimated as busbar slip imperfectly; (TN)  is 
the number of EL images with flawless estimated as flawlessly. Calculations were made on a computer 
with a 2.8 GHz Intel Core i7 processor and 8 GB of RAM.  
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Fig 6. Applied Method Diagram 

 

Table 1.  Pre-trained deep learning networks k-nn classification results 

Obtained feature 
vectors 

Dimension Accuracy Precision Recall F-Score 

Relu4 256 0.9760 0.9796 0.9600 0.9697 

Relu25 1024 0.9840 0.9800 0.9800 0.9800 

Relu34 1024 0.9920 0.9804 1.0000 0.9901 

Conv10 1000 0.8720 1.0000 0.6800 0.8095 

 

The results obtained with pre-trained deep learning networks using the k-NN classification 
method are given in Table 1. 

 

Table 2.  Combined pre-trained deep learning networks k-nn classification results 

Obtained feature 
vectors 

Dimension Accuracy Precision Recall F-Score 

Relu4 + Relu25 1280 0.9840 0.9800 0.9800 0.9800 

Relu4 + Relu34 1280 0.9840 0.9800 0.9800 0.9800 

Relu25 + Relu34 2048 0.9760 0.9796 0.9600 0.9697 

Relu4 + Conv10 1256 0.9360 1.0000 0.8400 0.9130 

Relu25 + Conv10 2024 0.9920 0.9804 1.0000 0.9901 

Relu34 + Conv10 2024 0.9840 1.0000 0.9600 0.9796 

  

The results obtained by combining the attributes obtained from pre-trained deep learning 
networks using the k-NN classification method are given in Table-2. 
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Table 3.  Pre-trained deep learning networks bayes classification results 

Obtained feature 
vectors 

Dimension Accuracy Precision Recall F-Score 

Relu4 256 0.8480 0.9429 0.6600 0.7765 

Relu25 1024 0.9600 0.9787 0.9200 0.9485 

Relu34 1024 0.9600  0.9592 0.9400 0.9495 

Conv10 1000 0.9360 0.8750 0.9800 0.9245 

 

 The results obtained with deep learning networks pre-trained with the Naïve Bayes classification 
method are given in Table 3. 

  

Table 4.  Combined pre-trained deep learning networks bayes classification results 

Obtained feature 
vectors 

Dimension Accuracy Precision Recall F-Score 

Relu4 + Relu25 1280 0.8560 0.9706 0.6600 0.7857 

Relu4 + Relu34 1280 0.8400 1.0000 0.6000 0.7500 

Relu25 + Relu34 2048 0.9360 0.9773 0.8600 0.9149 

Relu4 + Conv10 1256 0.8480 0.9429 0.6600 0.7765 

Relu25 + Conv10 2024 0.9600 0.9787 0.9200 0.9485 

Relu34 + Conv10 2024 0.9600 0.9592 0.9400 0.9495 

 

 The results obtained by combining the attributes obtained from pre-trained deep learning 
networks using the Naïve Bayes classification method are given in Table-4. 

5. Discussions 

In this study, the problem of detecting the busbar shift defect from PV Panel EL images using 
deep features is addressed. In this study, in order to solve the problem of detecting bus slip defect from 
PV Panel El images at the production stage, deep features were extracted from EL images with two 
different pre-trained deep learning architectures and EL images were classified in terms of bus slip 
defect using three different classification methods with the obtained features. In addition,in order to 
examine the effects of features at different depths of pre-trained deep learning architectures on 
classification performance, tests were conducted with features at different depths and results were 
obtained. Distance-based and probability-based classification methods were tested in order to examine 
the performance of classification methods in terms of bus-shift defect in EL images. When the results 
obtained in terms of deep learning architectures were examined, the results in Table 5 were obtained.  

As can be seen in Table 5, the most successful classification results were obtained with the ResNet 
architecture. In addition, when the features at different depths are considered, acceptable classification 
results have been obtained with the features at the medium and high depth levels. In Table 6, the results 
of distance-based and probability-based classification methods are compared. 
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Table 5. The most successful results from deep learning architectures 

Obtained feature 
vectors 

Dimension Accuracy  Precision Recall  
 

F-Score 

Relu4 256 0.9760 0.9796 0.9600 0.9697 
Relu25 1024 0.9840 0.9800 0.9800 0.9800 
Relu34 1024 0.9920 0.9804 1.0000 0.9901 
Conv10 1000 0.9360 1.0000 0.9800 0.9245 
Relu4 + Relu25 1280 0.9840 0.9800 0.9800 0.9800 
Relu4 + Relu34 1280 0.9840 1.0000 0.9800 0.9800 
Relu25 + Relu34 2048 0.9760 0.9796 0.9600 0.9697 
Relu4 + Conv10 1256 0.9360 1.0000 0.8400 0.9130 
Relu25 + Conv10 2024 0.9920 0.9804 1.0000 0.9901 
Relu34 + Conv10 2024 0.9840 1.0000 0.9600 0.9796 

 

Table 6.  The most successful results of distance-based and probability-based classification methods 

Classification 
Method 

Accuracy  Precision Recall F-Score  

k-NN 0.9920 1.0000 1.0000 0.9901 
Bayes 

0.9600 1.0000  0.9800 0.9495 

 

As can be seen in Table 6, distance-based classification methods have been more successful in 
terms of bus-shift defect of EL images in the PV panel production stage. In the results obtained in this 
study, F-score gives more significant results. 

6. Conclusion 

In this study, automatic determination of busbar slip defect from EL images taken in PV panel 
production facilities with pre-trained deep learning methods is discussed. In the study, two different pre-
trained deep learning methods and two different machine learning methods were tested for the 
classification of busbar slip defect of EL images. Considering the results obtained, it was concluded that 
the results obtained with single and deep features in determining the busbar slip error, which is one of 
the PV panel production defects, by machine learning methods, are more successful than the results 
obtained by combining features at different depths and different architectures. Although the Relu 34 and 
Relu25 + Conv10 classification results provided equal success rates, it was observed that more 
successful results could be obtained with the deep features obtained in the Relu34 layer when other 
success parameters were taken into account. In addition, the classification results made with the features 
obtained from the Relu4, Relu25 and Relu34 layers, which are different layers of the same architecture, 
it is understood that the deeper the features are taken, the more successfully it can detect the busbar slip 
from the PV panel EL images. 

In terms of classification methods, when the busbar slip detection in PV panel EL images is 
considered, it has been concluded that the distance-based classification method, k-NN, is more 
successful. In particular, the k-NN classification method adapted to the combination of features in 
different architectures and different layers much more successfully than the Bayesian classification 
method and significantly increased the classification success parameters. Thus, it has been concluded 
that it is possible to predict the busbar slip defect from EL images in PV panel production facilities with 
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machine learning methods. In addition to the study, investigating the success parameters of feature 
selection methods will be a guide for researchers who plan to work on this subject in the future. 

Acknowledgment 

We would like to thank to Harran University Scientific Research Projects Commission for 
supporting our study (Project No:22256). 

 

Conflict Of Interest 

The authors declare that they have no conflict of interest. 

 

References  

[1] Anwar, S. A., and Abdullah, M. Z. (2014). Micro-crack detection of multicrystalline solar cells 
featuring an improved anisotropic diffusion filter and image segmentation technique. EURASIP 
Journal on Image and Video Processing, 2014(1). https://doi.org/10.1186/1687-5281-2014-15 

[2] Benda, V., and Cerna, L. (2020). PV cells and modules state of the art, limits and Trends. Heliyon, 
6(12). https://doi.org/10.1016/j.heliyon.2020.e05666 

[3] Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., Khaliq, A., Faheem, M., and Ahmad, 
A. (2019). CNN based automatic detection of photovoltaic cell defects in electroluminescence 
images. Energy, 189,116319. https://doi.org/10.1016/j.energy.2019.116319 

[4] Köntges, M., Kunze, I., Kajari-Schröder, S., Breitenmoser, X., and Bjrneklett, B. (2011). 
Quantifying the risk of power loss in PV modules due to micro cracks. Solar Energy Materials and 
Solar Cells, vol. 95, no. 4, pp. 1131- 1137. 

[5] Santhakumari, M., Sagar, N. (2019). A review of the environmental factors degrading the 
performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential 
mitigation techniques. Renewable and Sustainable Energy Reviews,110, pp. 83-100. 

[6] Gerger M, Gümüşçü A (2022) Diagnosis of Parkinson’s disease using spiral test based on pattern 
recognition. Romanian J Information Sci Technol 25(1):100–113 

[7] Gümüşçü, A., Taşaltın, R. ve Aydilek, İ.B. (2016) C4.5 Karar ağaçlarında genetik algoritma ile 
budama, Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2): 77-80. 

[8] Gümüşçü A, Karadağ K, Tenekecı ME et al (2017) Genetic algorithm based feature selection on 
diagnosis of Parkinson disease via vocal analysis. In: 2017 25th Signal processing and 
communications applications conference (SIU). IEEE, pp 1–4 

[9] Deitsch, S., et al. (2019). Automatic classification of defective photovoltaic module cells in 
electroluminescence images. Sol. Energy,185, pp. 455–468. 

[10] Karimi, A. M., Fada, J. S., Parrilla, N. A., Pierce, B. G., Koyutürk, M., French, R. H., Braid, J. L. 
(2020). Generalized and Mechanistic PV Module Performance Prediction From Computer Vision 
and Machine Learning on Electroluminescence Images. IEEE Journal of Photovoltaics, 10(3), 878–
887. 

[11] Demirci, M.Y., Beşli, N., Gümüşçü, A., 2019. Defective PV cell detection using deep transfer 
learning and EL imaging. In: Proceedings Book, p. 311. 

[12] Demirci, M.Y., Beşli, N., and Gümüşçü, A. (2019). Defective PV Cell Detection Using Deep 
Transfer Learning and EL Imaging. In Proceedings of the International Conference on Data 
Science, Machine Learning and Statistics -2019 pp. 311-314. 

[13] Demirci, M.Y., Beşli, N., and Gümüşçü, A. (2021). Efficient deep feature extraction and 
classification for identifying defective photovoltaic module cells in Electroluminescence images. 
Expert Systems with Applications, vol. 175, 114810. 



S. Şimşek Kaya, A. Gümüşçü, N. Beşli                                                                                                  376 
 

ADYU Mühendislik Bilimleri Dergisi 23 (2024) 363-377 

[14] Li, X., Li, W., Yang, Q., Yan, W., and Zomaya,A. Y. (2019). Building an Online Defect Detection 
System for Large scale Photovoltaic Plants. in Proceedings of the 6th ACM International 
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, pp. 253–262. 

[15] Li, X., Yang, Q., Wang, J., Chen, Z., and Yan, W. (2018). Intelligent fault pattern recognition of 
aerial photovoltaic module images based on deep learning technique. J. Syst. Cybern. Inf, 16, pp. 
67–71 

[16] Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N., Altube, J., Aquerre, J.P., Legarda-Ere ̃no, I., 
Apraiz, A. (2019). Semi-automatic quality inspection of solar cell based on convolutional neural 
networks. in 2019 24th IEEE International Conference on Emerging Technologies and Factory 
Automation (ETFA), pp. 529–535. 

[17] Bartler, A., Mauch, L., Yang, B., Reuter, M., Stoicescu, L. (2018). Automated detection of solar 
cell defects with deep learning. European Signal Processing Conference, 2035–2039, 
10.23919/EUSIPCO.2018.8553025. 

[18] Chen, H., Zhao, H., Han, D., and Liu, K. (2019). Accurate and robust crack detection using 
steerable evidence filtering in electroluminescence images of solar cells. Opt. Lasers Eng., 118, pp. 
22-33. 

[19] Qian, X., Li, J., Cao, J., Wu, Y., and Wang, W. (2020). Micro-cracks detection of solar cells surface 
via combing short-term and long-term deep features. Neural Networks,127, pp. 132-140. 

[20] Deitsch, S., et al. (2019). Automatic classification of defective photovoltaic module cells in 
electroluminescence images. Sol. Energy,185, pp. 455–468. 

[21] Luo, Z., Cheng, S.Y., and Zheng, Q.Y. (2019). GAN-Based Augmentation for Improving CNN 
Performance of Classification of Defective Photovoltaic Module Cells in Electroluminescence 
Images. 2019 International Conference on New Energy and Future Energy System, IOP Conf. Ser.: 
Earth Environ. Sci. 354 01210 

[22] Du, B., He,Y., Duan, J., and Zhang, Y. (2019). Intelligent classification of silicon photovoltaic cell 
defects based on eddy current thermography and convolution neural network. IEEE Trans. Ind. 
Informatics, 16(10), pp. 6242-6251. 

[23] Akram, M.W., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., Khaliq, A., Faheem, M., Ahmad, A. 
(2019). CNN based automatic detection of photovoltaic cell defects in electroluminescence images. 
Energy, 189, pp.116319. 

[24] Zhang, X., Hao, Y., Shangguan, H., Zhang, P., and Wang, A. (2020). Detection of surface defects 
on solar cells by fusing Multi-channel convolution neural networks. Infrared Phys. Technol, 108, 
pp. 103334. 

[25] Mathias, N., Shaikh, F., Thakur, C., Shetty, S., Dumane P., and Chavan, S. (2020). Detection of 
Micro-Cracks in Electroluminescence Images of Photovoltaic Modules. Proceedings of the 3rd 
International Conference on Advances in Science and Technology (ICAST), Available at: 
http://dx.doi.org/10.2139/ssrn.3563821 

[26] Koziarski, M., and Cyganek, B. (2017). Image recognition with deep neural networks in presence 
of noise – Dealing with and taking advantage of distortions. Integr. Comput. Aided. Eng., 24, pp. 
337–349. 

[27] Fawzi, A., Samulowitz, H., Turaga, D., And Frossard, P. (2016). Adaptive data augmentation for 
image classification. in 2016 IEEE International Conference on Image Processing (ICIP), pp. 3688–
3692. 

[28] Banda, P., and Barnard, L. (2018). A deep learning approach to photovoltaic cell defect 
classification. in Proceedings of the Annual Conference of the South African Institute of Computer 
Scientists and Information Technologists, pp. 215–221. 

[29] Sun, M., Lv, S., Zhao, X., Li, R., Zhang, W., and Zhang, X. (2017). Defect detection of photovoltaic 
modules based on convolutional neural network. in International Conference on Machine Learning 
and Intelligent Communications, pp. 122–132. 

[30] Su, B., Chen, H., and Zhou, Z. (2020). BAF-Detector: An Efficient CNN- Based Detector for 
Photovoltaic Solar Cell Defect Detection. arXiv Prepr. arXiv2012.10631. 

[31] Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN 
COMPUT. SCI. 2, 160 (2021). https://doi.org/10.1007/s42979-021-00592-x 



377                                                                                                  S. Şimşek Kaya, A. Gümüşçü, N. Beşli 

ADYU Mühendislik Bilimleri Dergisi 23 (2024) 363-377 

[32] He, K., Zhang, X., Ren, S., Sun, J. 2016, Deep residual learning for image recognition , 
InProceedings of the IEEE conference on computer vision and pattern recognition pp. 770-778. 

[33] Iandola, F.N, Han S., Moskewicz M.W., Ashraf K., Dally W.J., Keutzer, K. SqueezeNet: AlexNet-
level accuracy with 50x fewer parameters. 3th International Conference on Learning 
Representations. Toulon: ICLR;2016. p.1-13. 

[34] Cover T. , Hart P., 1967. Nearest Neighbor Pattern Classification, IEEE Transactions On 
Information Theory 13:21–27. 

[35] Ben-Bassat, M., Klove, K. L., & Weil, M. H. (1980). Sensitivity analysis in Bayesian classification 
models: Multiplicative deviations. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 2, 261–266. 
 
 


