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1. Introduction  

Electric Vehicle Charging Stations (EVCSs) serve as the 

backbone of the EV infrastructure, providing the power 

necessary to keep electric vehicles running. With the 

rapid adoption of electric vehicles worldwide, the number 

and complexity of EVCSs has also increased. These 

charging stations are an integral part of not only 

individual EV users, but also fleet operators and public 

transportation systems, making them a critical 

component of modern transportation infrastructure. 

However, the integration of EVCSs into the broader 

smart grid introduces new vulnerabilities and attack 

vectors [3]. Unlike traditional standalone systems, smart 

grids are interconnected networks that facilitate two-way 

communication between suppliers and consumers. 

While this interconnectedness is beneficial for efficiency 

and management, it also opens the door to multiple entry 

points for cyber attacks. Cyber attacks on EVCSs can 

cause significant disruptions, financial losses, and 

compromise user security and privacy. For example, an 

attacker could potentially change charging rates, disrupt 

service availability, or steal sensitive user data. 

The types of cyber threats that EVCSs may face are 

diverse. There can be relatively simple attacks, such as 

unauthorized access and data theft, or more complex 

attacks, such as Distributed Denial of Service (DDoS) 

attacks, which can overload the system and render it 

inoperable.There is also the threat of ransomware, 

where attackers lock the system and demand payment 

to restore functionality.The consequences of such 

attacks are serious, not only directly affecting users, but 

also causing cascading effects on overall grid stability 

and public trust in EV infrastructure. Unlike traditional 

methods, ML-based systems can adapt to new threats 

by learning from historical data and constantly improving 

their detection capabilities.This adaptability is crucial to 
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maintaining robust security in an ever-changing threat 

landscape.  

The integration of EVCSs into the broader smart grid 

introduces new vulnerabilities and attack vectors [1]. 

Unlike traditional standalone systems, smart grids are 

interconnected networks that facilitate two-way 

communication between suppliers and consumers. 

While this interconnectedness is beneficial for efficiency 

and management, it also opens the door to multiple entry 

points for cyber attacks. Cyber attacks on EVCSs can 

cause significant disruptions, financial losses, and 

compromise user security and privacy. For example, an 

attacker could potentially change charging rates, disrupt 

service availability, or steal sensitive user data. The 

types of cyber threats that EVCSs may face are diverse. 

There can be relatively simple attacks, such as 

unauthorized access and data theft, or more complex 

attacks, such as Distributed Denial of Service (DDoS) 

attacks, which can overload the system and render it 

inoperable. There is also the threat of ransomware, 

where attackers lock the system and demand payment 

to restore functionality. The consequences of such 

attacks are serious, not only directly affecting users, but 

also causing cascading effects on overall grid stability 

and public trust in EV infrastructure. Unlike traditional 

methods, ML-based systems can adapt to new threats 

by learning from historical data and constantly improving 

their detection capabilities. This adaptability is crucial to 

maintaining robust security in an ever-changing threat 

landscape. 

In this work, we investigate the application of Generative 

Adversarial Networks (GANs) to augment cybersecurity 

datasets and improve the performance of various 

machine learning models. We use a dataset from Electric 

Vehicle Supply Equipment (EVSE) systems, preprocess 

it, and generate synthetic data using a GAN. We then 

train multiple machine learning models with and without 

applying a hybrid feature selection method on the 

augmented dataset to evaluate the impact on model 

performance. Our results show that data augmented with 

GAN-augmented feature selection can improve the 

accuracy and robustness of machine learning classifiers 

in cybersecurity applications. 

Bu makale Giriş bölümünde, EVCS siber saldırı 

problemine ve önlenmesinin önemine genel bir bakış 

sunar ve ardından Bölüm 2'de ilgili literatürün gözden 

geçirilmesi gelir. Bölüm 3, tasarım, veri toplama ve analiz 

yöntemleri de dahil olmak üzere araştırma metodolojisini 

özetlemektedir. Çalışmanın sonuçları Bölüm 4'te ve 

bulguların ayrıntılı bir tartışması ve yorumlanması 

sunulmaktadır. Makale, Bölüm 5’da gelecekteki 

araştırmalar için önerilerle sonuçlanmaktadır 

1.1. Literature Review 

In study [2], the authors proposed an intrusion detection 

system using deep belief network (DBN). DBN is an 

algorithm for increasing the number of different 

unsupervised networks grouped together to serve as 

input for the next layer. This is achieved using 

autoencoders, specifically restricted Boltzmann 

machines (RBMs). They implemented the model using 

TensorFlow. The results showed that the accuracy of this 

model reached 86% and the F1 score reached 84%. 

In their study, Arsalan et al. [3] proposed a model 

predictive control (MPC)-based machine learning (ML) 

network integrated with training data pre-processing. 

The superior performance of the proposed approach is 

validated using different case study scenarios of training 

datasets. 

Kem et al. [4] considered both classification- and 

recency-based models for anomaly detection, as well as 

an ensemble method to combine both models. They 

conducted evaluations based on real-world EV charging 

session data with simulated attacks. The results showed 

that regression-based prediction provides a significant 

increase in detection performance of attacks affecting 

individual reports during a charging session. Therefore, 

they stated that the proposed solution could make a 

positive contribution to EV charging safety, durability and 

reliability. 

Malik et al. [15] proposed an intrusion detection system 

using Deep Belief Networks (DBN). DBN is an algorithm 

designed to increase the number of different 

unsupervised networks that are stacked together to 

serve as input for the next layer. This is achieved using 

autoencoders, particularly Restricted Boltzmann 

Machines (RBMs). The results showed that the accuracy 

of this model reached 86%, and its F1 score was 84%. 

Basnet et al. [16] proposed a deep learning-based IDS 

to detect DDoS attacks within EVCSs. They 

implemented Deep Neural Networks (DNN) and Long 

Short-Term Memory (LSTM) algorithms, demonstrating 

that the LSTM model was superior in terms of precision 

and recall. 

2. Materials and Methods 
2.1. Data Sets 

The Canadian Cyber Security Institute's EVSE 

Dataset 2024 [5] focuses on the security of electric 

vehicle charging stations. Reconnaissance includes data 

from a variety of scenarios that include both benign and 

attack conditions, such as Denial of Service (DoS), 

Cryptojacking, and Backdoor attacks. The dataset 

includes EVSE's power consumption data, network 

traffic logs, and host activities. It aims to support 

research in anomaly detection and behavioral profiling 

using machine learning. The dataset is organized into 

three main directories: Network Traffic, Host Activities, 

and Power Consumption. Data set details are as in Table 

1.
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Table 1. Dataset Column Description 

Column ID Description 

Time Data reading date, 

Idle state for EVSE-B, 

Represents the situation where there is no V2G communication (i.e. no connection to 

   EVCC or ISO15118 communication). Conversely, state of charge refers to the state in 

   which the EVCC is connected and actively communicating. 

State  

Scenario    Includes attack scenarios (Recon, DoS, Cryptojacking, Backdoor, Benign) 

Attack    It refers to attack types (Cryptojacking, Backdoor, None (ie. Benign), tcp-port-scan, 

   service-version-detection, os-fingerpriting, aggressive-scan, syn-stealth-scan,  

   vulnerability-scan, slowloris-scan, upd-flood, icmp-flood, pshack-flood, icmp- 

   fragmentation, tcp-flood, syn-flood, synonymousIP-flood) 

 

Interface    It refers to the interface of VSE-B that is targeted by the malicious actor during network 

   attacks. 

     

Label   Attack Status 

  

 

2.2. Feature Selection 

Selecting features in data sets is an important step to 

increase the performance and interpretability of the 

model [6]. The main purpose of feature extraction is a 

widely used method to extract information from relevant 

data [7]. In this context, two common methods, the filter 

method using correlation matrix and the Recursive 

Feature Elimination (RFE) method, will be discussed. 

2.2.1. Filter Method with Correlation Matrix 

Correlation matrix is a method that measures the 

linear relationship between features. Especially features 

with high correlation (usually greater than 0.95) may 

cause the model to overfit. In this case, it may be useful 

to remove some of the highly correlated features. 

The filter method using correlation matrix follows 

these steps: 

1. Calculating the Correlation Matrix: Calculates the 

correlation coefficients between all features. 

2. Creating the Upper Triangle Matrix: Repetitive 

calculations are avoided by focusing only on the 

correlation values remaining in the upper triangle. 

3. Identification of Highly Correlated Features: 

Features whose correlation value is above a 

certain threshold value (for example 0.95) are 

detected. 

4.  Extraction of These Features: Detected highly 

correlated features are removed from the data 

set. 

In addition to being simple and fast, this method also 

provides advantages in terms of interpretability. 

However, it can ignore non-linear relationships. 

2.2.2. Wrapper Method: Recursive Feature 
Elimination (RFE) 

Recursive Feature Elimination (RFE) is a wrapper 

method that evaluates the performance of a given model 

and selects the features that have the greatest impact. 

 

The steps of RFE are: 

1. Training the Model: The model is trained with all 

features. 

2. Calculating the Importance Levels of Features: 

The importance of each feature in the model is 

calculated. 

3. Least Important Feature Removal: The least 

important feature is removed and the model is 

retrained. 

4. Repeat of this Process: This process is repeated 

until the desired number of features is reached. 

2.3. GAN Architecture 

GAN (Generative Adversarial Network) is an artificial 

intelligence and machine learning model developed by 

Ian Goodfellow and his team [8] in 2014. GAN generates 

new and realistic data samples from datasets using 

competitive learning between two neural networks. 

These two neural networks: 

1. Generator: This network takes random noise or 

latent space as input and produces data. Its aim 

is to produce data that is as close to real data as 

possible. 

2. Discriminator: It tries to distinguish whether the 

samples produced are real data or fake. This 

network takes real data and Generator generated 

data as input and tries to separate the two. 

These two networks compete with each other. While 

the generator tries to fool the discriminator, the 

discriminator tries to recognize the fake data. In this 

process, both networks constantly improve themselves 

[9]. 

2.4. Classifiers 

Random Forest 

Random Forest is an algorithm used in classification 

and regression problems. It creates an ensemble feature 

by combining multiple decision trees. While one tree has 
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limited prediction ability, a combination of many trees 

has more stable prediction ability [10]. 

Gradient Boosting  

Gradient Boosting Machines (GBM) is a powerful 

algorithm that creates a powerful classifier by iteratively 

training a set of decision tree classifiers and optimizing 

them over time [11]. GBM aims to achieve high accuracy 

by improving the performance of the model with each 

iteration. This is done by combining multiple weak 

learners into a single strong learner. 

Support Machine Learning 

It is an algorithm that aims to separate data belonging 

to two different classes in a linear or non-linear way. It is 

especially preferred in large data sets and it is possible 

to get fast results [12]. 

Deccission Tree 

It is one of the hierarchical supervised learning models 

[14]. One of the main hierarchical models is the decision 

tree. It has two categories: classification tree and 

regression tree. 

 

3. Results and Discussion 

We evaluated the performance of various machine 

learning models for classification tasks, focusing on their 

accuracy, specificity, sensitivity, precision, and F1 score. 

Models compared include Logistic Regression, Random 

Forest, Decision Tree, Support Vector Machine, 

Gradient Boosting, and our Proposed Model. 

In order to reduce the computational cost and increase 

the performance, a hybrid feature selection algorithm 

was used on the dataset using the Correlation matrix and 

RFE methods intertwined. GAN was applied to the data 

set with the selected features. 

3.1. Data Augmentation 

In this study, a GAN-based data augmentation method 

was used to expand our data set and increase the 

performance of our model. It is modeled with 3 types of 

methods: GAN, DCGAN and WGAN. GANs are powerful 

deep learning models that can generate new and 

realistic data using a dataset. 

3.1.1 GAN 

The table below summarizes the hyperparameters used 

in our GAN model. 

Table 2. List of GAN Hyperparameter 

Hyperparameter Description Value 

Noise Dimension Dimension of the random noise vector for the generator input 100 

Data Dimension Dimension of the input data for the discriminator X_rfe.shape[1] 

Discriminator   

- Dense Layer 1 Number of units 512 

- Dense Layer 2 Number of units 256 

- Dense Layer 3 Number of units 128 

- Activation Function Activation function for intermediate layers LeakyReLU (alpha=0.01) 

- Output Activation Activation function for the output layer Sigmoid 

- Loss Function Loss function used Binary Crossentropy 

- Optimizer Optimizer used Adam 

- Metrics Evaluation metric Accuracy 

Generator   

- Dense Layer 1 Number of units 128 

- Dense Layer 2 Number of units 256 

- Dense Layer 3 Number of units 512 

- Output Layer Number of units data_dim (data dimension) 

- Activation Function Activation function for intermediate layers LeakyReLU (alpha=0.01) 

- Output Activation Activation function for the output layer Tanh 

GAN   

- Loss Function Loss function used Binary Crossentropy 

- Optimizer Optimizer used Adam 

Training   

- Epochs Number of epochs for training 100 

- Batch Size Size of each batch during training 64 

- Print Interval Frequency of training status updates 100 
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In our GAN application, we used the noise size of 100 for 

the generator input, which is standard in many GAN 

models. The discriminator was designed with three 

dense layers of alternating units (512, 256, and 128) and 

used LeakyReLU activation functions in the intermediate 

layers and a sigmoid activation function in the output 

layer. The generator was similarly designed with three 

dense layers (128, 256, and 512 units) and used a tanh 

activation function in the output layer to generate data 

that matched the actual data distribution. Accuracy 

optimization was achieved by compiling the discriminator 

with a binary cross-entropy loss function and an Adam 

optimizer. The generator and the GAN itself also used 

binary cross-entropy and Adam for loss optimization. 

The GAN model was trained for 100 epochs with a batch 

size of 64. The model's performance and training status 

were monitored at regular intervals to provide 

information about the training progress and model 

effectiveness. 

3.1.2. DCGAN 

The table 3 below summarizes the hyperparameters 

used in our DCGAN model.   

 

Table 3. List of DCGAN Hyperparameter 

Hyperparameter Description Value 

Noise Dimension  Size of the random noise vector fed into the generator. 100 

Learning Rate (lr) Step size used by the optimizer during gradient descent. 0.0002 

Batch Size (batch_size) Number of samples processed before updating internal parameters of the model. 64 

Number of Epochs (epochs) Number of complete passes through the training dataset. 100 

Generator Dropout Rate Dropout rate for input units in the generator layers. 0.3 

Leaky ReLU Slope Slope of the Leaky ReLU activation function in the negative region. 0.2 

Adam Optimizer Beta1 Beta1 value for momentum of the Adam optimizer used for the generator. 0.5 

Adam Optimizer Beta2 Beta2 value for momentum of the Adam optimizer used for the generator. 0.999 

3.1.3. WGAN  

The table 4 below summarizes the hyperparameters used in our WGAN model.   

Tablo 4. List of WGAN Hyperparameter 

Hyperparameter Description Value 

Noise Dimension (noise_dim) Size of the random noise vector fed into the generator. 100 

Learning Rate (lr) Step size used by the optimizer during gradient descent. 0.00005 

Batch Size (batch_size) 
Number of samples processed before updating internal parameters of the 

model. 
64 

Number of Epochs (epochs) Number of complete passes through the training dataset. 10000 

Number of Critic Iterations (n_critic) Number of times the critic is updated per generator update. 5 

Weight Clipping Parameter 

(clip_value) 

Range within which the critic's weights are clipped to enforce Lipschitz 

continuity. 
0.01 

Dropout Rate Dropout rate for input units in the critic layers. 0.3 

3.2. Result of Machine Learning Models 
3.2.1 Result of Machine Learning Models with 
GAN 

 

0 19764 1378 

1 2738 1180 

 0 1 

Figure 1. Confusion Matrix of Logistic Regresyon 

 

When the matrix in Figure 1 is examined, 20944 out of a 

total of 25060 data in the data set were classified 

correctly, while 4116 were classified incorrectly. Of the 

non-attack data, 19764 were classified correctly and 

1378 were classified incorrectly. 1180 of the attacked 

data were classified correctly and 2738 were classified 

incorrectly. 
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0 20655 487 

1 548 3370 

 0 1 

Figure 2. Confusion Matrix of Decission Tree 

When the matrix in Figure 3 is examined, 24025 of the 

total 25060 data in the data set were classified correctly, 

while 1035 were classified incorrectly. Of the non-attack 

data, 20655 were classified correctly and 487 were 

classified incorrectly. Of the attacked data, 3370 were 

classified correctly and 548 were classified incorrectly. 
 

0 20869 273 

1 719 3199 

 0 1 

Figure 3. Confusion Matrix of Random Forest 

When the matrix in Figure 3 is examined, 24088 out of a 

total of 25060 data in the data set were classified 

correctly, while 992 were classified incorrectly. Of the 

non-attack data, 20869 were classified correctly and 273 

were classified incorrectly. 3199 of the attacked data 

were classified correctly and 719 were classified 

incorrectly. 
 

0 21122 20 

1 1023 2895 

 0 1 

Figure 4. Confusion Matrix of SVM 

When the matrix in Figure 4 is examined, 24027 of the 

total 25060 data in the data set were classified correctly, 

while 1043 were classified incorrectly. Of the non-attack 

data, 21142 were classified correctly and 20 were 

classified incorrectly. Of the attacked data, 2895 were 

classified correctly and 1023 were classified incorrectly. 

 

 

0 20883 313 

1 782 3136 

 0 1 

Figure 5. Confusion Matrix of Gradient Boosting 

When the matrix in Figure 5 is examined, 24019 out of a 

total of 25060 data in the data set were classified 

correctly, while 1095 were classified incorrectly. Of the 

non-attack data, 20883 were classified correctly and 313 

were classified incorrectly. 3136 of the attacked data 

were classified correctly and 782 were classified 

incorrectly. 

3.2.2 Result of Machine Learning Models with 
DCGAN 
 

 

0 18822 2388 

1 1687 2163 

 0 1 

Figure 6. Confusion Matrix of Logistic Regresyon with DCGAN 

When the matrix in Figure 6 is examined, 20985 out of a 

total of 25060 data in the data set were classified 

correctly, while 4075 were classified incorrectly. Of the 

non-attack data, 18822 were classified correctly and 

2388 were classified incorrectly. 2163 of the attacked 

data were classified correctly and 1687 were classified 

incorrectly. 
 

0 20176 1034 

1 0 3850 

 0 1 

Figure 7. Confusion Matrix of Decission Tree with DCGAN 

When the matrix in Figure 7 is examined, 24026 of the 

total 25060 data in the data set were classified correctly, 

while 1034 were classified incorrectly. Of the non-attack 

data, 20176 were classified correctly and 1034 were 

classified incorrectly. All of the attacked data classified 

correctly. 
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0 20175 1035 

1 0 3850 

 0 1 

Figure 8. Confusion Matrix of Random Forest with DCGAN 

When the matrix in Figure 8 is examined, 24025 out of a 

total of 25060 data in the data set were classified 

correctly, while 1035 were classified incorrectly. Of the 

non-attack data, 20175 were classified correctly and 

1035 were classified incorrectly. All of the attacked data 

classified correctly. 
 

0 20175 1035 

1 0 3850 

 0 1 

Figure 9. Confusion Matrix of SVM with DCGAN 

When the matrix in Figure 9 is examined, 24025 out of a 

total of 25060 data in the data set were classified 

correctly, while 1035 were classified incorrectly. Of the 

non-attack data, 20175 were classified correctly and 

1035 were classified incorrectly. All of the attacked data 

classified correctly. 
 

0 20175 1035 

1 0 3850 

 0 1 

Figure 10. Confusion Matrix of Gradient Boosting with DCGAN 

When the matrix in Figure 8 is examined, 24025 out of a 

total of 25060 data in the data set were classified 

correctly, while 1035 were classified incorrectly. Of the 

non-attack data, 20175 were classified correctly and 

1035 were classified incorrectly. All of the attacked data 

classified correctly. 

3.2.3 Result of Machine Learning Models with 

WGAN 

 

0 19447 1726 

1 2226 1661 

 0 1 

Figure 11. Confusion Matrix of Logistic Regresyon with WGAN 

When the matrix in Figure 11 is examined, 21108 out of 

a total of 25060 data in the data set were classified 

correctly, while 3952 were classified incorrectly. Of the 

non-attack data, 19447 were classified correctly and 

1726 were classified incorrectly. 1661 of the attacked 

data were classified correctly and 2226 were classified 

incorrectly. 
 

0 20655 518 

1 529 3361 

 0 1 

 

Figure 12. Confusion Matrix of Decission Tree with WGAN 

When the matrix in Figure 12 is examined, 24016 of the 

total 25060 data in the data set were classified correctly, 

while 1047 were classified incorrectly. Of the non-attack 

data, 20655 were classified correctly and 518 were 

classified incorrectly. Of the attacked data, 3361 were 

classified correctly and 529 were classified incorrectly. 
 

0 20634 439 

1 482 3305 

 0 1 

Figure 13. Confusion Matrix of Random Forest with WGAN 

When the matrix in Figure 13 is examined, 23365 out of 

a total of 25060 data in the data set were classified 

correctly, while 921 were classified incorrectly. Of the 

non-attack data, 20634 were classified correctly and 429 

were classified incorrectly. 3305 of the attacked data 

were classified correctly and 482 were classified 

incorrectly. 
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0 21103 70 

1 1042 2845 

 0 1 

Figure 14. Confusion Matrix of SVM with WGAN 

When the matrix in Figure 14 is examined, 23948 of the 

total 25060 data in the data set were classified correctly, 

while 1112 were classified incorrectly. Of the non-attack 

data, 21103 were classified correctly and 70 were 

classified incorrectly. Of the attacked data, 2845 were 

classified correctly and 1042 were classified incorrectly. 
 

0 20760 413 

1 595 3292 

 0 1 

Figure 15. Confusion Matrix of Gradient Boosting with WGAN 

When the matrix in Figure 15 is examined, 24052 out of 

a total of 25060 data in the data set were classified 

correctly, while 1008 were classified incorrectly. Of the 

non-attack data, 20760 were classified correctly and 413 

were classified incorrectly. 3292 of the attacked data 

were classified correctly and 595 were classified 

incorrectly 

3.3 Result of Proposed Model 
 

In order to further increase the performance of the 

Random Forest Model, which has the highest accuracy 

rate among the results obtained with machine learning, 

machine learning models were run with the newly formed 

data set by applying binary feature selection to the GAN 

applied dataset in the Proposed Model. 
 

 21049 93 

1 519 3399 

 0 1 

Figure 16. Confusion Matrix of Proposed Model 

When the matrix in Figure 6 is examined, 24448 out of a 

total of 25060 data in the data set were classified 

correctly, while 612 were classified incorrectly.     

 Of the non-attack data, 21049 were classified correctly 

and 93 were classified incorrectly. 519 of the attacked 

data were classified correctly and 93 were classified 

incorrectly.

Table 4. Accuracy Values of All Models 

 Acc. (%) Spec. (%) Sens. (%) Pre. (%) F1 (%) 

Logistic 

Regresyon+GAN 

83.58 46.13 87.83 93.48 90.57 

Random 

Forest+GAN 

96.04 92.14 96.67 98.71 97.68 

Decission 

Tree+GAN 

95.87 87.37 97.42 97.70 97.56 

SVM+GAN 95.84 99.31 95.38 99.91 97.59 

Gradient 

Boosting+GAN 

95.64 90.92 96.39 98.52 97.45 

Logistic 

Regresyon+DCGAN 

83.74 4753 9177 8874 90.23 

Random 

Forest+DCGAN 

95.87 78.81 100 95.12 97.50 

Decission 

Tree+DCGAN 

95.87 78.83 100 95.12 97.50 

SVM+DCGAN 95.87 78.81 100 95.12 97.50 

Gradient 

Boosting+DCGAN 

95.87 78.81 100 95.12 97.50 
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Logistic 

Regresyon+WCGAN 

84.23 49.04 89.73 91.85 90.78 

Random 

Forest+WCGAN 

95.91 85.98 97.72 9745 97.59 

Decission 

Tree+WCGAN 

95.82 86.65 97.50 97.55 97.53 

SVM+DCGAN 95.56 9760 95.29 99.67 97.43 

Gradient 

Boosting+WCGAN 

95.98 88.85 97.21 98.05 97.63 

Proposed Model 97.56 97.34 97.59 99.56 98.57 

 

Performance measurements show that our Proposed 

Model outperforms all other models on many evaluation 

criteria. Specifically, the Proposed Model achieved the 

highest accuracy of 97.56%, significantly outperforming 

Logistic Regression (83.58%) and other advanced 

models such as Random Forest (96.04%) and SVM 

(95.84%). showed improvements. 

In terms of specificity, SVM showed the highest 

performance at 99.31%; this demonstrates his strong 

ability to accurately identify negative examples. 

However, our Proposed Model also showed a high 

specificity of 97.34%; This is commendable considering 

its balanced performance across all metrics. 

Sensitivity is another important metric where our 

Proposed Model excels; Scoring 97.59%, it is higher 

than Logistic Regression sensitivity (87.83%) and 

comparable to top-performing models such as Random 

Forest (96.67%) and Decision Tree (97.42%).This 

demonstrates the robustness of the Proposed Model in 

identifying positive examples. 

Sensitivity and F1 score are critical to understanding the 

balance between sensitivity and positive predictive 

value. The Proposed Model achieved the highest 

sensitivity of 99.56% and the highest F1 score of 

98.57%. These measurements highlight the model's 

efficiency in providing reliable and consistent 

performance by maintaining high recall while minimizing 

false positives. 

4. Conclusion 

It clearly shows that our Proposed Model provides 

superior performance compared to traditional models 

and other advanced machine learning techniques. 

Having the highest scores in terms of accuracy, precision 

and F1 score, the Proposed Model proves to be highly 

effective and reliable for classification tasks. 

The outstanding performance of our Proposed Model 

can be attributed to its advanced algorithmic design and 

robust training process, which allows it to process 

complex datasets with higher precision and recall. These 

findings show that the Proposed Model can be used 

effectively in practical applications where high accuracy 

and reliability are very important. 

Overall, our Proposed Model sets a new benchmark in 

classification performance, offering significant 

improvements over existing methodologies and paving 

the way for more accurate and reliable machine learning 

applications. 

5. Limitation and Future Work 

Bu konunun incelenmesinde araştırma veri setinin 

toplanması çeşitliliği ilgili verilerin gizliliğinden dolayı veri 

kısıtı bulnmaktadır. 

In the future, it is planned to conduct in-depth research 

on specific communication technologies vulnerabilities 

with more advanced data sets, focusing on types of 

cyber attacks. 
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