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ABSTRACT

This work studied in detail for the first time the bending of laminated composite plates sub-
jected t mechanical variations by new theory Trigonometric and Trigonometric-Hyperbolic 
functions of shear deformation. From the Euler-Lagrange hypothesis and the equations of the 
shear deformation theory, we will develop a present method. One of the most important prob-
lems of composite plates is the analysis of their bending behavior. The correct approach used 
to study their bending behavior includes two trigonometric and trigonometric-hyperbolic 
functions satisfying the null shear stress condition at the free edges. In this paper the bending 
problem is solved analytically by developing a computational code and numerically solved by 
Finite Element Method. In order to simplify the study of the bending behavior, an approach 
taking into consideration the effect of the transverse shear deformation without the shear 
coefficient of correction with only four unknowns has been developed while requiring five or 
more unknowns for other theories. Convergence analysis has been carried and the results are 
compared to open literature available for plate bending analysis. The approach proves to be 
simple and useful in analyzing the bending behavior of composite layered plates.
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INTRODUCTION

Laminated composites due to their strength and high 
specific stiffness are increasingly used in various weight 
sensitive applications such as automotive, aeronautics and 
aerospace. Most of these applications have to operate in 
hostile environments; consequently the components of the 

structures which are subjected to mechanical stresses. In 
some cases, the mechanical load turns out to be one of the 
factors governing their design.

Many studies, based on deterministic analysis, have 
been carried out on the modeling and analysis of plate 
bending. The formed laminate plates require precise 
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structural analysis to predict the correct bending behav-
ior. Researchers have developed various plate theories 
to predict the correct bending behavior of thick plates. 
Kirchhoff ’s [1] classical plate theory (CPT) is unsuitable 
for broad plates due to neglect of transverse shear defor-
mation. The first-order shear deformation theory (FSDT) 
developed by Mindlin [2] is also inappropriate for analy-
sis because it does not gratify zero stress conditions on the 
top and bottom surfaces of the plate and the shear depen-
dent on the problem-required correction factors. Reissner 
[3] developed the FSDT, which takes into description the 
shear deformation effects. Distinct from the FSDT, the 
HSDT satisfies the equilibrium conditions on the top and 
bottom surfaces without using a shear correction factor. In 
addition, Reddy [4] developed a third-order shear defor-
mation theory (TSDT) using polynomial functions for dis-
placement fields. On the other hand, most of the HSDTs are 
computationally expensive due to the additional unknowns 
introduced in the theory context.

 In recent times, employing the refined form of the shear 
deformation theories has been the subject of much research. 
In the intervening time, different forms of polynomial, 
trigonometric, hyperbolic, and exponential functions are 
implemented to investigate the mechanical behavior of dif-
ferent structures for displacement fields [5-10].Analyzing 
the geometrically nonlinear behavior of laminated compos-
ite plates using finite element analysis has been studied by 
a variety of approaches [11-26].For example, but not lim-
ited to valuable works on composite materials [27-39] In 
the present study, two functions have been included and are 
made to verify the efficiency of the theory of shear defor-
mation of the most minor variable functions for the analy-
sis of bending, cross-folds, and laminated composite plates. 
These functions in terms of thickness coordinates are used 
in the kinematics of the theory to account for the effects 
of shear deformation. The theory applies the distribution 
of transverse shear stresses and satisfies the conditions for 
zero shear stress on the top and bottom surfaces. 

The theory does not need a problem-dependent shear 
correction factor. The governing equations and the bound-
ary conditions are obtained. Using a trigonometric solution 
to solve the variable equations. Finally, the numerical results 
obtained are compared with exact solutions in the literature 
to analyze the bending of laminated composite plates.

THEORETICAL FORMULATION

Consider the rectangular plate of sides “a” and “b” and 
of the thickness “h” indicated in Figure1. The plate consists 
of a number k of homogeneous layers. The plate is sub-
jected to a transverse load q (x, y) on the superior surface 
of the plate.

The displacements u in x-direction and v in y direction 
consist of extension (u0), bending (ub) and shear compo-
nents (us).

  
(1)

The transverse displacement w comprises two compo-
nents namely: bending (wb) and shear (ws)

  (2)

Analytical Solution
Based on the assumptions mentioned above, the follow-

ing displacement field associated with the present theory is 
obtained. 

  

(3)

f(z) is replaced by f1(z) and again by f2(z)
With

  
(3.a)

  
(3.b)

By way of

  

(3.c)

Figure 1. Geometry of the laminate plate
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The non-zero normal and shear strain components are 
obtained using the strain displacement relations.

  

(4)

And

  

(5)

Where Qij are the reduced elastic constants of the plane 
stress in the axes material of the plate, and are defined as:

  
(6)

Where E1, E2 are the Young’s modules along and trans-
verse direction of the fiber G12, G13 and G23 are the in-plane 
and transverse shear modules v12 and v21 and the Poisson’s 
ratios. The force and moment resultants of a current theory 
can be obtained by integrating stresses known by Eq. (5) 
during the thickness and are as follows: 

  

(7)

Where hk is the thickness ordinate of k layer, the terms  
(Nx, Ny, Nxy) and ( ) are the in-plane force and 
moment resultants related with the classical plate theory 
whereas, (Qx, Qy) and ( ) are the transverse 
shear force and moment resultants allied with the trans-
verse shear deformation.

Equations of Motion
The equations of motion governing the coherent varia-

tions and the boundary conditions related with the existing 

theory can be derived using the principle of virtual work. 
The analytical form of the principle of virtual work can be 
written as follows:

  

(8)

Where ∂ is the variation operator .The Integrate of Eq 
(8), by parts and by collecting the coefficients of ∂u0, ∂v0, 
∂w0, and ∂ws the governing equations of equilibrium and the 
boundary conditions (Euler-Lagrange equations) related to 
the present theory are obtained by using the fundamental 
lemma of the calculation of the variation. The equations 
governing the equilibrium of the plates are as follows:

  
 (9)

  
(10)

  

(11)

  

(12)

By substituting the resultants stress in terms of displace-
ment variables of Eq. (7) in Eqs. (9) –

(12), the governing equilibrium equations can be rewrit-
ten as follows:
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(13)

  

(14)

  

(15)

  

(16)

Where Aij, Bij, Asij, Dij, Bsij, Assij, Accij,  are the stiffness 
coefficients of the laminate which are given as:

  

(17)

Where

  (18)

Flexural Analysis of Laminated Composite Plates
The Navier’s solution technique is used for bending 

to analyze the laminated composite plates simply sup-
ported on the four edges satisfying the following boundary 
conditions:

  (19)

  (20)

Following the technique of the Navy’s solution, the 
governing equations of the laminate simply supported by 
the composite plates in the case of bending analysis are 
obtained by eliminating the compression loads in the plane 
( ) resulting from the equations. (13) - (16). 

  

(21)

  

(22)

  

(23)

  

(24)

The plate is subjected to a transverse load q (x, y) on 
the upper surface, i.e. z = -h / 2. The transverse load is pre-
sented in double trigonometric series as shown in Eq. (25).
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  (25)

As α = mπ / a, β = nπ / b and qm is the Fourier expansion 
coefficient. 
If (m = 1, n = 1) sinusoidal distributed load qm = q0.

While  q0 is the maximum load at the center of the plate. 
The following solution form is assumed for the variables of 
unknown displacement u0, v0, wb, ws satisfying exactly the 
boundary conditions of simply supported plates.

  

(26)

Also 
umn, vmn, wbmn, wsmn are the unknown constants to be 

determined In case of sinusoidal distributed load, the pos-
itive integers are unity (m = 1, n = 1) The Substitution of 
this form of solution and the transverse load q(x,y) in the 
governing equations (21) - (24) leads to the set of algebraic 
equations which can be written in matrix form as follows.

  

(27)

Where the elements of the stiffness matrix [P] are the 
following: P12 = (A12 + A66)aβ,

  

(28)

By Opening the solution of Eq. (27), unknown con-
stants umn, vmn, wbmn, wsmn can be obtained.

By means of the constitutive relations (3) - (5). The 
transverse shear stresses τxy, τyz are obtained.

The following material properties are used for bending 
analysis of simply supported laminated composite plates 
subjected to a sinusoidal distributed load

  

(29)

The Displacements and stresses are presented in the fol-
lowing non-dimensional form:

  

(30)

Comparative Analysis 
In this step, based on the mathematical formulations, 

a computer program with the MATLAB language is devel-
oped. In this work we have chosen the Shell 99 element and 
a 40x40 mesh for symmetry reasons, we modeled only 1/4 
of the plate or the Ansys library [40] (version 14.0) offers 
more than 150 elements of different types defining an appli-
cation category. These standard elements are differentiated 
by the number of degrees of freedom applied to each node 
of the test structure the field of use (structural, mechanical, 
magnetic, thermal, electrical, etc.) or even if the elements 
are defined in a 2D or 3D space.

To study the bending behavior of simply supported lam-
inated composite plates using two different function the-
ories, we are interested in comparing the results obtained 
from two-ply laminated plates of the same thickness and 
chosen orientation with results available in the literature, 
illustrated in Table 1 and Figures (2 to 8).

RESULTS AND DISCUSSION 

The applicability of the proposed method for analyzing 
plates laminated with one is demonstrated, using a [0°/90°] 
laminated plate under several sets of boundary conditions. 
The plate has a length / thickness ratio a/h and an equality 
of width / length ratio (b = a), and is subjected to a sinu-
soidal transverse load distribution as defined in the equa-
tion. Note that simple types of supports are used in these 
examples. The results mentioned above indicate excellent 
agreement between the current results and those obtained 
by other solutions from authors indicated on the figures. 
Many analyzes are performed in this study by using a finite 
element model of the plate . The model was developed using 
linear layered structural shell elements in ANSYS 14.0. 
From the results of a simply supported two-ply symmetrical 
laminated composite plate it was observed that the bending 
is greater for this chosen modulus ratio .A comparison of 
the same with that of the literature values of Reddy, Pagno 
and Mindlin in respect of normal displacement are in good 
agreement. The present solution gives about 0.5% higher 
values in comparison with the results of Reddy, Pagno and 
Mindlin.
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CONCLUSION

The study conducted in this article sheds light on the 
mechanical behavior of laminated plates subjected to bend-
ing. The approach developed and the results obtained 
significantly contribute to the study of the bending of 

laminated plates made of composite materials having an 
anisotropic mechanical behavior. Results for deflections 
and stresses of the laminated composite plate as a function 
of thickness ratios are obtained.

The calculations of the approximate solutions (displace-
ment and stresses) are carried out by a program developed in 

Figure 3. Comparison of non-dimensional displacement  
for the two layers [0°/90°] square composite laminated plate 
(b = a) subjected to a sinusoidal distributed load.

Figure 2. Comparison of non-dimensional displacement  
for the two layers [0°/90°] square composite laminated plate 
(b = a) subjected to a sinusoidal distributed load.

Table 1. Comparison of non-dimensional displacements and stresses for the two layers [0°/90°] square composite laminated 
plate (b = a) subjected to a sinusoidal distributed load.

Cas1 a/h=4

Parameter Ansys

Present

Trigonometric

Function Present

trigonometric 
Hyperbolic 
Function Present

Exact 
Pagano

HSDT 
Reddy

FSDT 
Mindlin

CPT Kirchhoff

 0.0120 0.0115 0.0117 …….. 0.0114 0.0088 0.0088
2.0911 2.0706 2.0728 2.0670 2.0256 1.9682 1.0636
1.0312 1.0139 1.0271 0.8410 0.9172 0.7157 0.7157

0.1200 0.1108 0.1129 0.1090 0.0932 0.0843 0.0843

0.0910 0.0801 0.0819 0.0591 0.0713 0.0525 0.0525

0.1322 0.1290 0.1301 0.1200 0.1270 0.0910 …….

0.1452 0.1366 0.1389 0.1350 0.1270 0.0910 ……..

Cas 2 a/h=10
0.0121 0.0099 0.0101 ……… 0.0095 0.0088 0.0088
1.2828 1.2483 1.2528 1.2250 1.2479 1.2083 1.0636
0.8510 0.8008 0.8100 0.7302 0.7652 0.7157 0.7157

0.1100 0.0909 0.1045 0.0886 0.0889 0.0843 0.0843

0.0811 0.0698 0.0709 0.0535 0.0680 0.0525 0.0525

0.1414 0.1351 0.1386 0.1210 0.1310 0.0910 ………

0.1416 0.1343 0.1370 0.1250 0.1310 0.0910 ……….
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MATLAB. For the second case by the numerical approach, 
the checking and the validation of the results are made by 
the computer code (ANSYS).

The absence of taking into account the transverse shearing 
also constitutes an important effect on the behavior in bending 
the plates. The results obtained were compared with the litera-
ture and it can be said that they are in good agreement.
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Figure 4. Comparison of non-dimensional stress for the 
two layers [0°/90°] square composite laminated plate (b = 
a) subjected to a sinusoidal distributed load.

Figure 5. Comparison of non-dimensional stress for the 
two layers [0°/90°] square composite laminated plate (b = 
a) subjected to a sinusoidal distributed load.

Figure 6. Comparison of non-dimensional stress for the 
two layers [0°/90°] square composite laminated plate (b = 
a) subjected to a sinusoidal distributed load.

Figure 7. Comparison of non-dimensional stress for the 
two layers [0°/90°] square composite laminated plate (b = 
a) subjected to a sinusoidal distributed load.

Figure 8. Comparison of non-dimensional stress for the 
two layers [0°/90°] square composite laminated plate (b = 
a) subjected to a sinusoidal distributed load.
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