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Abstract: Capsule networks (CapsNet) have emerged as a promising architectural framework for various machine-learning tasks and 

offer advantages in capturing hierarchical relationships and spatial hierarchies within data. One of the most crucial components of 

CapsNet is the squash function, which plays a pivotal role in transforming capsule activations. Despite the success achieved by 

standard squash functions, some limitations remain. The difficulty learning complex patterns with small vectors and vanishing 

gradients are major limitations. Standard squash functions may struggle to handle large datasets. We improve our methodology to 

enhance squash functions to address these challenges and build on our previous research, which recommended enhancing squash 

functions for future improvements. Thus, high-dimensional, and complex data scenarios improve CapsNet’s performance. Enhancing 

CapsNet for complex tasks like bone marrow (BM) cell classification requires optimizing its fundamental operations. Additionally, the 

squash function affects feature representation and routing dynamics. Additionally, this enhancement improves feature representation, 

preserves spatial relationships, and reduces routing information loss. The proposed method increased BM data classification accuracy 

from 96.99% to 98.52%. This shows that our method improves CapsNet performance, especially in complex and large-scale tasks like 

BM cells. Comparing the improved CapsNet model to the standard CapsNet across datasets supports the results. The enhanced squash 

CapsNet outperforms the standard model on MNIST, CIFAR-10, and Fashion MNIST with an accuracy of 99.83%, 73%, and 94.66%, 

respectively. These findings show that the enhanced squash function improves CapsNet performance across diverse datasets, confirms 

its potential for real-world machine learning applications, and highlight the necessity for additional research. 
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1. Introduction 
Bone marrow (BM) cells affect human health. They 

facilitate the correct functioning of human blood. Many 

cell types make up human blood. These cells support 

tissue repair and stop bleeding and infection resistance 

in the body (Girdhar et al., 2022). The human immune 

system depends critically on blood cells to defend the 

body against bacteria and infections (Çınar and Tuncer, 

2021). Although making up just 1% of the blood volume 

overall, white blood cells (WBCs) are essential to 

immunity. Carrying oxygen, red blood cells (RBCs) make 

up a noteworthy 45% of the blood volume (Tamang et al., 

2022). Besides, white blood cells shield the body from 

viruses and parasites. Regarding the human immune 

system, they are essential (Stock and Hoffman, 2000). 

WBCs are mostly of five types: monocytes, lymphocytes, 

basophils, neutrophils, and eosinophils (Yao et al., 2021). 

Every type serves a different purpose in shielding the 

body from various germs and promoting general health 

and well-being. The cytoplasm of these cells contains 

nuclei, which sets them apart. Often used to evaluate the 

effectiveness of radiation and chemotherapy (Kutlu et al., 

2020), blood tests are an essential diagnostic tool for 

many diseases (Long et al., 2021). Polio, tuberculosis, 

measles, HIV, and chickenpox are only a few of the 

illnesses that can lower lymphocyte counts. On the other 

side, leukemia, brucellosis, liver disease, and Bordetella 

pertussis disease can all raise lymphocyte levels. 

Leukemia, the illness, polio, and pertussis-borne diseases 

can cause lymphocyte counts to rise; polio, tuberculosis, 

measles, HIV, and chickenpox can cause them to fall. 

WBCs, RBCs, and plasma, platelets are considered the 

peripheral blood cells (PBCs) (Balasubramanian et al., 

2022). Anemia, malaria, and leukemia can all be 

diagnosed with a PBC test (Hegde et al., 2019a). Unlike 

more homogeneous forms of platelets and RBCs, WBCs 

are the subject of much research because of their varied 

shape and unique subtypes (Dhal et al., 2023). The 

diversity of WBCs makes them of special interest for 

medical image segmentation and classification (Agustin 

et al., 2021). Hematologists’ workload has been much 

reduced by computer-aided automated white blood cell 
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classification. Masses of data can be processed quickly 

and accurately by these methods. These automated 

techniques can be categorized essentially into three 

groups. Known as TIP, the first technique extracts feature 

from WBC images by means of threshold functions 

derived from mathematical relationships and preset 

parameters. With the aid of these cutoffs, classification of 

various white blood cell types is facilitated. Over time, 

several TIP approaches have been honed and enhanced; 

these include pixel template matching techniques as in 

(Ghosh et al., 2010; Hegde et al., 2019b; Mohamed et al., 

2012; Rezatofighi et al., 2009), fuzzy divergence, 

modified thresholding, Grayscale contrast, and Gram-

Schmidt orthogonality. Second, machine learning: As 

computing power has increased and conventional image 

processing has shown flaws, researchers have started 

using machine learning (ML) algorithms such as support 

vector machines (SVM), Bayesian classifiers, and random 

forest models for WBC classification (Gautam et al., 2017; 

Mirmohammadi et al., 2021). These techniques enhance 

classification accuracy by making use of unique 

morphological features of WBCs. Statistical, geometric, 

wavelet and textural features are extracted from images 

through analysis. The most pertinent features are chosen 

through a feature selection process that runs through all 

these features. To achieve accurate identification, the 

features that were chosen are subsequently fed into 

classifiers like Bayesian and SVM. Third, DL: 

convolutional neural networks (CNNs) and other deep 

learning structures have recently seen a surge in 

popularity for WBC classification jobs. Deep learning 

techniques automatically extract features from images, 

leading to improved classification accuracy (Aydin 

Atasoy and Faris Abdulla Al Rahhawi, 2024; Dayı et al., 

2023), in contrast to conventional ML methods that 

depend on human feature extraction. 

Historically, the classification of WBCs has been carried 

out manually, resulting in a slow, laborious, and error-

prone procedure. Hence, it is essential to develop 

algorithms and automated diagnostic systems to classify 

WBC quickly and accurately (Liu et al., 2019). The 

motivation behind this study is that Capsule networks 

(CapsNet) exhibits potential in capturing intricate data 

relationships but faces challenges when dealing with 

huge complex data sets due to limitations in traditional 

squash functions. This article introduced an enhanced 

squash function to improve CapsNet performance, 

especially when dealing with high-dimensional and 

complex datasets. We aim to improve feature 

representation and classification accuracy by optimizing 

the fundamental operations, focusing on BM cell 

classification tasks. This research represents a significant 

extension of our previous contributions (Aydın Atasoy 

and Faris Abdulla Al Rahhawi, 2024), improving the 

effectiveness and applicability of CapsNet in real-world 

applications. The contributions of the presented model 

are as follows: 

 We present an enhanced squash function optimized for 

CapsNet. The improved function addresses the 

limitations of standard squash and improves feature 

representation.  

 Our methodology significantly improved the 

classification of 21 BM cells, which increased the 

classification accuracy for bone marrow cells from 

96.99% to 98.52%. This success is an essential step in 

the process of diagnosing hematological disorders.  

 Imbalance classes issue have been solved using SMOTE 

oversampling. 

 Extending evaluation to MNIST, Fashion MNIST, and 

CIFAR-10 datasets demonstrates that our CapsNet 

architecture with the enhanced squash function has 

consistently improved performance. 

 A wide comparison is conducted between our proposed 

methods and several previous CapsNet architectures. 

This paper is organized and arranged as follows: Section 

2 presents the literature review. In Section 3, dataset 

details and selected CapsNet methods are introduced. 

The classification performance results of the proposed 

models are evaluated in Section 4. The conclusion and 

future works are discussed in Section 5. 

1.2. Literature Review 

Nowadays, deep learning has proven to be effective in 

many classification tasks (Somuncu and Aydın Atasoy, 

2022; Taşdelen and Ugur, 2021). Further, it has been 

used to classify images using various fields and methods. 

A multilayer feedforward artificial neural network like 

CNN is one of the most popular deep learning models. It 

is easy to use, runs in parallel, and achieves high success 

levels. CNN comes in many types, including VGGNet, 

AlexNet, GoogleLeNet, ResNet, EfficientNet, and 

ConvNeXt (Arjun Ghosh et al., 2022). CNNs consist of 

convolution, pooling, and a fully connected layer (LeCun 

et al., 2015). Kernels filter input data in the convolution 

layer to extract feature maps and learn image regional 

patterns. The pooling layer reduces feature map 

dimensionality by applying pooling operations, but this 

can lose information (Somuncu and Aydın Atasoy, 2022). 

Finally, the fully connected layer's activation function 

processes weighted inputs from each neuron in the 

previous layer to determine output. 

It is a significant challenge to train a model to perform all 

possible combinations of enlargement, rotation, 

inversion, cropping, and zooming; it requires a 

substantial amount of time and data. However, the 

resulting model may not yield optimal outcomes. The 

CNN model may cause data loss during the feature 

extraction when filters are applied to datasets created 

through rotation. CNNs can handle translational 

invariance but cannot do so with rotational invariance 

(Kwabena Patrick et al., 2022; Muhammad et al., 2023; 

Nair et al., 2021; Ren et al., 2019) and are not sufficiently 

successful in training large and unbalanced data (Singh et 

al., 2021). CapsNet employs dynamic routing methods to 

prevent data loss in the pooling layer (Zhao and Huang, 

2019). 

Recent advancements in BC classification have led to the 
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development of advanced deep-learning techniques. 

Girdhar et al. (Girdhar et al., 2022) developed a new CNN 

structure for the WBC classification. An investigation was 

conducted on the blood cell count and detection (BCCD) 

dataset to evaluate the effectiveness of the CNN method 

as presented. The CNN method achieved a classification 

accuracy of 98.55% after 20 epochs. Long and colleagues 

(Long et al., 2021) presented BloodCaps, a capsule-based 

model aimed at precisely categorizing a broad spectrum 

of blood cells for PBC classification. Eight classes of 

human peripheral blood cells made up a large dataset for 

which the BloodCaps method was used. Its remarkable 

99.3% total accuracy beats that of convolutional neural 

networks like InceptionV3 (98.4%), ResNet18 (95.9%), 

VGG16 (97.8%), and AlexNet (81.5%). Sengur et al. 

(2019) presented in their work a hybrid method for the 

WBC count that combines deep learning methods with 

image processing. Among the image processing methods 

used by the WBC images are morphological procedures, 

thresholding, filtering, color-to-grayscale conversion, and 

RGB to HSV conversion. Later, the long-short-term 

memory (LSTM) approach is used to classify WBC. 

Analyzing the experiment findings on the BCCD dataset, 

the proposed hybrid approach produced a 92.89% 

classification accuracy. Patil et al. (2021) proposed a 

deep learning method for the WBC classification by 

combining LSTM and CNN through canonical correlation 

analysis. The official correlation analysis enhances the 

accuracy of the input image by extracting multiple 

overlapping features, surpassing other comparable deep 

learning methods. The classification accuracy achieved 

for the applications on the BCCD dataset is 95.89%. 

Baghel et al. (2022) designed a new CNN model to 

enhance the precision of WBC classification. After 1000 

epochs, their analysis of the BCC dataset resulted in a 

classification accuracy of 98.91%. Basnet et al. (2020) 

introduced a technique for precise WBC classification by 

employing the CNN structure. The researchers employed 

a dataset of 10,000 images categorized into five classes to 

assess their deep CNN classification accuracy, achieving 

an impressive 98.92% accuracy. Baydilli and Atila (2020) 

proposed a new method that utilizes capsule networks to 

categorize white blood cells into five distinct types. The 

researchers evaluated the precision of their capsule 

networks by conducting tests on the Leukemia Image 

Segmentation Challenge (LISC) dataset. This dataset 

consists of 263 blood cell images and is considered 

relatively small. Their efforts resulted in an accuracy rate 

of 96.86%. Ha et al. (2022) introduced a new semi-

supervised model called Fine-grained Interactive 

Attention Learning (FIAL) for the classification of WBC. 

This model involves two essential elements; firstly, the 

Semi-Supervised Teacher-Student modules utilize a 

limited number of labeled WBC images to train a network 

called the “teacher”. The “teacher” network subsequently 

directs the learning process of a “student” network using 

a vast collection of unlabeled WBC samples, resulting in 

the generation of estimated probability vectors for these 

samples. Secondly, the Fine-Grained Interactive Attention 

mechanism enhances the attention within the network 

by highlighting the informative regions of the WBC 

images, leading to improved accuracy in classification. 

they achieved an overall accuracy of 93.2% when 

evaluating the FIAL model on the publicly available BCCD 

dataset. Hosseini et al. (2022) proposed a new CNN 

structure that is specifically tailored for the classification 

of four different types of WBCs: neutrophils, monocytes, 

eosinophils, and lymphocytes. Their approach stands out 

because they utilize a mix of random and grid search 

optimization algorithms to adjust the model's 

hyperparameters precisely. Following evaluation using 

the BCC dataset, their CNN achieved an accuracy rate of 

97%. Vigueras-Guillén et al. (2021) focused on 

developing an innovative “parallel CapsNets” framework 

tailored specifically for the classification of WBCs. By 

utilizing a branching strategy, this architecture can 

isolate capsules that are utilized to identify distinct cell 

types. When evaluated on a 15-class dataset of acute 

myeloid leukemia images, their parallel CapsNets 

demonstrated superior performance to the baseline CNN, 

owing to enhanced stability and rotational invariance. 

Although the precise accuracy was not explicitly stated, 

its performance exceeded that of the foundational CNN. 

Various publications have employed CapsNets to execute 

various tasks using medical images. Many researchers 

utilized Sabour et al.’s network (2017) on small patches 

to carry out various tasks. These tasks include detecting 

diabetic retinopathy in fundus images, identifying mitosis 

in histology images (Hand E), and classifying breast 

cancer (Anupama et al., 2019; Iesmantas and Alzbutas, 

2018) (Hoogi et al., 2019).  

As seen in the literature, many studies have tried to 

improve CapsNet using different methods, often pre-

training techniques. However, much must be done to 

strengthen the core CapsNet components, particularly 

the squash function. This paper will focus on improving 

the squash function, an important part of CapsNet. 

 

2. Materials and Methods 
This section presents two implementations: one 

employing the standard squash function and the other 

utilizing an enhanced squash to conduct a comparative 

analysis of the performance of these two employments 

within the CapsNet architecture, as shown in Figure 1.  

2.1. Baseline capsnet theory 

The concept of CapsNet was initially proposed by Sabour 

et al. (2017) . These networks represent images in a 

whole vector format, which allows them to encode 

internal properties, including the pose of entities within 

an image. In contrast to CNNs, which rely on pooling for 

output routing, CapsNet aims to preserve information to 

achieve equivariance, particularly in handling viewpoint 

changes. This preservation is facilitated through dynamic 

routing, which replaces the pooling mechanism. Lower-

level capsules representing specific features are 

hierarchically routed to parent capsules to capture part-
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whole relationships via linear transformations. This 

approach is based on the concept of inverse graphics, 

which suggests that the neural system deconstructs 

images into their inherent hierarchical properties. A 

capsule is a group of neurons that perform a diverse 

range of internal computations and subsequently encode 

the results of these computations into an n-dimensional 

vector. The vector is the output of the capsule. The length 

of this output vector indicates the vector’s probability 

and direction, indicating certain properties about the 

entity. Using initial convolutional layers in capsule 

networks permits the reuse and replication of learned 

knowledge across different parts of the receptive field. 

An iterative Dynamic Routing algorithm is employed to 

determine the inputs to the capsules. The output of each 

capsule is then compared with the actual production of 

the higher-level capsules. In the case of a match between 

the outputs, the coupling coefficient between the two 

capsules is increased. Let i represent a lower-level 

capsule and j a higher-level capsule. The prediction 

vector is calculated as follows in equation 1 (Sabour et al., 

2017). 
 

û(j|i) = Wijui (1) 
 

The Wij trainable weighting matrix and the ui output 

pose vector from the (i − th) capsule to the (j − th) 

capsule are employed in this context. The coupling 

coefficients are calculated using a SoftMax function as 

follows in equation 2 (Sabour et al., 2017). 

 

𝐶𝑖𝑗 = SoftMax(𝑏𝑖𝑗) =
exp⁡(𝑏𝑖𝑗)

∑ exp⁡(𝑏𝑖𝑘)𝑘
 

(2) 

 

The log probability of capsule i coupled with capsule j, 

denoted by bij, is initialized with zero values. The total 

input to capsule j is a weighted sum of the prediction 

vectors, calculated as follows in equation 3 (Sabour et al., 

2017): 
 

⁡𝑠𝑗 = ∑ Cij⁡û
𝑖

𝑗|𝑖 (3) 

 

In capsule networks, the length of the output vector is 

employed to represent the probability for the capsule. 

Consequently, a non-linear activation function, the 

squashing function, is used. The squashing function is 

defined as follows in equation 4 (Sabour et al., 2017): 
 

𝑉𝑗 = 𝑆𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) =
||sj||2

1 + ||sj||2
𝑠𝑗

||sj||
 

(4) 

 

The dynamic routing algorithm can update the cij values 

in each iteration. In this case, the objective is to optimize 

the Vj vector. In the dynamic routing algorithm, the bij 

vector is updated in every iteration according to equation 

5 (Sabour et al., 2017): 
 

𝑏𝑖𝑗 = 𝑏𝑖𝑗 + 𝑉𝑗⁡û𝑗|𝑖 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. General steps for classification. 
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2.2. Dataset  

The BM cell dataset (Matek et al., 2021) includes various 

hematological disease cell microscopic images consisting 

of more than 170000 de-identified, expert-annotated 

cells from bone marrow smears of 961 patients stained 

using the May-Grünwald-Giemsa/Pappenheim stain. The 

institutional review board at the Munich Leukemia 

Laboratory (MLL) has given its permission to use this 

dataset. Sample microscopic images from the dataset are 

shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Morphological appearance of BM cell classes. 

 

2.3. Pre-processing 

As seen in Figure 3, imbalances in the distribution of 

some BM cell dataset classes cannot reach the expected 

target. SMOTE (Chawla et al., 2011), Adaptive Synthetic 

(ADASYN) (He et al., 2008), SMOTEBoost (Nitesh V. 

Chawla et al., 2003), and DataBoostIM (Guo and Viktor, 

2004) sampling approach techniques are used to avoid 

these imbalances. 

In this study, SMOTE, which is preferred over other 

sampling approximation techniques (Bajer et al., 2019; 

Maldonado et al., 2019) is used to create synthetic 

instances of the minority class by interpolating between 

class instances of an imbalanced dataset(Elreedy and 

Atiya, 2019) using equation 6 (Juanjuan et al., 2007; Reza 

and Ma, 2019). In this equation, 𝑡 is the true minority 

value; 𝑘 is the number of nearest neighbors of the true 

value; 𝑛 is the nearest neighbor value (𝑛 − 𝑡)does 

Euclidean distance obtain the difference; 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)Is 

the number value that allows the addition of different 

feature values. In this study, 𝑘=5 for each minority class. 
 

smote(t, k) = t + random(0,1) ∗ (n − t) (6) 
 

Minority classes were rounded to 5000 images, and 

classes with over 5000 images were rounded up. This 

over-sampling technique improved overall classification 

performance and representation of the minority classes. 

Figure 4 shows the change in the number of data after 

the SMOTE process. In addition, all images are rescaled 

using Bicubic Interpolation (Keys, 1981). This technique 

is a non-adaptive interpolation algorithm and uses 

polynomial techniques to sharpen and enlarge digital 

images. 

 

2.4. CapsNet Architecture with Standard Squash 

The input images of the baseline CapsNet model were 

resized as 32 × 32 pixels to reduce the training time and 

then designed as shown in Figure 5. 

The proposed model takes three arguments: the input 

image, the number of classes, and the number of routing 

iterations. After input images are preprocessed as in 

previous steps, fed to the convolutional layer to extract 

low-level features with filters is 256, kernel size is 9, and 

strides is 1. Then, these features are grouped into 

primary capsules with filters of 8 × 32, kernel of 9 × 9, 

and stride of 1 to reduce the model size, each 

representing a part or aspect of an object. Each capsule in 

the convolutional layer corresponds to a capsule in the 

primary capsule layer. A routing-by-agreement approach 

boosts learning capability and captures the relationships 

between different parts of an object. Each capsule in a 

higher-level layer sends its output to capsules in the layer 

above based on the agreement (compatibility) between 

their outputs. The routing process consists of iteratively 

updating the connection weights between capsules based 

on the match between their outputs. Thus, dynamic 

routing makes the capsules in higher layers focus on the 

most relevant capsules in the layer below; the ReLU 

activation function, a non-linear function in deep neural 

networks, is used to reduce dimension. The output of the 

capsule network is obtained by measuring the length of 

the output vectors of the capsules in the top layer. This 

length indicates the probability that a given class or 

object is present in the input image. Standard squash is 

applied to squash the vectors of the primary capsules as a 

non-linear activation function. It aims to ensure that 

short vectors are reduced to a length close to zero and 
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long vectors are reduced to a length close to 1. Then, 

adjusting the hyperparameter, the learning rate is 

initially determined to be 0.001, and the Adam (Kingma 

and Ba, 2015) optimization algorithm is used to change it 

dynamically. The model is run with a decay ratio of 0.9 

and a routing of 3 for 100 epochs. The CapsNet model 

train accuracy is calculated at 96.99% on the BM dataset. 

2.5. Squashing Vectors Improvement  

Standard squash function proposed by (Sabour et al., 

2017)represents a key component within the context of 

CapsNet. It refers to a non-linear activation function 

applied to the output of capsule layers to normalize the 

output vectors of capsules within the range [0, 1], 

ensuring consistent representation across different 

capsules. These layers process features and encode not 

only the presence of an entity but also its orientation. 

This normalization allows the magnitude of the output 

vector to be interpreted as the probability of the 

presence of an entity and its pose parameters. In 

addition, by scaling the vectors, the squash function 

prevents short vectors from vanishing and long vectors 

from becoming overly large. Additionally, there are still a 

few restrictions even with the succeeding standard 

squash function. It first has the vanishing gradient issue, 

which gets harder to ignore as vectors reach their 

maximum length. Training can proceed slowly or 

unstable because the squash function’s gradient tends to 

get very small as the vectors reach 1. Squash functions 

aim to squash vectors into the range of 0 to 1. Moreover, 

very small norm vectors can be difficult for the 

traditional squash function to manage. Numerical 

instability or errors can arise when gradients must be 

computed precisely during training. Furthermore, the 

squash function has a sensitive behavior to initialization; 

a wrong initialization can cause problems like exploding, 

jeopardizing the training process's stability and 

convergence. Recording intricate relationships and 

patterns in the data is insufficient, to sum up. These 

drawbacks highlight the need to resolve these issues and 

improve the functionality of capsule networks in a range 

of applications by means of improvements or novel 

squash function formulations. This paper offers a better 

squash function that uses layer normalization to address 

these problems and offers more accurate and effective 

CapsNet training. Upon entering this normalization layer, 

the input vectors are scaled. Conversely, the commonly 

used squash function normalizes input vectors only by 

considering their squared norm. The normalization layer 

approach stabilizes the learning process by successively 

normalizing the activations of each capsule across the 

feature dimension. The computed mean and variance 

statistics are first applied by the improved squash 

function to normalize the input vectors. The following 

illustrates the mathematical procedures. The scaling 

factor is computed as (equation 7): 
 

𝑆𝑐𝑎𝑙𝑒 =
α⁡| |

sj
5
| |2

1 + α⁡| |
sj
5
| |2

 

(7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. BM cell dataset features. 
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Figure 4. After Oversampling BM cell dataset features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. General structure of proposed CapsNet on BM dataset. 

 

This equation defines the scale squash function; it 

transforms an input vector sj to extract informative 

features while discarding less informative ones. | |
sj

5
| |2: 

This computes the input vector sj’s squared L2 norm. The 

vector's length, or norm, equals its size. Input vectors can 

be stabilized by dividing them by 5 which will also 

improve optimization convergence and reduce issues like 

exploding or disappearing gradients. In addition, it 

indicates relative feature relationships over true values, 

so promoting scale invariance and strengthening the 

network against changes in feature magnitude. By 

focusing on features within a suitable range of 

magnitude, this normalization prevents the network 

from being unduly influenced by the values of extreme 

features. It allows it to extract meaningful patterns more 

successfully. Controlling the degree of the squashing is 

the scaling factor α > 0, which is set to 0.5. Moreover, the 

model became more robust to noisy or unstable input 

data at α =0.5. The model demonstrated superior 

validation and tested dataset performance by capturing 

essential features and patterns. Thus, reduced bias, 
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improved gradients, and potentially more stable training 

often overcome the potential drawbacks. After 

calculating the scaling factor, the function performs layer 

normalization on the input vectors. It is a technique 

employed to normalize a layer’s activations, ensuring 

that the mean is zero and the variance is one. This 

facilitates the stabilization of the learning process and 

accelerates convergence. The normalization layer is 

based on mean and variance instead of simply 

normalizing the input vectors based on their squared 

norm (as in the standard squash function); this step helps 

to capture more information about the distribution of the 

input vectors than just their squared norm. The equation 

for layer normalization is represented as (equation 8): 
 

vectors =
𝑠𝑗 − µ

||sj||⁡√ơ2 + 𝜀
 

(8) 

 

First, layer normalization efficiently centers the input 

vectors around the zero mean by removing the mean (µ) 

from each one. This step can be used to lessen the 

variance of the input distribution to prevent too large or 

too small gradients during back-propagation. Every 

element of the input vectors has its distribution changed 

when the mean is subtracted from it. The effect of 

different mean values amongst samples is reduced by 

this method, which ensures that the transformed vectors 

mean close to 0. By focusing and scaling the activations 

around zero mean and unit variance, respectively, this 

normalization method improves the convergence and 

stability of the training process.  

By normalizing activations within each layer, the 

improved squash function improves gradient flow by 

lowering variability across the feature dimension, and it 

additionally decreases the network’s sensitivity to the 

layer addition of parameters. Through the enhancement 

of capsule networks’ expressiveness and robustness, the 

squash function enables them to capture complex 

patterns and relationships more successfully in the data, 

which may lead to better performance on tasks like pose 

estimation, object detection, and image classification. The 

final enhanced equation is represented as (equation 9): 
 

Enhanced⁡squash⁡ = scale⁡ ∗ ⁡vector⁡ 

=
α⁡| |

sj
5
| |2

1 + α⁡| |
sj
5
| |2

⁡
𝑠𝑗 − µ

||sj||√ơ2 + 𝜀
⁡⁡ 

(9) 

 

 

 

 

3. Results and Discussion 
The experiment results in this work were obtained using 

an NVIDIA RTX 3070 GPU with 64 GB of VRAM. Our focus 

was on creating models specifically made to manage the 

difficulties of handling huge datasets and highly complex 

features. Our method focused mainly on adding a better 

squash function to the CapsNet core. On three more 

datasets MNIST, Fashion MNIST, and CIFAR-10, we 

carefully evaluated the performance of our proposed 

models. These tests showed how flexible our models 

could be and how they might be used for purposes other 

than the BM dataset that was first used. 

Using extensive publicly available datasets, this section 

examines our improved models for BM cell classification. 

Utilizing over-sampling techniques, the SMOTE method 

was used to address the class imbalance in the BM 

dataset successfully. During training, the SMOTE 

application significantly improved our models’ overall 

accuracy. Rebalancing the distribution of the data, 

SMOTE over-sampling methods guaranteed a strong 

evaluation and validation process. BM images totaling 

216,000 were produced after SMOTE was applied to the 

original 171,374-image BM dataset. The dataset was next 

split into three subsets, as shown in Table 1, 70% for 

training, 10% for validation, and 20% for testing. 

Moreover, we investigated three more datasets: the 

MNIST, Fashion MNIST, and CIFAR-10 datasets, each of 

which presented important difficulties and revealed the 

effectiveness of our model in different domains. The 

handwritten numbers in the MNIST dataset are used as a 

standard for image categorization tasks. A further feature 

of the Fashion MNIST dataset is grayscale photos of 

accessories and clothing. With the more difficult 

classification task provided by the Fashion MNIST 

dataset than the MNIST dataset, our models can 

distinguish between minute details and minute 

variations in fashion items. Ten classification classes with 

a wider range of object classes including animals, cars, 

and commonplace objects represented in colored photos 

make up the CIFAR-10 dataset. The complexity and 

variation of CIFAR-10 present difficulties. Table 2 

provides details of these three data sets. 

 

Table 1. Splitting BM dataset 

Total 

BM cells 

After 

applying 

SMOTE 

Training 

data 

(70%) 

Validation 

(10%) 

Test 

data 

(20%) 

171374 216000 151200 21600 43200 

 

Table 2. Details of the dataset 

Dataset Image Size Channels Classes Train Set Test Set 

MNIST (28, 28) 1 10 60,000 10,000 

Fashion-MNIST (28, 28) 1 10 60,000 10,000 

CIFAR10 (32, 32) 3 10 50,000 10,000 
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3.1. Evaluation Process of Models 

We evaluated the performance of our models using an 

array of metrics to get an extensive understanding of 

their effectiveness. F1-score was one of the metrics 

applied, together with specificity, recall, and precision. 

Much of evaluating the model's ability to accurately 

reduce false positives while identifying true positive 

instances was precision, which indicates the accuracy of 

positive predictions. Conversely, recall gauged how 

sensitively the model caught each positive occurrence in 

the data. Conversely, specificity assessed how well a 

model might recognize instances of negativity. 

Furthermore, the general performance of the model was 

fairly evaluated by the harmonic mean of recall and 

precision, or F1-score. We were driven to enhance and 

optimize the performance of our models for different 

applications by our thorough knowledge of their benefits 

and drawbacks, which we attained by combining these 

metrics. Equations (10, 11, 12 and 13) are applied as 

follows (Bharathi, 2024): 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(10) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(11) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒

=
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(13) 

 

4. Discussion 
The CapsNet model’s outcomes using the conventional 

squash function are shown in Table 3 for a variety of 

classes in the BM dataset. It reports the precision, recall, 

specificity, and F1-score of the model, which 

demonstrates its correct classification of various cell 

types. The model is robust in identifying positive and 

negative instances, demonstrated by the high precision 

and recall it shows across most classes. 

It is shown in Table 4 and Figure 6 that combining the 

suggested CapsNet architecture with an “enhanced 

squash” function works well. More precisely, the 

improved squash function outperforms CapsNet versions 

using standard squash functions from previous studies 

with an excellent classification accuracy of 98.52% on the 

BM dataset. This remarkable development highlights 

how important the improved squash function is to the 

model’s capacity to identify and classify intricate patterns 

in the dataset. To optimize the performance of CapsNet, 

we have also methodically included several improved 

squash functions into our model architecture and 

carefully included enhancements recommended by 

previous studies. Through conducting extensive testing 

and comparison of the BM dataset, we evaluated the 

efficacy of each of these variations. Our results clearly 

demonstrate the superiority of our model over 

alternative approaches, confirming its ability to identify 

the most efficient squash function for capsule networks. 

 

 

Table 3. Performance metrics of the CapsNet model using standard squash 

Class Name Precision (%) Recall (%) Specificity (%) F1-score (%) 

Abnormal eosinophil (ABE) 100 100 100 100 

Artefact (ART) 100 100 100 100 

Basophil (BAS) 100 100 100 100 

Blast (BLA) 99.92 100 100 99.96 

Erythroblast (EBO) 99.89 99.96 99.98 99.93 

Eosinophil (EOS) 100 99.5 100 99.75 

Faggott cell (FGC) 100 100 100 100 

Hairy cell (HAC) 100 100 100 100 

Smudge cell (KSC) 100 100 100 100 

Immature lymphocyte (LYI) 100 100 100 100 

Lymphocyte (LYT) 99.17 99.59 99.88 99.38 

Metamyelocyte (MMZ) 95.03 89.8 99.89 92.34 

Monocyte (MON) 89.01 89.1 99.74 89.06 

Myelocyte (MYB) 92.57 93.37 99.71 92.97 

Band neutrophil (NGB) 91.74 85 99.63 88.24 

Segmented neutrophil (NGS) 94.19 97.47 99.03 95.8 

Not identifiable (NIF) 91.86 86.9 99.82 89.31 

Other cell (OTH) 97.35 99.1 99.94 98.22 

Proerythroblast (PEB) 95.35 92.3 99.89 93.8 

Plasma cell (PLM) 93.28 86.75 99.76 89.9 

Promyelocyte (PMO) 91.83 97 99.49 94.35 
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Table 4. Comparison of our proposed with the previous optimized squash functions for the CapsNet on the BM dataset 

References Year Equations Accuracy % 
Number of 

epochs 

(Sabour et al., 
2017) 

2017 𝑆𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) =
||sj||2

1 + ||sj||2
𝑠𝑗

||sj||
 96.99 100 

(Xi et al., 2017) 2017 
𝐹(𝑥) = (1 −

1

exp⁡(||𝑥||
)

𝑥

||𝑥||
 

 
91 100 

(Afriyie et al., 
2022a) 

2022 
𝑆𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) =

||sj||2

1 + ||sj||2
𝑠𝑗

2||sj||2
 

 

94.05 100 

Proposed 
(Enhanced 
squash) 

2024 
𝑆𝑞𝑢𝑎𝑠ℎ(𝑠𝑗) =

α⁡||
sj

5
||2

1+α⁡||
sj

5
||2
⁡

𝑠𝑗−µ

||sj||√ơ2+𝜀
⁡,α = 0.5 

98.52 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Accuracy comparison of standard vs enhanced squash functions on BM dataset. 

 

A comprehensive comparison between the baseline 

CapsNet, which employs conventional squash functions, 

and our enhanced model is shown in Table 5. Multiple 

datasets are utilized for the comparison, such as MNIST, 

Fashion-MNIST, and CIFAR-10. The results show that, on 

various image classification tasks, the improved squash 

function significantly enhances CapsNet’s performance. 

On the MNIST dataset, our proposed model achieved 

99.83% accuracy compared to the baseline CapsNet 

accuracy of 99.23%. This shows that the improved 

squash function successfully optimized CapsNet’s 

performance by a significant 0.5% percent on this 

commonly used dataset for handwritten digit 

classification. With a 94.66% accuracy on the Fashion-

MNIST dataset, our improved model outperformed the 

foundational CapsNet’s 92.49% accuracy. The significant 

accuracy increase (2.17%) observed is strong evidence 

that the squash function enhancement improves 

CapsNet’s performance on tasks involving fashion item 

categorization. Moreover, the performance of our 

suggested model was much enhanced when it was 

applied on the CIFAR-10 dataset, which is a very difficult 

classification problem because of its large number of 

real-life images. At 73%, the CapsNet model we improved 

outperformed the baseline CapsNet’s accuracy (67.81% 

by 5.19%). The substantial accuracy increase shows the 

robustness and adaptability of the improved squash 

function, which allowed CapsNet to classify complicated 

images correctly in various datasets. The results 

demonstrate the flexibility and promise of the enhanced 

squash function to support CapsNet’s performance in a 

range of image categorization tasks. We show that our 

model is flexible and capable of handling different data 

types and challenges by routinely outperforming the 

original CapsNet on a variety of datasets. The results 

show how our improved CapsNet architecture can be 

useful in practical situations requiring precise and 

efficient image categorization. 

 

Table 5. Comparison baseline CapsNet and enhanced our model on different datasets 

Dataset Standard Squash (%) Enhanced Squash (%) 

MNIST (Sabour et al., 2017) 99.23 99.83 

Fashion MNIST (Afriyie et al., 2022b) 92.49 94.66 

Cifar10 (El Alaoui and Gadi, 2021) 67.81 73 
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Figure 7, Figure 8 and Figure 9 show how the enhanced 

squash function on the training data improved over 100 

epochs. This shows how the model learns and how its 

accuracy improves. 

Figure 10 shows a confusion matrix of the model’s 

performance for Bone Marrow, Fashion MNIST, and 

CIFAR-10 dataset. The actual and predicted classes of a 

classification model are shown in a confusion matrix. 

Each row of the matrix represents actual class instances, 

while each column represents predicted class instances. 

The matrix cells show the number of true and false 

positives. Analyzing the confusion matrix allows us to 

evaluate the model’s accuracy and detect 

misclassification patterns across classes in each dataset 

as shown Table 6. 

4.1. Comparison of Our Models with State-of-The-Art 

Methods on Same Dataset 

Table 7 briefly compares different methods on the BM 

dataset the studies on this BM dataset are limited 

because is new and huge unbalanced data, but in our 

proposed models these issues have been solved, showing 

the performance metrics achieved by different 

approaches. It shows that our proposed methods 

outperform existing state-of-the-art methods in terms of 

accuracy. These results highlight the effectiveness and 

superiority of our proposed methods for biomedical 

image classification tasks on the BM dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Accuracy comparison of standard vs enhanced squash functions on different datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Accuracy curve comparison: standard vs enhanced squash functions on BM dataset 

 

 

 

 

 

 

 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Amina FARIS ABDULLA AL RAHHAWI and Nesrin AYDIN ATASOY 1061 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Accuracy comparison: standard vs enhanced squash functions on a different dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Confusion matrix analysis across four types of datasets 
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Table 6. Performance Comparison of Various CapsNet Architectures on MNIST, Fashion MNIST, CIFAR-10, and BM 

Datasets. 
 

Methods MNIST (%) Fashion MNIST (%) Cifar10(%) BM (%) 

ShallowNet (Mensah et al., 2021) - 92.70 75.75 - 

CapsNet (Sabour et al., 2017)  90.72 62.91 - 

64 Capsule Layers (Xi et al., 2017) 68.93 - 64.67 - 

Multi-lane (Chang and Liu, 2020) 99.73 92.63 76.79 - 

MS-CapsNet (Xiang et al., 2018)  92.70 75.70 - 

ResCapsNet (Goswami, 2019)  - 78.54 - 

CFC-CapsNet (Shiri and Baniasadi, 2021) - 92.86 73.15 - 

Fast Inference (Zhao et al., 2019b) 99.43 91.52 70.33 - 

Max–min (Zhao et al., 2019a) 99.55 92.07 75.92 - 

MLSCN (Chang and Liu, 2020) 99.73 - 76.79 - 

MLCN (do Rosario et al., 2021) - 92.63 75.18 - 

Quick-CapsNet (QCN) (Shiri et al., 2020) 99.28 88.84 67.18 - 

(Afriyie et al., 2022a) - 92.80 75.42 - 

Proposed Model 

Enhanced Squash CapsNet 
99.83 94.66 73 98.52 

 

Table 7. Performance comparison of our proposed method with the existing state-of-the-art on the same BM dataset 

Reference Year Method Performance Metric Result Rate 

(Ananthakrishnan 

et al., 2022) 
2022 

CNN + SVM 

, CNN + XGB. 
Accuracy 32%,28% 

Siamese neural Accuracy 91% 

(Fazeli et al., 2022) 2022 

Supervised method (ResNeXt-

50) 

(Avg) F1-Score 

Precision 

Recall 

62 % 

68.24% 

72.92% 

Self-supervised 

method (SW AV) 

 

(Avg) F1-Score 

Precision 

Recall 

73% 

78% 

70% 

Supervised Contrastive 

(Avg) F1-Score 

Precision 

Recall 

69 % 

75% 

66% 

Our proposed 

Methods 
2024 

Baseline CapsNet Accuracy 96.99 % 

Enhanced Squash CapsNet 
Accuracy 

 
98.52 % 

  

 

4. Conclusion 
Our research demonstrates that a CapsNet architecture 

with a novel function designated “enhanced squash” is 

highly efficacious. This yielded superior outcomes 

compared to preceding CapsNet methodologies on the 

selected BM dataset. This evidence substantiates the 

pivotal role of the Enhanced Squash function in enabling 

the model to effectively learn and classify intricate 

patterns within the data. The enhanced squash function 

is also effective in other datasets. The enhanced squash 

function facilitated superior performance of the model on 

datasets such as MNIST, CIFAR-10 and Fashion-MNIST, 

demonstrating its versatility in handling diverse image 

types. The enhanced squash function handles complex 

data well. It improves the accuracy of CapsNet models in 

real-world applications. Implementing our enhanced 

squash function improved the accuracy of bone marrow 

cell classification. Our experiments have shown that the 

Enhanced squash feature improves accuracy on various 

datasets, including MNIST, CIFAR-10 and Fashion-MNIST. 

The model achieved 99.83% accuracy on the MNIST 

dataset, 73% on the CIFAR-10 dataset, and 94.66% on 

the Fashion MNIST dataset. 

In the future, we can look at the math behind the 

enhanced margin loss function in more detail. This will 

help us understand how it affects the model and 

improves classification accuracy. We can also compare 

CapsNet with other image classification architectures to 

see how the enhanced squash function affects its 

performance and whether it can be used for other image 

classification tasks. 
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