INTERNATIONAL
ELECTRONC JOURNAL OF
ALGEBRA

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA
VOLUME 23 (2018) 115-130
DOI: 10.24330/ieja.373650

ON THE IDEAL-BASED ZERO-DIVISOR GRAPHS

H. Ansari-Toroghy, F. Farshadifar and F. Mahboobi-Abkenar

Received: 13 March 2017; Accepted: 02 August 2017
Communicated by A. Cigdem Ozcan

ABSTRACT. Let R be a commutative ring. In this paper, we study the annihi-
lator ideal-based zero-divisor graph by replacing the ideal I of R with the ideal
Anng (M) for an R-module M. Also, we investigate a certain subgraph of the

annihilator ideal-based zero-divisor graph and obtain some related results.

Mathematics Subject Classification (2010): 13A99, 05C99, 13C99

Keywords: Zero-divisor, coreduced, complemented

1. Introduction

Throughout this paper, R will denote a commutative ring with identity. Also,
N and Z will denote the ring of positive integers and the ring of integers respec-
tively. Furthermore, for an R-module M, the symbol R will be used to denote
R/Anng(M).

A graph G is defined as the pair (V(G), E(G)), where V(G) is the set of vertices
of G and E(G) is the set of edges of G. For two distinct vertices a and b of V(G),
the notation a—b means that a and b are adjacent. A graph G is said to be complete
if @ — b for all distinct a,b € V(G), and G is said to be empty if E(G) = 0. Note
by this definition that a graph may be empty even if V(G) # (. An empty graph
could also be described as totally disconnected. If |[V(G)| > 2, a path from a to
b is a series of adjacent vertices a — vy — v9 — ... — v, — b. The length of a path
is the number of edges it contains. A cycle is a path that begins and ends at the
same vertex in which no edge is repeated, and all vertices other than the starting
and ending vertex are distinct. If a graph G has a cycle, the girth of G (notated
9(@)) is defined as the length of the shortest cycle of G; otherwise, g(G) = oo. A
graph G is connected if for every pair of distinct vertices a,b € V(G), there exists
a path from a to b. If there is a path from a to b with a,b € V(G), then the
distance from a to b is the length of the shortest path from a to b and is denoted
d(a,b). If there is not a path between a and b, d(a,b) = co. The diameter of G is
diam(G) = sup{d(a,b)|a,b € V(G)}.

The idea of a zero-divisor graph of a commutative ring was introduced by I.

Beck in 1988 [13]. He assumes that all elements of the ring are vertices of the
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graph and was mainly interested in colorings and then this investigation of coloring
of a commutative ring was continued by Anderson and Naseer in [2]. Anderson
and Livingston [3], studied the zero-divisor graph whose vertices are the nonzero
zero-divisors.

Let Z(R) be the set of zero-divisors of R. The zero-divisor graph of R denoted by
I'(R), is a graph with vertices Z*(R) = Z(R)\ {0} and for distinct z,y € Z*(R) the
vertices x and y are adjacent if and only if xy = 0. This graph turns out to exhibit
properties of the set of the zero-divisors of a commutative ring with best way. The
zero-divisor graph helps us to study the algebraic properties of rings using graph
theoretical tools. We can translate some algebraic properties of a ring to graph
theory language and then the geometric properties of graphs help us explore some
interesting results in algebraic structures of rings. The zero-divisor graph of a
commutative ring has also been studied by several other authors (e.g., [4,5,14]).

In [22], Redmond introduced the definition of the zero-divisor graph with respect
to an ideal. Let I be an ideal of R. The zero-divisor graph of R with respect to I,
denoted by I';(R), is the graph whose vertices are the set

{r e R\I|zyelforsomeyecR\I}

with distinct vertices x and y are adjacent if and only if xy € I. The zero-divisor
graph with respect to an ideal has been studied extensively by several authors (e.g.,
[1,6,16,17,19,21]).

In this paper, we study the annihilator ideal-based zero-divisor graph by replac-
ing the ideal I of R with the ideal Anng(M) for an R-module M. Moreover, we

investigate a certain subgraph of I';(R) and obtain some related results.

2. On the annihilator ideal-based zero-divisor graphs over

comultiplication modules
Let M be an R-module. The subset Zr(M) of R is defined by
{r € R|30 # m € M such that rm = 0}

and set Zp(M) = Zr(M) \ Anng(M).
An R-module M is said to be a multiplication module if for every submodule NV
of M there exists an ideal I of R such that N = IM.

Lemma 2.1. Let M be an R-module. Then Zgr(R) C Zr(M). Moreover, the
reverse inequality holds when M 1is a multiplication R-module.

Proof. Clearly, Zr(R) C Zr(M). Now let M be a multiplication R-module and
r € Zr(M). Then there exists 0 # m € M such that rm = 0 and Rm = IM for
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some ideal I of R. As m # 0, there exists 0 # a € I such that aM # 0. Therefore,

raM = 0 implies that r € Zr(R). O

The following example shows that the condition “M is a multiplication R-

module” in the last statement of Lemma 2.1 can not be omitted.

Example 2.2. Let p be a prime number and M be the Z-module Z,~. Then
Zz(M) = pZ, but Zz(Z/Annz(M)) = {0}.

Proposition 2.3. Let r be a vertex of I' gppn ,(ar)(R) such that Anng(rM) = P be
a prime ideal of R. Then r is adjacent to each vertex s such that Anng(sM) € P.
In particular, v is adjacent to each vertex s of I apn,(ar)(R) such that v # s and

s2=0.

Proof. Let s be a vertex of I' gy, (ar)(R) such that Anng(sM) ¢ P. Then
there exists ¢t € Anngr(sM)\ P. Thus tsM = 0 implies that ts € Anng(M) C
Anng(rM) = P. Ast ¢ P, we have s € P = Anng(rM). Hence r — s, as needed.
For the last assertion assume that Anng(sM) C P = Anng(rM) for some vertex
s of T apnp(ary(R) such that s> = 0. Then Anng(s) € Anng(sM) implies that
rMAnng(s) € rMAnng(sM) = 0. But as s> = 0, s € Anng(s). Therefore,
rsM =0 and r — s. g

Proposition 2.4. Let M be a multiplication R-module. Then for each r € Zj;(M)
there exists a non-zero ideal I of R such that I € Anng(M), I C Zr(M) andr—a
for each a € I\ Anng(M).

Proof. First note that Zj(M) is equal to the set of vertices of I" 4y, (ar)(R) by
Lemma 2.1. Let r € Z5(M). Then there exists 0 # m € M such that rm = 0.
As M is a multiplication R-module, there exists a non-zero ideal I of R such that
Rm = IM and so I Z Annr(M). As rM # 0, there exists m; € M such that
rmy # 0. Now 0 = r(Rm) = rIM implies that I C Zr(M), and r — a for each
a €I\ Anng(M). O

Let M be an R-module. The subset Wr(M) of R is defined by {r € RjrM # M}
[23] and set Wi(M) = Wr(M) \ Anng(M).

M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective)
endomorphism f of M is an isomorphism.

A submodule N of M is said to be idempotent if N = (N :x M)?M. Also, M is
said to be fully idempotent if every submodule of M is idempotent [11].

Theorem 2.5. Let M be a fully idempotent R-module such that I oy, (R) is

complete. Then M is a simple module.
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Proof. Let N be a proper submodule of M. Then N = (N :g M)M = (N :g
M)2M. Clearly, (N :gp M) C Wr(M/N) C Wg(M). By [11, 2.7], M is co-Hopfian.
Thus Wr(M) C Zr(M). So by Lemma 2.1, Zr(R) = Zr(M) because M is a
multiplication R-module by [11, 2.7]. Therefore, Wr(M) C Zr(R). Hence (N :r
M) C Zg(R). If (N :g M) = Anng(M), then N = 0. Otherwise, as I' 4, , (1) (R)
is complete, rsM = 0 for each r,s € (N :g M) — Anng(M). Therefore, (N :g

M)?M = 0. This implies that N = (N :g M)?M = 0, as needed. O

Corollary 2.6. Let M be a fully idempotent R-module. Then T sy, (R) is
complete if and only if M is a simple R-module.

An R-module M is said to be a comultiplication module if for every submodule
N of M there exists an ideal I of R such that N = (0 :p7 I) [7].

Lemma 2.7. Let M be an R-module. Then Zp(R) C Wr(M). Moreover, the

reverse inequality holds when M 1is a comultiplication R-module.

Proof. Let r € Zr(R). Then there exist 0 # s + Anng(M) € R such that
r(s+Anng(M)) = 0. Hence rsM = 0. Now if rM = M, then 0 = srM = sM # 0,
a contradiction. Therefore, rM # M. Thus Zr(R) C Wr(M). Now let M be a
comultiplication R-module and r € Wr(M). Then rM # M and rM = (0 :pr I)
for some ideal I of R. Hence IrM = 0. If IM =0, then M C (0:p; I) =M, a
contradiction. Thus there exists a € I\ Anng(M). Therefore, raM = 0 implies

that r € Zg(R) as required. O

The following example shows that the converse of the Lemma 2.7 is not true in

general.

Example 2.8. Let M be the Z-module Z. Then Wyz(M) = Z \ {1,—1}. But

Proposition 2.9. Let M be a comultiplication R-module. Then for each r €
Wi (M) there exists a non-zero ideal I of R such that I € Anng(M), I C Wgr(M)
and r — a for each a € I\ Anng(M).

Proof. First note that W (M) is equal to the set of vertices of I' 4y, ,(ar) (R) by
Lemma 2.7. Let r € Wj;(M). Then rM # M. As M is a comultiplication R-
module, there exists a non-zero ideal I of R such that rM = (0 :p; I). Thus
rIM = 0 and IM # 0. If IM = M, then rM = 0, a contradiction. Hence
I CWr(M), IZ Annr(M) and r — a for each a € I \ Annr(M). O

A submodule N of an R-module M is said to be coidempotent if N = (0 :p
Anng(N)?). Also, an R-module M is said to be fully coidempotent if every sub-
module of M is coidempotent [11].
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Theorem 2.10. Let M be a fully coidempotent R-module such that T gy, . ar) (R)

is complete. Then M is a simple module.

Proof. Let N be a non-zero submodule of M. Then N = (0 :py Anng(N)) =
(0 :pr Anng(N)?). Clearly, Anng(N) C Zgr(N) C Zr(M). By [11, 3.9], M is
Hopfian. Thus Zg(M) C Wgr(M). So by Lemma 2.7, Zr(R) = Wr(M) because

M is a comultiplication R-module by [11, 3.5]. Therefore, Zr(M) C Zr(R). Hence
Anng(N) C Zgr(R). If Anng(N) = Anng(M), then N = M. Otherwise, as
I Anngp(ar)(R) is complete, rs M = 0 for each 7, s € Anng(N)\Anng(M). Therefore,

Anng(N)?M = 0. This implies that M C (0 :py Anng(N)?) = N, as needed. [0

Corollary 2.11. Let M be a fully coidempotent R-module. Then T gp,, ,ar)(R) is
complete if and only if M is a simple R-module.

Recall that an R-module M is called a reduced module if rm = 0 implies that
rM N Rm =0, where r € R and m € M. It is clear that M is a reduced module if
r2m = 0 for r € R, m € M implies that rm = 0.

Let M be an R-module. A proper submodule N of M is said to be completely
irreducible if N = (,¢;
that N = N; for some 7 € I. It is easy to see that every submodule of M is an

N;, where {N; }icr is a family of submodules of M, implies

intersection of completely irreducible submodules of M [18]. Thus the intersection
of all completely irreducible submodules of M is zero.
An R-module M is said to be semisecond if rM = r>M for each r € R [9)].

Definition 2.12. We say that an R-module M is coreduced if (L :pp 7) = M
implies that L 4+ (0 :py 7) = M, where r € R and L is a completely irreducible
submodule of M.

Theorem 2.13. Let M be an R-module. Then the following are equivalent.

(a) r2M C L implies that rM C L, where v € R and L is a completely irre-
ducible submodule of M.

(b) 72M C N implies that rM C N, where r € R and N is a submodule of M.

(¢) M is coreduced.

(d) M is semisecond.

Proof. (a) = (b) Let 7 € R and N be a submodule of M such that r2M C N.
There exist completely irreducible submodules L; (i € I) of M such that N =
NierLi. Thus 72M C N = NjerL; C L;. This implies that rM C L; for each i € I
by part (a). Therefore, rM C N;erL; = N, as required.

(b) = (a) This is clear.
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(¢) = (a) Let r € R and L be a completely irreducible submodule of M such that
72M C L. Then ((L :ps ) :ar 7) = M. One can see that (L :p 7) is a completely
irreducible submodule of M. Hence by part (¢), (L :as 7) + (0 :pr ¥) = M. Thus
(L:pyr)=M and sorM C L.

(d) = (¢) Let » € R and L be a completely irreducible submodule of M such
that M C L. Suppose that € M. By part (d), rM = r>M. Therefore, rz = %y
for some y € M. So that x —ry € (0:pr 7). Thusz =z —ry+ry € (0:p ) +1M.
Hence M = (0:pr7)+rM C(0:pyr)+ L C M.

(a) < (d) This follows from [9, 4.4]. O

A submodule N of an R-module M is said to be copure if (N :py I) = N+(0:p7 1)
for every ideal I of R [8]. Also an R-module M is said to be fully copure if every
submodule of M is copure [11].

Lemma 2.14. (a) Let R be a von Neumann regular ring. Then every R-
module s coreduced.
(b) Every fully copure R-module is a coreduced module. In particular, every

fully coidempotent R-module is a coreduced module.

Proof. (a) This follows from the fact that every finitely generated ideal is generated
by an idempotent.

(b) This is clear. Note that every fully coidempotent R-module is a fully copure
R-module [11, 3.13]. O

Proposition 2.15. Let M be a coreduced R-module. Then we have the following.

(a) Anng(M) is a radical ideal, and hence R is a reduced ring.

(b) Every homomorphic image of M is a coreduced R-module.

Proof. (a) Suppose that r € Anng(M) for some n > 1. Then "M = 0 implies
that "M C L for each completely irreducible submodule L of M. Thus rM C L for
each completely irreducible submodule L of M by Theorem 2.13. Therefore rM C
NierL; = 0, where {L;};cr is a collection of all completely irreducible submodules
of M.

(b) This is clear. O

The following examples show that the classes of reduced modules and coreduced

modules are different.

Example 2.16. Fvery divisible module over an integral domain R is coreduced. In
particular, for each prime number p the Z-module Zpe is a coreduced Z-module.
But since p*(1/p*+7Z) = 0 and p(1/p* +Z) # 0, the Z-module Z,= is not a reduced

Z-module.
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Example 2.17. The Z-module Z is reduced. But since 2°Z C 47 and 27 ¢ 4AZ,
the Z-module Z is not coreduced by Theorem 2.13.

A vertex a of a graph G is called a complement of b, if b is adjacent to a and no
vertex is adjacent to both a and b; that is, the edge a—b is not an edge of any triangle
in G. In this case, we write a L b. If every vertex of G has a complement, then G is
called complemented, and it is called uniquely complemented if it is complemented
and any two complements of vertex set are adjacent to the same vertices. As in
Anderson et al. [4], for vertices a,b of G, we have a < b if a,b are not adjacent and
each vertex of G adjacent to b is also adjacent to a. If a < b and b < a we write
a ~b. Thus a ~ b if and only if a,b are adjacent to exactly the same vertices and
a,b are not adjacent. Clearly, ~ is an equivalent relation on G. So G is uniquely

complemented if G is complemented and whenever a 1. b and a L ¢, then b ~ c.

Proposition 2.18. Let M be a coreduced R-module. Then T any . (ar)(R) is uniquely

complemented if and only if T gnp ,(ar)(R) is complemented.
Proof. Use the technique of [19, 2.7]. O

Theorem 2.19. Let M be a fully coidempotent finitely generated R-module. Then

T Anng ) (R) is a complemented graph.

Proof. Suppose that « is a vertex of I' 4, (ar) (R). Since T gy (ar)(R) is a con-
nected graph, there is a vertex f such that M = 0. Put N := aM. Since M is

a fully coidempotent module, we have
N = (N :pr Anng(N)) = 0= (0 :p/n Anng(N)) = Anng(N)M/N = M/N.

Hence as M/N is a finitely generated R-module, (N :g M) + Anng(N) = R by
[20, Theorem 76]. Thus 1 = r 4 s for some r € (N :g M), s € Annr(N). We shall
now assume that sM = 0 and derive a contradiction. Since M = rM + sM, then
M=rM C (N :g M)M C N =aM. This is the required contradiction. However,
since saM = 0, s is a vertex of FA,mR(M)(R). Now we claim that s L «. Assume
that there exists a vertex ¢ such that csM = 0 and caM = 0. Since 1 = r + s, we
have ¢M C reM + scM. On the other hand, reM C (N :g M)cM C caM = 0.
Hence cM = 0, which is a contradiction. Thus s L o. Consequently, I" ap, . (ar) (R)

is complemented. (I

Corollary 2.20. Let M be a fully coidempotent finitely generated R-module. Then

L Anng () (R) is a uniquely complemented graph.

Proof. This follows from Lemma 2.14, Proposition 2.18, and Theorem 2.19. (]
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Let M be an R-module. A non-zero submodule S of M is said to be second if
for each a € R, the homomorphism S % S is either surjective or zero [24].

For a submodule N of M the the second radical (or second socle) of N is defined
as the sum of all second submodules of M contained in N and it is denoted by
sec(N) (or soc(N)). In case N does not contain any second submodule, the second
radical of N is defined to be (0) (see [10] and [15]).

Theorem 2.21. Let M be a finitely generated comultiplication R-module and N be
a submodule of M. Then sec(M) C N if and only if Anng(N) C \/Anng(M/N).

Proof. First suppose that sec(M) C N and Anng(N) € \/Anng(M/N). Then
there exists t € R such that tN =0 and ¢t ¢ \/W. Put X :={K <M:
t & \/Anng(M/K)}. Since N € ¥, ¥ # 0. Clearly, (%, C) is a partially ordered
set. Suppose that Q = {K,};cs be a chain of elements of ¥. Since M is finitely gen-
erated, Ujer Annr(M/K;) = Anng(M/ Uier K;). So t & /Anng(M/ Uicr K;).
Thus UzerK; is an upper bound for € in 3. So by Zorn’s Lemma, ¥ has a

maximal element, H say. We claim that Anng(M/H) is a prime ideal of R.
If Anngr(M/H) = R, then t € R = \/Anng(M/H), a contradiction. Now let
rs € Annp(M/H), r ¢ Anng(M/H), and s ¢ Anng(M/H). Then rM ¢ H
and sM ¢ H. Hence by maximality of H, t € \/Anng(M/(rM + H)) and
t € /Anng(M/(sM + H)). Thus there exist n,m € N such that t"M C sM + H
and t™M C rM + H. Therefore,

t" MM C s(t" M) +t"H Cs(rM +H)+ H CsrM + H =0+ H.

It follows that ¢ € \/Anng(M/H), which is a contradiction. Therefore, Anng(M/H)
is a prime ideal of R. Clearly, Anng(M/H) C Anng((0 :pr Anng(M/H)). Let
r € Annr((0 :pr Anngp(M/H)). Then r(0 :pr Anng(M/H)) = 0. Thus (0 :p
Anng(M/H)) C (0 :pr 7). It follows that rM C Annp(M/H)M C H. Hence
r € Anng(M/H). Therefore, (0 :py Anng(M/H)) is a second submodule of M
by [7, 3.13]. So by assumption, (0 :py Anng(M/H)) C N. Thus Annr(N) C
Anng((0:pr Annp(M/H))) = Anng(M/H) C \/Anng(M/H), a contradiction.
Conversely, suppose that Anng(N) C /Anng(M/N) and S be a second sub-
module of M. It is enough to show that S C N. So suppose that S ¢ N.
Then as M is a comultiplication R-module, Anng(N) € Anng(S). Thus there
exists a € Anng(N)\ Anng(S). Therefore, a € \/Anng(M/N) and aS # 0.
As S is second, aS = S. There exists n € N such that a™M C N. Therefore,
S=a"S Ca"M C N, a contradiction. O
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Proposition 2.22. Let M be an R-module. Then M is a coreduced R-module if
sec(M) = M. The converse holds when M is a finitely generated comultiplication
R-module.

Proof. First assume that sec(M) = M and r € R. If S is a second submod-
ule of M, then rS = 0 or »rS = S. Thus r2S = 0 or r2S = S. This implies
that rsec(M) = r?sec(M). Thus by assumption, M = r2?M. Therefore, M is
a coreduced R-module by Theorem 2.13. Conversely, let M be a comultiplication
coreduced R-module. If sec(M) # M. Then there exists a proper completely
irreducible submodule L of M such that sec(M) C L. Thus by Theorem 2.21,
Anng(L) C \/Anng(M/L). Since M is a comultiplication R-module and L is
proper, there exits t € Anng(L)\ Anng(M). Therefore, t" M C L for some n € N.
This implies that t"*'M = 0. But as M is coreduced, tM = t>M by Theorem 2.13.
Therefore, tM = 0, which is a contradiction. O

Theorem 2.23. Let M be a finitely generated comultiplication R-module and
sec(M) € N # M. If T gnnyn)(R) is complemented, then there exists a &
Anng(N) such that a'M =0, a* "M # 0 anda*~! L a',t=2,3 and 1 <i <t—2.

Proof. Since sec(M) C N # M and by [12, 2.12], sec(M) = (0 :ps \/W),
VAnng(M) # Anng(M). Therefore, there exists x € \/Anng(M) \ Anng(M).
This implies that 0 # = + Anng(M) € Nil(R) and there exists h € N such that
"M = 0. Thus as R is a multiplication R-module, there exists a € (RZ :r R) such
that aR =0, a’ "R # 0 and a'~! L a’,t=2,3and 1 <i<t—2by[19,3.3]. It
follows that Ra+Anng(M) C Rz. So it follows that Ra" 4+ Anng(M) C Rx". Thus
a" € Anng(N). Therefore, a" € Anng(N) such that (a")!M = 0, (a")!='M # 0
and (a")!! L (a"),t=2,3and 1 <i<t—2. O

Lemma 2.24. Let M be a coreduced comultiplication R-module and I be an ideal
of R. If I C P, where P is a minimal prime ideal of Anng(M), Then I C Wgr(M).

Proof. By Lemma 2.15, R is a reduced R-module. Hence since R is a multiplication
R-module, I C Zr(R) by [6, 2.3]. As M is a comultiplication R-module, Wr(M) =

Zr(R) by Lemma 2.7. Thus I C Wgr(M). O

Theorem 2.25. Let M be a finitely generated comultiplication R-module. Then

we have the following.

(a) If R is a ring with |R| > 4 and T gppnnan(R) is a complete graph, then
either (0 :ar Zr(R)) =0 or (0:as Zr(R)) = sec(M).
(b) If sec(M) # M and there are o, B € V(I apnp(ar)(R)) such that Ra+RB €

Wgr(M), then diam(T gnp, ) (R)) = 3.
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Proof. (a) Since R is a multiplication R-module, R = Zr(R)R or Nil(R) =
Zr(R)R by [19, 3.2]. Thus Zg(R) + Anng(M) = R or Zr(R) + Anng(M) =
VAnng(M). Therefore, (0 :pr Zr(R)) = 0or (0:x Zr(R)) = (0 :as \/Anng(M)).
Now the result follows from [12, 2.12].

(b) Since sec(M) C N # M and by [12, 2.12], sec(M) = (0 :pr \/Anng(M)),
VAnng(M) # Anng(M). Therefore, there exists a € \/Anng(M) \ Anng(M).

This implies that 0 # o + Anng(M) € Nil(R). Thus Nil(R) # 0. By Lemma

2.7, Wr(M) = Zr(R). Thus diam(T 4,,,,,(r)(R)) = 3 by [6, 2.8]. It follows that
diam(FAnnR(M) (R)) =3. O

3. A certain subgraph of I';(R)

Definition 3.1. Let I be an ideal of R. We define the graph I';(Anng(I)) of R
whose vertices are the set {x € Anng(I)\I : zy € I for somey € Anng(I)\ I} with
distinct vertices x and y are adjacent if and only if xy € I. Clearly, when I = (0)
we have I't(Anng (1)) =T'(R).

Remark 3.2. (a) If Anng(I) C I, then V(I'1(Anng(I))) = 0. In particular
if Anng(I) =0, V(I'r(Anng(I))) = 0. For example, for each ideal I of the
ring Z, we have V(T ;(Annz(1))) = 0.
(b) If R is an integral domain or I is a prime ideal of R, then V(I';(Anng(I))) =
0.
(c) It is clear that for each ideal I of R, T'i(Anng(I)) is a subgraph of I'r(R).
But as we see in the Example 3.6 the converse is not true in general.

(d) If R is a comultiplication ring, then

FA"L?’LR(I) (AnnR(AnnR(I))) = FAHTLR(I) (R)

Example 3.3. In the following cases, for the graphs T(R/I) and T';(Anng(I)), we
have |V(I(R/I))| = |V(T1(Anng(D)))].
(a) R:ZQXZQXZQ andI:()XOxZg.
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(k) R:ZGXZ3 andI:OxZ3.

Example 3.4. Let R =7 and I = 8Z. Then V(L;(Anng(I))) =0, V(I'(R/I)) =
{2,4,6}, and the vertez 4 is adjacent to both vertezes 2 and 6 in graph T(R/I). This
implies that T'(R/I) is not isomorphic to a subgraph of T'1(Anng(I)) in general.

Example 3.5. Let p be a prime number and R = Zay,. Then the non-zero proper
ideals of R are 2Zay, 2pLay, 424y, and pLa,. Since 2Zsy, and pla, are prime
ideals of R, sy, (Annz,,(2Z4p)) = 0 and Uyz,,(Annz,, (pZ4p)) = 0. Also, it is
straightforward to see that 'y, (Anng,, (4Z4p)) = 0 and Iy, (Anng,, (2pZ4p)) =
0.

Example 3.6. Let R = Zo4 and I = 12Z54. Then in the following figures we can
see the deference between the graphs T'r(Anng(I)), T(R/I), and T'1(R).

FIGURE 1. T';(Anng(I)).
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\\{/

FIGURE 2. T';(R).
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FiGure 3. T'(R/I).

10

N

IN]

6

[N}

ool
w)

T

A vertex x of a connected graph G is a cut-point of G if there are vertices u, w

9

of G such that z is in every path from u to w (and = # u,  # w). Equivalently,
for a connected graph G, x is a cut-point of G if G\ {z} is not connected [22].

Remark 3.7. In [22, 3.2], it is shown that if I is a nonzero proper ideal if R, then
T';(R) has no cut-points. But this fact is not true for the subgraph T'r(Anng(I)) of
I'7(R). For example, one can see that the vertex 12 is a cut-point of I' gy (Annz,, ({8))).

Theorem 3.8. Let I be an ideal of R. Then Tj(Anng(I)) is connected with
diam(T1(Anng(I))) < 3. Furthermore, if T'1(Anng(I)) contains a cycle, then
gr(T'1(Anng(I))) < 7.

Proof. Use the technique of [22, 2.4]. O

Let I be an ideal of R. Set Z(R/I) = {x+1 € R/I :30 # 2+1 € R/I with zI =
0 and zz € I}.

Theorem 3.9. Let I C J be proper ideals of R. If R/I = Z(R/I) UU(R/I), then
V(T s(Anng(J))) C V(I (Anng(1))).

Proof. Let z € V(I'yAnng(J))). Then zy € J for some y € Anng(J) \ J. If
2+ 1 € Z(R/I), then there is 0 # z+ I € R/I such that zI = 0 and zz € I. Hence
x € V(I'1(Anng(I))). Otherwise, x +1 € U(R/I) and so (x + I)(w+ 1) =141
for some w+ I € R/I. Thus zw = 1 + i for some i € I, and hence

y=ly=(zw—i)ye J+1CJ,
a contradiction. Thus V(T j(Anng(J))) C V(I';(Anng(I))). O

Theorem 3.10. Let I be non-zero ideal of R and a € V(I'1(Anng(I))), adjacent
to every vertex of V(L (Anng(I))). Then (I :g a)NAnng(I) is a mazimal element
of the set {(I :g ) N Anng(I) : x € Anng(I)\ I}. Moreover, (I :g a) is a prime
ideal of R.
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Proof. One can see that V(T'j(Anng(I))) U (Anng(I)NI) = (I :gr a) N Anng(I).
Now choose z € Anng(I)\I. Let y € (I :g ) N Anng(I). If y € I, then y € I C
(I :r a) and we are done. If y & I, then yx € I implies that y € V(I';(Anng(1))).
Thus ya € I by assumption. Therefore, y € (I :g a) as needed. Now prove that
(I :g a) is a prime ideal of R. Since a € I, (I :gr a) # R. Let zy € (I :g a) and
x & (I :g a) for some z,y € R. Then za ¢ I and since al = 0, za € Anng(I).
Thus (I :gr za) C (I :p a) by assumption. Hence y € (I :g a) and the proof is
completed. (I

Theorem 3.11. Let I be an ideal of R and consider S = T\ I. If SN Anng(I)

is a non-empty set, then (SN Anngr(I)) is connected.

Proof. Let z,y € SN Anng(I). If 2y € I, then we are done. Suppose that zy & I,
where z”,y™ € I and "~ ',9™ ! & I. Hence, the path x — 2" ' —zy —y™ ! —y
is a path of length four from x to y. (|

Theorem 3.12. Let I be a non-zero ideal of R. Then we have the following.
(a) If Py and P are prime ideals of Anng(I) and IN Anng(I) = Py N Py, then
T (Anng(I)) is a complete bipartite graph.
(b) IfT1(Anng(I)) is a complete bipartite graph, then there exist ideals Py and
Py, of R such that I N Anng(I) = P, N Py. Moreover, if I = /I, then P

and Py are prime ideals of Anng(I).
Proof. Use the technique of [21, 3.1]. O
Let S(I)={z € R:zy € I for some y € R\ I} [25].

Proposition 3.13. Let I be an ideal of R. Then we have the following.
(a) V(I'1(Anng(D))) = S(I)N(Anng(I)\I). In particular, V(I';(Anng(I)))U
(Annp(I)N1I) = S(I) N Anng(I).
(b) If /TN Anng(I) = INAnng(I), then S(INAnng(I) C Upenin(rnanng (1) P

Proof. (a) This is straightforward.

(b) Let « € S(I) N Anng(I). Then I = 0 and there exists y € R\ I such that
xy € 1. Set z=ay+y. Then xz € I N Anng(I) and z € I N Anng(I). Therefore,
x € S(INAnng(I)). Thus S(I) N Anng(I) € S(I N Anngr(I)). Now the result
follows from [17, 2.1]. O

Theorem 3.14. Let I be an ideal of R. Then we have the following.
(a) If IN Anng(I) =0, then T1(Anng(I)) is a subgraph of T'(R).
(b) If I N Anng(I) = 0, then T';(Anng(I)) is isomorphic to a subgraph of
D(R/I).
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(¢) If R/I be a reduced ring and Tj(Anng(I)) is a complete graph, then
Tr(Anng(I))) is a subgraph of T'(R).

Proof. (a) Clearly V(I';(Anng(I))) C Z*(R) = V(I';(Anng(I))). Now let z,y €
V(T1(Anng(I))) and z is adjacent to y. Then zy € I. Thus zy € INAnng(I) =0,
as needed.

(b) Consider the map ¢ : V(I';(Anng(I))) — V(I'(R/I)) defined by ¢(x) = x+1.
It is easy to see that ¢ is graph homomorphism. Now let x + I = y + I. for some
z,y € V(I'1(Anng(I)))). Then x —y € I and so x —y € I N Anngr(I) = 0. Thus
x = x. Therefore, ¢ is monic.

(c) Clearly, V(I';(Anng(I))) € V(I'(R)). Now let z and y be two adjacent
elements of V(I';(Anng(I))). Then zy € I. Since x + zy € Anng(I), x + zy & I,
and (z4zy)y € I, we have x+xy is a vertex of I';(Anng(I))). Now as T';(Anng (1))
is a complete graph, (x + 2y)x € I or x + 2y = x. If (x + zy)z € I, then 2 € I.
Since R/I is reduced, x € I, a contradiction. Therefore, z + 2y = z and so xy =0

as requested. O
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