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Abstract

The aim of this study is to examine the relations between Tzitzeica curves and Smarandache curves in
Euclidean space. In addition, the necessary and sufficient conditions for Smarandache curves to be Tzitzeica
curves in 3-dimensional Euclidean space are investigated and examples are given.
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1. INTRODUCTION

Smarandache curves were first described by Turgut and Yilmaz in 2008 [1]. The authors named as the
Smarandache curve in Minkowski space, whose position vector is formed by the Frenet frame vectors of
the other regular curve. They defined special cases of these curves and expressed the TB, curve. In [2], the
author studied some special Smarandache curves in Euclidean space. In [3,4,5], the authors studied
Smarandache curves according to the Darboux frame in 3-dimensional Euclidean space and Minkowski
space. In [6], the author studied Smarandache curves in 4-dimensional Euclidean space. The author obtained
Frenet-Serret and Bishop invariants for Smarandache curves and calculated the first, second and third
curvatures of the Smarandache curve. In [7], the authors calculated the curvature and torsion of the
Smarandache curve when the Frenet vectors of the Anti-Salkowski curve were taken as position vectors. In
[8], the author studied Smarandache curves obtained from a curve with by a parallel transport frame in 4-
dimensional Euclidean space. In [9], the authors examined families of hypersurfaces with Smarandache
curves in 4-dimensional Galilean space. In [10], the authors re-characterized the Smarandache curves with
by an alternative frame which is different from the Frenet frame. In [11], the authors defined new conjugate
curves by integrating the Smarandache curves and examined the relations between the main curve and the
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Frenet vectors of the resulting curve. In [12], the authors studied Smarandache Ruled surfaces. In [13], the
authors examined some special Smarandache curves according to the Flc-frame in 3-dimensional Euclidean
space.

Romanian Mathematician Gheorghe Tzitzeica defined a class of curves that he called Tzitzeica curves in
1911 [14]. In [15], the authors examined the relations between Tzitzeica curves and surfaces in Minkowski
space. In [16], the author showed that elliptic and hyperbolic cylindrical curves in Euclidean space satisfy
the Tzitzeica condition. In [17,18], the authors examined hyperbolic and elliptic cylindrical curves in
Minkowski space, respectively. In [19], the author gave the necessary and sufficient condition for a space
curve to become a Tzitzeica curve. In [20], the authors studied Tzitzeica curves in 3-dimensional Euclidean
space. In [21], the authors examined Tzitzeica surfaces in 3-dimensional Euclidean space. In additionally,
the planar Tzitzeica curve definition was defined for the first time. In [22,23], the authors studied Tzitzeica
curves in 4-dimensional Euclidean space. In [24], the authors studied osculating and rectifiying curve in 4-
dimensional Galilean space.

2. BASIC NOTATIONS

For a regular curve a: I € R — E3, if the k; curvature k;(s) and the k, curvature k,(s) of o are
constant functions, then a is called a screw curve or helix curve [26]. Since these curves are traces of one-
parameter groups of Euclidean transformations, they were named W-curves by F. Klein and S. Lie [27].

If the :l—g ratio of a curve in E3 is a non-zero constant, this curve is called a general Helix [28]. For a
2

regular space curve a:1 € R — [E3, the planes at each point of a(s) spanned by {T, N,},{T, N,}, {N;, N,}
are know as the osculating plane, rectifying plane and normal plane, respectively. If the position vector o
lies on its rectifying plane or osculating plane or normal plane then, a(s) is called rectifying curve,
osculating curve and normal curve, respectively [29,30].

Let a: I € R — E3 be a unit speed curve in three-dimensional Euclidean space. Let us denote T(s) =
a’'(s) and call T(s) a unit tangent vector of @ at s. We denote the curvature of @ by k,(s) = |la" (s)|I.
If k1 (s) # 0, then the unit principal normal vector N, (s) of the curve a at s is given by T'(s) =
k1(s)N,(s). The unit vector N,(s) = T(s) x N;(s) is called the unit binormal vector of « at s.
Then we have the Frenet-Serret formulae
T'(s) = ky(s)Ny(s)
N{(s) = —k1(s)T(s) + k,(s)N,(s) (1)
N;(s) = —k,(s)N;(s)
where k,(s) is the torsion of the curve a at s [25]

Let a:1 € R — E3 be a unit speed curve, with a curvature k;(s) > 0 and k,(s) # 0 . If the torsion of
a(s) satisfies the condition

ka(
dzzj -3 @)
for some real non-zero constant a then a(s) is called the Tzitzeica curve (Tz-curve), where
dosc = (a(s)'NZ(s)> (3)

is the orthogonal distance from the origin to the osculating plane of a(s) . Here, N,(s) is the binormal
vector field of a [14].
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Let a:1 € R — [E? be a unit speed planar curve (k;(s) > 0). In this case, if the curvature of a(s)
satisfies the condition

kl(s) = 4. dgsc 4)
for some real non-zero constant a; then a(s) is called the planar Tzitzeica curve (planar Tz-curve) where
dosc = (a(s)'Nl(s)> (5)

and N;(s) is the unit normal vector field of a [21].
If the position vector of a regular curve in Minkowski space consists of by the Frenet frame vectors on
another regular curve, this curve is called a Smarandache curve [1].

Let a:1 € R — E3 be a unit speed regular curve and {T'(s), N; (s), N,(s)} be its Frenet frame. Then we
have Smarandache curves of a(s) by with
1) TN;- Smarandache curve are defined by

Brw, (sp) = 55 (T(8) + Ny (s)) (6)
2) TN,- Smarandache curve are defined by

Brw, (sp) = 75 (T(s) + No(s)) (7)
3) N;N,- Smarandache curve are defined by

By, (55) = 75 (N1 (s) + No(s)) (8)
4) TN{N,- Smarandache curve are defined by

Briyn, (58) = 75 (T(5) + Ny (s) + No(s)) ©)

[2]. Here s is the arc-length parameter of the curve.

3.TZITZEICA SMARANDACHE CURVES IN E3

3.1 TN+- Smarandache Curve

Let a:1 € R — E* be a unit speed regular curve in E3. Let 7y, Smarandache curve in E*given with the
parametrization (6). If we denote the arc-length parameter of the Sy, curve with sz and take the
derivative of the Bry, curve, we obtain

P dﬁnvl dsﬁ 1
B, (sp) = =+ 20 = 5 (k)T (S)+ha (N1 () + ka (5)No(5)). (10)
SB S
. . . dﬁTNl _
For the norm of this expression is — = 1, we get
g

dsg /2k§+k§ 0 .

e 7Y (D
In this case, from the expression (10), the tangent vector field of the fry, curve becomes

_ dﬁTNl 1

= (_k1T+k1N1 + kzNz). (12)

ﬁ]N] d 2 2
Sﬁ Zk] +k2

Again, by taking derivative of (12) and using (11), we obtain

r_ dﬁTNl . dsﬁ _ V2
(Tﬁnvl) = <—dsﬁ ) d_s = W(AT + BN; + CNZ) (13)
where

A(s) = —kf(2k3 + k3)—k,(kik, — kik3)

B(s) = —k2(2k? + 3k2)+ky(k,k, — kyky—k3)
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C(s) = ki k,(2k? + k3) — 2k, (kik, — k k).
The curvature of the By, curve is

= AT BTyCe (14)

kigry, = ||TBTN1 T (2k2+k2)?
The principal normal vector field of the By, curve is

!
_ TBTNl _

1
Niprw, = kg~ VarbErcE
By using (13) and (14). The binormal vector field of the By, curve is
Nagrn, = Topw, X Nipry, = 5= [(Chy = Bk,)T + (Chy + Akp)Ny + (=Bly — Ak1)N,]. (16)

By using (12) and (15), where
D(s) = ’Zkf + k2
E(s) = VA?2+B%+4C?.
By taking derivative of (16) and using (11), we obtain

[—(D'E + DE'")(Cky — Bky) + DE(C'ky + Ck!, — B'k, — Bk, — Ck? — Ak, k)T
(Nagpy,)' = V2 +[—(D'E + DE")(Cky + Aky) + DE(Ck? + C'ley + Cl} + A'ky + Akl + Ak k)N, ¢ (17)

(AT + BN, + CN,). (15)

D3E?

+[(D'E + DE")(kyA + kyB) + DE(Ckyk, + AkZ — Akl — Bk} — A'ky — B'k,)]N,

By using (15) and (17), we obtain
vz [ ki (C'(A+B) — C(A" + B")) + k,(—AB’ + A'B) (18)
D?E? | +k2C(—A + B) + k3AC + k k,(—A? + AB + C?)|
Theorem 1: Let By, curve be the Smarandache curve of the unit speed curve a(s), where kq, k; # 0 are
non-constant curvatures. If Sy, Smarandache curve is a Tz-curve then, the equation must be

k.[C'(A+ B) —C(A" + B")]

kaprn, -2v2 +ko(—AB" + A'B)
. 4C2k3+aCkik,(A-B)+k3(A-B)% | +kZC(B — A) + k3AC
+kik,(—A? + AB + C?)

kZﬁTN1 == (NZIﬁTNl’NlﬁTN1> =

=a (19)

where a is nonzero constant [31].
Proof. By using (6) and (16), we get

dose = Briys Napry,) = Tz (2Cky + ko (A = B)). (20)
Then, using equations (18) and (20), the expression (19) is obtained.
Corollary 2: Let Bry, curve be the Smarandache curve of the unit speed curve a(s), where k4, k, # 0 are
non-constant curvatures. If k; = ck, (¢ # 0 constant), fry, Smarandache curve becomes a planar curve.
Theorem 3: Let fry, curve be the Smarandache curve of the unit speed curve a(s), where kq, k, # 0 are
non-constant curvatures. If k; = ck, (¢ # 0 constant), fry, Smarandache curve becomes a planar
Tz-curve [31].
Proof: By using (6) and (15), we obtain

A+B
dosc = Brnys Niprw,) = Fimesprecr 21)
Using the expressions (4), (14) and (21), we get
3
kKipryn, 2v2 (Zk% + k%)z(k% + k%) z (22)

e (m)g l+2(k1k2 — ki k) kiky — kiky — k,(2k2 + k3)]| -
If k; = ck, is used in (22), we obtain

3
kip 241\2
™1 — 22 (chzﬁ) = constant.

2
dOSC
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Therefore, By, Smarandache curve is a planar Tz-curve.

Theorem 4: Let fry, curve be the Smarandache curve of the unit speed curve a(s). If a(s) is W-curve
(Le ky, k, # 0 constant) then, Bry, Smarandache curve is a planar Tz-curve [31].

Proof: k,, k, # 0 (constant), from equation (17), we obtain (N, anl)’ = (. Then from equation (18), we
get k, Bra, = 0. This means that the By, Smarandache curve is a planar curve. Then substituting k4, k, #
0 (constant) into (22), we obtain

3
Sty _ 2ﬁ(k%+k%3)2 + 0 (constant)
d(ZJSC ’

(2k2+K2)2

Therefore, By, Smarandache curve is a planar Tz-curve.

3.2 TN,- Smarandache Curve

Let a:1 € R — E* be a unit speed regular curve in E3. Let Sry, be a Smarandache curve in E* given with
the parametrization (7). If we denote the arc-length parameter of the Sry, curve with sz and take the
derivative of the Bry, curve, we obtain

’ dg ds 1
P (sp) = =% 5, = 75 (k1) ~ k()M () (23)
d
For the norm of this expression is % =1, we get
g

d 2
“sp_ J(ki—k2)? _ |ki—ky|
L=t =t (4)

In this case, from the expression (23), the tangent vector field of the fry, curve becomes

— dBTNZ — (kl_k2)N1 — { Nl' kl > kZ (25)
BTNZ dSB |k1_k2| _Nll k1 < kz
Again, by taking derivative of (25) and using (24), we obtain
I __ dBTNZ I, dsﬁ _ —\/Ekl \/Ekz
(Torw, ) = ( ds ) & T k) | Gk (26)

The curvature of the By, curve is

V2 /k§+k§ @7

leTNZ = | | TéTNZ

kg k2|
The principal normal vector field of the Bry, curve is
TkaTtlaN
. ™ 2
TllgTNZ k%+k% 28
1BTN2 - klﬁTNZ - le—kzNZ k < k : ( )
» 2

/k§+k§

By using (26) and (27). The binormal vector field of the By, curve is
1
NZBTNZ = TBTNZX NlBTNZ = (k2T+k1N2). (29)

/k§+k§
By using (25) and (28). By taking derivative of (29) and using (24), we obtain

Nallakemkike) \_p TokoN), kg > ky

(k1=k2)(ki+k3)?
Vallake—kike) g T4 kLN), Ky < Ky
(k1=k2)(ki+k3)?

(Nappy,)' = (30)
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By using (28) and (30), we obtain
_ / _ —V2(kikz—k1k})
kZBTNZ - (NZﬁTNZ'NlﬁTN2> - (kl—kz)(kf-:kgz)' €1y

Theorem 5: Let By, curve be the Smarandache curve of the unit speed curve a(s), where kq, k; # 0 are
non-constant curvatures. If 7y, Smarandache curve is a Tz-curve then, the equation must be
K2Brn, _ —2v2(kiky—kik})

7= om0 (constant) [31]. (32)

Proof: By using (7) and (29), we get
kq+k;

dosc = (Brny Napry,) = \/E\/ﬁ
Then, using equations (31) and (33), the expression (32) is obtained.

(33)

Corollary 6: Let Sry, curve be the Smarandache curve of the unit speed curve a(s), where k4, k, # 0 are
non-constant curvatures. k; = ck, (¢ # 0 constant) if and only if Bry, Smarandache curve becomes a
planar curve.
Theorem 7: Let fry, curve be the Smarandache curve of the unit speed curve a(s), where kq, k, # 0 are
non-constant curvatures. If k; = ck, (¢ # 0 constant), fry, Smarandache curve becomes a planar
Tz-curve [31].
Proof: By using (7) and (28), we obtain
—(k1—k>) k> ky
V2 (i +3)

dosc = (ﬁTNZ'NlﬁTNz> - (k1—k2)_, ki< kz' G4
V2 |(kf+k3)

Using the expressions (4), (27) and (34), we get

3
2v2(k3+k3)?
klﬁTNZ \/(—16(1—1]:_2)23) ) kl > kz
—r= s : (35)
1 2
EPRTRERC L
If k; = ck, is used in (35), we obtain
3
Kipry,  _ 2v2(c?+1)2 _
2.t - constant.

Therefore, Bry, Smarandache curve is a planar Tz-curve.

Theorem 8: Let Sry, curve be the Smarandache curve of the unit speed curve a(s). If a(s) is W-curve
(Le kyq, k, # 0 constant) then, Bry, Smarandache curve is a planar Tz-curve [31].

Proof: k,, k, # 0 (constant), from equation (30), we obtain (N, BTNZ), = (. Then from equation (31), we
get k, Bra, = 0. This means that the By, Smarandache curve is a planar curve. Then substituting k4, k, #
0 (constant) into (35), we obtain

3
2V2(kf+k3)?
leTN (k1—k2)3 ’ kl > k2
dz—z = 3 # 0 (constant).
% 2V2(kf+k3)?

k, <k,

—(k1—kz)3 ’
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Therefore, fry, Smarandache curve is a planar Tz-curve.

3.3 N;N,- Smarandache Curve

Let a:1 € R — E* be a unit speed regular curve in E3. Let By, y, Smarandache curve in E* given with the
parametrization (8). If we denote the arc-length parameter of the By, v, curve with sz and take the
derivative of the By, y, curve, we obtain

, dﬁ dg
Biun, (55) = =t 28 = G (L OT@ - ON () + ke (V). (36)
d
For the norm of this expression is % =1, we get
5B
d /k2+2k2
BNt T2
PR * 0. (37)
In this case, from the expression (36), the tangent vector field of the By, y, curve becomes
d
= NaNe 1 (_k, T—k,N, + k,N,). (38)

Tg =
Nq1N
1z dsg K2+2K3

Again, by taking derivative of (38) and using (37), we obtain
i Cay g (—2k,A + k k,B)T
(T, = (%) L = 22| (kyA — (K} + KDB)N, (39)
i ’ +(—k,A — k2B)N,
where
A(s) = kik, — k.k;

B(s) = k? + 2k2.

The curvature of the By, y, curve is
V2

3
2

C (40)

klﬁNﬂVz - || TBN1N2

o]

where
C(s) = /242 + (k? + k3)B2 — 2k, AB.
The principal normal vector field of the By, y, curve is

Tl (_Zsz + klsz)T
BNiN, 1
NMigony = ey = T | F0A = (6 + DB, | (41)
Nz +(—k,A — k2B)N,
By using (39) and (40). The binormal vector field of the By, y, curve is
Nagnin, = Tonon,X Mgy, = 7 [(k2B)T = ANy + (=A + k1 BN, (42)
By using (38) and (41). By taking derivative of (42) and using (37), we obtain
. [—k,BC' + C(kyB + k,B'+k,A)]T
(Napy,n,) = ooz ] HAC + CkpAd = ADIN, : (43)
+[C'(A—kB) + C(—k,A— A" + k{B + k;B")]N,
By using (41) and (43), we obtain
! — -1 ! !
2NN, = (N23N1N2'N1BN1N2> = e [-3AB’ + 2B(A' — k,A)] (44)

Theorem 9: Let Sy, y, curve be the Smarandache curve of the unit speed curve a(s), where kq, k, # 0 are
non-constant curvatures. If Sy, y, Smarandache curve is a Tz-curve then, the equation must be
K2Bn,N, _ —V2[-3AB'+2B(A'—k,A)]
dZe (—24+k,B)?

# 0 (constant) [31]. (45)
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Proof: By using (8) and (42), we get

dose = (Bryns Nopy,n,) = Tz (—24 + k1 B). (46)
Then, using equations (44) and (46), the expression (45) is obtained.
Corollary 10: Let Sy, y, curve be the Smarandache curve of the unit speed curve a(s), where kq, k, # 0
are non-constant curvatures. If k; = ck, (c # 0 constant), By, y, Smarandache curve becomes a planar
curve.
Theorem 11: Let By, y, curve be the Smarandache curve of the unit speed curve a(s), where kq, k, # 0
are non-constant curvatures. If k; = ck, (¢ # 0 constant), By, y, Smarandache curve becomes a planar
Tz-curve [31].
Proof: By using (8) and (41), we obtain

—B\/E
dosc = (ﬁN1N2'N1BN1N2> = Nl (47)

Using the expressions (4), (40) and (47), we get
Kipn,n, _ 2v2C3

2
dOSC

5 (48)
B2

If k; = ck, is used in (48), we obtain

3

2

lﬁNlNZ 2\/_(C +1) = constant.

OSC

Therefore, By, v, Smarandache curve is a planar Tz-curve.

Theorem 12: Let By, y, curve be the Smarandache curve of the unit speed curve a(s). If a(s) is W-curve
(Le kyq, k, # 0 constant) then, By, y, Smarandache curve is a planar Tz-curve [31].

Proof: k,,k, # 0 (constant), from equation (43), we obtain (NZBN1 NZ)’ = (0. Then from equation (44),
we get k, BriN, = 0. This means that the By, y, Smarandache curve is a planar curve. Then substituting
kq, k, # 0 (constant) into (48), we obtain

b, Zﬁ(kﬁkzs) : + 0 (constant)

d3sc (k2+2K2)2
1+2k;

Therefore, By, v, Smarandache curve is a planar Tz-curve.

3.4TN;{N,- Smarandache Curve

Let a:1 € R — E* be a unit speed regular curve in E*. Let 7y, y, Smarandache curve in E* given with
the parametrization (9). If we denote the arc-length parameter of the Sry, y, curve with sz and take the
derivative of the Bry, y, curve, we obtain

d dg
B (59) =522 2 = 2 (R (SITE) + ()~ ka (DM (5) + Ka(INa(s). (49)
d
For the norm of this expression is LNy | 1, we get
sp
ds V2 /k2+k2—k1kZ
SE_ N 2 TR (50)
dg V3
In this case, from the expression (49), the tangent vector field of the fry, y, curve becomes
dp 1
Trnyn, = % = E(_IQT + (k1—kz)N; + kyN,) (5D

Again, by taking derivative of (51) and using (50), we obtain

, dl; ! dg
Tpryon,) = (%) L= 4(A)4 (BT + CN; + DN,) (52)
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where

A(s) = k2 + k2—k,k,

B(s) = (kik, — kqky)(ky—2ky) — 2k (k3 + k3 — k1k;) (ky — k3)
C(s) = (ky + k) (kiky — kiky) — 2(kf + k5 — kykp) (kT + k3)
D(s) = —(kik, — kiky)(2ky—ky) + 2k, (k3 + k3 — kqky) (ky — k).
The curvature of the By, y, curve is

BTy CT¥D? (53)

4(:‘1)4
The principal normal vector field of the By, y, curve is

leTNlNZ - || BTN,

_ Tl;TNlNZ _ 1
NlﬁnleZ - klﬁTNlNZ - m(BT + CN1 + DNZ), (54)

By using (52) and (53). The binormal vector field of the By, y, curve is

(Dk, — (D + C)k,)T
1
NZﬁTN N = TﬁTN N XNI;BTN N = +(Dk1 +Bk2)N1 (55)
v v 1 VEANBRRCRDY | (B 4 )k, + Bk,)N,
By using (51) and (54). By taking derivative of (55) and using (50), we obtain
[ EDk, — (D + C)Ek, ]T
+A(B? + C? + DV)[D(k, — k — k?) + D' (ky — ky) — Ckl, — C'ky — ky Ky B]
. V3 EDk, + EBk, ]
WNoprvn) = S vt | T [+A(32 +C2 4 DD(KE — kyky + k1) + B(—kZ + kyky + k}) + D'k + Bl (56)
N [ —E(B + C)k, + EBk, ]N
+A(B? 4+ C2 + D¥)[D(k k) + B(k3 — ki + ki) + B’ (=ky + ky) — Cki — C'ky ]l 2
where

E(s) =—-A'(B*+ C*+D?*) — A(BB'+ CC' + DD").
By using (54) and (56), we obtain
k,(D'(B+C)—D(B' + ")
-3 +k,(—B(C' +D") + B’ (C+D)) (57)
242(B2HC2+DH | L k2D (C — B) + k3B(D — C)
+k k,(—=B% + BC — DC + D?)
Theorem 13: Let Sry,y, curve be the Smarandache curve of the unit speed curve a(s), where ky, k, # 0
are non-constant curvatures. If By, v, Smarandache curve is a Tz-curve then, the equation must be

kZﬁTN1N2 == (NZIBTNiNz ’ NlﬁTN1N2 ) =

k,(D'(B+C)—D(B'+ ")
K2Brnyng _ -3V3 +k,(—B(C'+D") + B'(C + D))
d3sc (D@l —kx)=CUer+i)+B(2k2—k)” | +k2D(C — B) + k2B(D — C)
+k k,(=B%+ BC — DC + D?)

# 0 (constant) [31].  (58)

Proof: By using (9) and (55), we get
1
dOSC = (BTNlNZ’NzﬁTN1N2> = m(D(Zkl - kz) - C(k1 + kz) + B(Zkz - kl)) (59)
Then, using equations (57) and (59), the expression (58) is obtained.
Corollary 14: Let Sry, n, curve be the Smarandache curve of the unit speed curve o(s), where ky, k, # 0
are non-constant curvatures. If k; = ck, (¢ # 0 constant), Brn,n, Smarandache curve becomes a planar
curve.
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Theorem 15: Let Sy, v, curve be the Smarandache curve of the unit speed curve a(s), where kq, k, # 0
are non-constant curvatures. If k; = ck, (¢ # 0 constant), fry,y, Smarandache curve becomes a planar
Tz-curve [31].
Proof: By using (9) and (54), we obtain
1
dosc = (ﬁTNlNZ'NlﬁTN1N2> = m (B +C+ D) (60)
Using the expressions (4), (53) and (60), we get
3
Kipry,n, _ 3V3(B2+C%+D?)2
d%,  4A*(B+C+D)?
If k; = ck, is used in (61), we obtain

(61)

3
2

klﬁ 2
TN{N 3vV3 [ c?+1
—1lz = _( ) = constant.

d2,  2v2 \c2—c+1

Therefore, Bry, v, Smarandache curve is a planar Tz-curve.

Theorem 16: Let Bry, y, curve be the Smarandache curve of the unit speed curve a(s). If a(s) is W-curve
(ie ky, k, # 0 constant) then, Bry, v, Smarandache curve is a planar Tz-curve [31].

Proof: ki, k, # 0 (constant), from equation (56), we obtain (NZBTN1 NZ)’ = (. Then from equation (57),
we get k, Braon, = 0. This means that the fry, y, Smarandache curve is a planar curve. Then substituting
ky, k, # 0 (constant) into (61), we obtain

3
Kigrnn 3vV3(kZ+k3)?
2 = (ki +h3) s # 0 (constant).
dOSC

2vV2(k2+k3—k1k,)?

Therefore, fry, n, Smarandache curve is a planar Tz-curve.
Example 17: Let @, (s) be a unit speed helix curve (W-curve) given with the parametrization
S s\ S

a(s) = <cos <—),sin (—),—)

! V2 V2/°V2
(Fig. 1). Frenet vectors, curvature and torsion of a; curve can be given by
T, (s) = (_—lsin (i) —~ cos (i) i)

@1 V2 V2/'2 V2/°V2
Nig,(s) = (— cos (\/%) ,—sin (\/%) , 0)

1 . N -1 N 1

Moo, = (F5in () oo (3) )
Kiay () = 5 and kyq, (5) = 5

a) TN, -Smarandache curve of a;(s) curve
1 1 1 . N N 1 N . N 1
Brv, = 35 (Tey + Maa,) = 5 (= 7551 (5) = cos (5) 55005 (5) =sin (). 55)
(Fig. 2). Frenet vectors, curvature and torsion of By, curve using equations (11), (12), (14), (15), (16) and
(18), we obtain

Torn, (sg) = % (— cos (%sﬁ) +V2sin (%sﬁ) ,— Sin (% sﬁ) —+2cos (% sﬁ) , 0)
Nlﬁnv1 (sg) = % (sin (%sﬁ) ++/2 cos (%sﬁ) ,— COS (%sﬁ) + /2sin (%sﬁ) , 0)
NZﬁTNl (Sﬁ) = (0,0,1)

2
klﬁTNl (Sﬁ) = ﬁ and kZﬁTNl (Sﬁ) = 0.
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In this case, since k, BTN, (sg) = 0, the By, curve becomes a planar curve. By using (21), we get
\/—
osc (ﬁTNl (SB) NlBTN (SB)>
By using (22) we obtain

klﬁTNl
Fr 3\/_ # 0 (constant) .

Therefore, Bry, curve becomes a planar Tz-curve.
b) N;N, -Smarandache curve of a;(s) curve

1 N SV Loin(L) —sin(S) - L Sy L
Brane = 35 (Niay + N, ) = 35 (= cos () + Fsin (5), —sin (5) = 5 c0s (5). 5)
(Fig. 3). Frenet vectors, curvature and torsion of By, y, curve using equations (37), (38), (40), (41), (42) and
(44), we obtain

TﬁN1Nz (sg) = (\/_sm( ) + cos ( ) —2cos ( ) + sin (\/ngﬁ) , 0)

NleNz (sg) = ﬁ(\/icos (ﬁsﬁ) - sin( ) \/_sm( ) + cos (\/ngﬁ),O)
NZﬁN Ny (Sﬁ) = (0,0,1)

klﬁNlNz (sp) =5 and kZﬁN Ny (sp) = 0.
In this case, since k, BN.N, (sg) = 0, the By, y, curve becomes a planar curve. By using (47), we get
\/—
osc (ﬁNlNZ (SB) NlBNlNZ( B)>
By using equation (48)
klﬁNlNZ

= 0 (constant
=55 0( )-

Therefore, By, y, curve becomes a planar Tz-curve.

¢) TN,;N, -Smarandache curve of a,(s) curve
1 1 N . N
Brn,N, = E(T"‘l + Nig, + N2a1)) = ﬁ(_ cos (5) ,—Sin (ﬁ)'ﬁ)

(Fig. 4). Frenet vectors, curvature and torsion of curve Bry, y, using equations (50), (51), (53), (54), (55)
and (57), we obtain

TﬁTN1N2 (sﬁ) = (sin(\/§ sﬁ) , —cos(\/§ sﬁ) , 0)

NlﬁTN1N2 (sﬁ) = (— cos(\/§ sﬁ) ,— sin(\/§ sﬁ) , 0)

Naprn,n, (58) = (0,0,1)

k1w, (56) = V3 and ko, . (sp) = 0.

In this case, since k, BTN, (sg) =0, the ﬁTN |N, curve becomes a planar curve. By using (60), we get

OSC (BTNlNZ (SB) NlBTNlNZ (SB)>
By using (61), we obtain

K
w = 3v/3 # 0 (constant).

osc
Therefore, By, n, curve becomes a planar Tz-curve
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Fig. 1. a;(s) curve Fig. 2. Bry, curve of a; (s) curve

Fig. 3. By, n, curve of a;(s) curve Fig. 4. Bry,n, curve of a;(s) curve

Example 18: Let a,(s) be a unit speed cylindrical helix curve given with the parametrization
1
a,(s) = \/_E( 1+ s?,2s,In (s ++14 52))
(Fig. 5). Frenet vectors, curvature and torsion of &, curve can be given by
S

1 1
T = 5 (= 2 702)

1 —-S
Nia () = (72 0. 75)
1 —25 2
Moo () = 7 (7 1 7o)

1 2
klaz(s) = m and kZaz (S) = m .
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a) TN, -Smarandache curve of a,(s) curve
_ 1 _ 1 s+5 1—+/5s
Prv, = 35 (T, + Niy) = 755 (72 2 72 2)

(Fig. 6). Frenet vectors, curvature and torsion of By, curve using equations (11), (12), (14), (15), (16) and
(18), we obtain

YI}TNl(sﬁ)=%(cos(%sﬁ)—\/gsin( )0 \/_cos( ﬁ)—sin(%sﬁ))
NlﬁTNl(sﬁ)=%<—sin( ) \/_cos( sﬁ) 0, \/_sm(Tsﬁ) cos (%sﬁ)>

NZﬁTNl (Sﬁ) = (0,1,0)

\/_
klﬁTN (sp) = 5 and kZﬁTN (sp) = 0.
In this case, since k, BTN, (sg) = 0, the By, curve becomes a planar curve. By using (21), we get

\/—
osc (ﬁTNl (SB) NlBTN (SB)>
By using (22), we obtain
kiprn, _ 5V5

0 (constant
B a7 0L )

Therefore, Bry, curve becomes a planar Tz-curve.

b) TN, -Smarandache curve of a,(s) curve
3

1
B, = 5 (Tey + Nowy) = 5 (i 75 Jodins?)

(Fig. 7). Frenet vectors, curvature and torsion of By, curve using equations (24), (25), (27), (28), (29) and
(31), we obtain
Torw, (5p) = (—cos(V10sg), 0, sin(v/10s4))

Nigpy, (s6) = (sin(v10sg),0, cos(vV10sp))

Nagry, (sg) = (0,1,0)

k1pry, (sg) = V10 and kg, (sp) = 0.

In this case, since k, Brw, (sgp) =0, the ﬁTNZ curve becomes a planar curve. By using (34), we get
dosc = {Brn, (5p)s Nigry, (sp)) =

By using (35), we obtain
k
—PTN: — 1010 # 0 (constant).

d(ZJSC
Therefore, Bry, curve becomes a planar Tz-curve.

¢) N{N, -Smarandache curve of a,(s) curve
1 1 (V5-25s ., —-2—/5Gs
Bu,n, = E(Nmz + NZaZ) = ﬁ(m' 1, NPT )
(Fig. 8). Frenet vectors, curvature and torsion of By, y, curve using equations (37), (38), (40), (41), (42) and
(44), we obtain

Ton,w, (S8) = ( \/_sm(isﬁ) —2cos (?sﬁ),o,—ﬁcos(?sﬁ) +25in(?sﬁ))

Nigy. v, (Sg) = —( V5cos (Esﬁ) +2sin (Esﬁ) 0,V/5sin (Esﬁ) +2cos (Esﬁ))
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Napy,n, (sp) = (0,1,0)

V10
klﬁNlNz (Sﬁ) = T and kZﬁNlNz (Sﬁ) = 0.
In this case, since k, BN.N, (sgp) =0, the ﬂN1 N, curve becomes a planar curve. By using (47), we get
osc (ﬁNlNZ (SB) NlBNlNZ( B)>
By using equation (48)
k
lﬁIZVlNZ = 10\/_ # 0 (constant).
dOSC

Therefore, ﬁN |N, curve becomes a planar Tz-curve.
d) TN{N, -Smarandache curve of a,(s) curve

1 1 (+5-s -1—+/5s
Briane = 35 (Tey + Niay + Naoy) = 7= (7523 7o)

(Fig. 9). Frenet vectors, curvature and torsion of curve Bry, y, using equations (50), (51), (53), (54), (55)
and (57), we obtain

Ybrwlwz(sﬁ)=\/1—( cos( ) \/_sm( sﬁ) 0, \/_cos(%sﬁ)+sm(gsﬁ))

NlﬁTN1N2 (sg) = % <sin (%sﬁ) —+/5¢cos ( ) 0, \/_sm( ) + cos (g%))

NZﬁTNlNz (Sﬁ) = (0,1,0)

\/_
klﬁTNlNz (Sﬁ) + and kZﬁTN Ny (Sﬁ) =0.

In this case, since k, BrN, (sg) = 0, the By, y, curve becomes a planar curve. By using (60), we get

\/—
OSC (BTNlNZ (SB) NlBTNlNZ (SB)>

By using (61), we obtain
kipryn,n, 5v5

d(ZJSC 2\/—
Therefore, By, n, curve becomes a planar Tz-curve

# 0 (constant).

0.8

Fig. 5. a,(s) curve Fig. 6. By, curve of a,(s) curve
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Fig. 8. By, n, curve of a,(s) curve

0.8

Fig. 9. Bry, n, curve of a,(s) curve
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