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Abstract 

 

In this paper, a new fractional-order differential equation system is developed for colon 

cancer to address the detailed analysis. In the model, the interaction between tumor cells, 

macrophage cells, dendritic cells and CD4+ T helper cells is established using Michaelis-

Menten kinetics. In addition, mathematical analyses such as positivity and boundedness 

are also carried out. Numerical results are obtained to observe the intercellular course 

of colon cancer and biological interpretations are also included. 

 

Keywords: Fractional-order mathematical model, colon cancer, colorectal cancer, 

numerical simulation, Michaelis-Menten kinetics. 

 

 

Kolon kanseri ve bağışıklık sistemi ilişkisi: kesirli mertebeden bir 

modelleme yaklaşımı 
 

 

Öz  

 

Bu çalışmada, kolon kanseri için detaylı analize yönelik yeni bir kesirli mertebeden 

diferansiyel denklem sistemi geliştirilmiştir. Modelde tümör hücreleri, makrofaj 

hücreleri, dendritik hücreler ve CD4+ T yardımcı hücreleri arasındaki etkileşim, 

Michaelis-Menten kinetiği kullanılarak oluşturulmuştur. Ayrıca pozitiflik ve sınırlılık gibi 

matematiksel analizler de yapılmaktadır. Kolon kanserinin hücreler arası seyrini 
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gözlemlemeye yönelik sayısal sonuçlar elde edilmekte ve biyolojik yorumlara da yer 

verilmektedir. 
 

Anahtar kelimeler: Kesirli mertebeli matematiksel model, kolon kanseri, kolorektal 

kanser, sayısal simülasyon, Michaelis-Menten kinetiği.  

 

 

1. Introduction 
 

The number of comprehensive studies in the literature on colon cancer, which is one of 

the cancer types that cause the most deaths in the world, is very limited. Cancer is a 

disease that occurs as a result of uncontrolled and continuous proliferation of cells in a 

certain part of the body under the influence of various genetic and environmental factors. 

Colon cancer is a type of cancer that develops in the colon or rectum (large intestine), 

which is part of the digestive system. Colon cancer is also called colorectal cancer. This 

term combines colon cancer with rectal cancer, which begins in the rectum. Abnormal 

cell growth in this area often begins with the development of small, benign tumors called 

polyps. These polyps are usually not cancerous, but some can turn into colon cancer over 

time. Since polyps do not cause symptoms in the body, it is of great importance to have 

regular screening tests. Finding and removing polyps before they turn into cancer helps 

prevent cancer. 

 

The first 150 cm of the large intestine is called the colon and the last 15 cm is called the 

rectum [1]. The rectum is the last part connecting the large intestine to the anus. The colon 

and rectum are the longest part of the large intestine and are responsible for absorbing 

water from food in the final stages of the digestive process. The large intestine is a part 

of the digestive system and takes part in the final stage of digestion. Colon cancer 

symptoms include things like changes in bowel habits, abdominal pain, weight loss, 

constipation or diarrhea, bloody stools, and fatigue. Risk factors include age, family 

history, obesity, smoking, alcohol consumption, inadequate fiber intake, and 

inflammatory bowel disease. 

 

Early diagnosis is important as it can be treated early. Colon cancer is diagnosed by 

methods such as colonoscopy, sigmoidoscopy, fecal occult blood test and imaging tests. 

Treatment options include surgery, chemotherapy [59], radiotherapy and targeted 

therapies. Regular screening tests can help detect colon cancer in its early stages and 

increase the chances of cure. Although colon cancer can occur at any age, it usually affects 

older adults.  

 

In the formation of colon cancer; excessive fatty, red meat-based diet, obesity, smoking 

and alcohol consumption as well as polyps are effective. When polyps are detected in the 

large intestine during screening colonoscopies, it is possible to prevent the disease by 

removing them before they become cancerous. Having a history of breast and ovarian 

cancer in women also increases the risk of colon cancer in these people. It is 

recommended that people with breast and ovarian cancer be screened for colon cancer 

before they turn 50 [2]. 

 

The risk of developing the disease in people with a family history of colon cancer is 1.7 

times higher than in healthy people. The risk is 2.7 times higher in people with more than 
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two family history of colon cancer. Colon cancer is associated with genetic factors as well 

as poor nutrition and a sedentary lifestyle [1]. 

 

The large intestine consists of 3 parts; the right, left and lower columns are sections with 

different structures. For this reason, symptoms differ depending on the area where the 

tumor is located. Since the right colon is wider than the left colon, an obstruction in this 

area will cause symptoms for a longer time and the disease will progress more latently. 

Since the left colon is narrower, existing obstruction in the intestine shows symptoms 

earlier. Polyps in the colon, which do not cause any symptoms at first, become cancerous 

over time, increase in number and begin to grow in size. Thus, symptoms of colon cancer 

appear in the person [1]. 

 

The first symptoms of colon cancer are usually changes in defecation patterns and 

unexplained abdominal pain. In colon cancer, bleeding that occurs in the digestive system 

appears in the stool. Increasing blood loss over time also leads to a decrease in the number 

of red blood cells, that is, anemia. Changes in defecation patterns manifest themselves as 

diarrhea or constipation. In colon cancer, the passageway for intestinal movements, called 

the lumen, is narrowed due to the tumor. The growing tumor can spread to deeper layers. 

This effect of colon cancer causes changes in bowel defecation habits. The person begins 

to experience irregular bowel movements, such as constipation, diarrhea, or a feeling that 

the intestines are not emptying. Tumor formed in the colon may block the colon. Since 

this blockage in the colon restricts the space for the stool to pass, the stool comes out in 

a thinner, pencil-like shape compared to its normal form. 

 

Intestinal obstruction caused by a colon or rectal tumor blocking the passage of liquid or 

solid waste or gas causes abdominal pain, cramping and bloating. In addition, colon 

cancer affecting the right side of the intestine and colon cancer affecting the left side of 

the intestine may cause different symptoms. Since the left side of the intestine is a 

narrower region, complaints such as thinning of the stool, bleeding, and changes in stool 

pattern are more common in cancers of this region, while on the right side, since the 

intestine is wider, the cancer progresses insidiously there and takes longer to show 

symptoms [2]. 

 

T.R.  for colon cancer, which is among the top 10 cancer types in Türkiye and can cause 

significant death or disability. The Ministry of Health has initiated the National Colon 

and Rectum (Colorectal) Cancer Screening Program for people in the target group. In this 

program, it is stated that the ideal screening method for occult blood in the feces should 

be performed every 2 years and a colonoscopy should be performed every 10 years. 

Taking into account Türkiye's conditions, the target audience to be screened is all men 

and women between the ages of 50-70. For high-risk individuals, screening starts at the 

age of 40. High-risk individuals are individuals with a first-degree relative with a history 

of colorectal cancer or adenomatous polyps, ulcerative colitis, Crohn's Disease, or 

hereditary polyposis or non-polyposis syndrome [1]. 

 

Colon cancer diagnosis is made within the framework of a screening program or when 

the patient consults a physician with colon cancer symptoms. The physician first takes 

the patient's history and then performs a physical examination. 

 

After the diagnosis of colon cancer is clarified, staging is done. During the staging 

process, data obtained by radiological imaging methods such as tomography, magnetic 
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resonance imaging (MRI), chest radiography, positron emission tomography (PET), as 

well as pathological examination of tissue samples taken from the body are evaluated and 

the stage of the disease is determined [1]. 

 

Colon cancers are staged from 1 to 4. Treatment is applied according to the stage of the 

disease. 

 

Colon cancer stages are as follows: 

● Stage 1: Cancer has invaded (spread) the intestinal wall. However, it could not 

reach all intestinal layers. 

● Stage 2: Cancer has invaded all layers of the intestine. 

● Stage 3: Colon cancer has metastasized and spread to the regional lymph nodes. 

● Stage 4: Cancer has spread to distant tissues and organs such as the liver, 

peritoneum and lungs. 

 

For diagnosis, blood tests and fecal occult blood are examined. The collected stool is 

processed, and the presence of hemoglobin is investigated. If the first sample is positive, 

false positivity is investigated. For this purpose, examination is carried out in 3 

consecutive tests, with 2 samples taken in each test. Blood tests: In addition to blood tests 

for anemia and general condition evaluation, carcinoembryonic antigen (CEA), which is 

a cancer marker, is requested. Although CEA is not specific for colon cancer, its elevation 

gives a clue for colon cancer. CEA level is used in disease monitoring after treatment. 

 

Colonoscopy is an endoscopy instrument with light and helps to examine the inner surface 

of the large intestine in detail. Thanks to colonoscopy, which allows detecting existing 

lesions in the intestine and taking biopsies from the lesions, the tissue piece taken is 

examined in a laboratory environment. Depending on the pathological diagnosis, the 

person is diagnosed with colon cancer. 

 

In recent years, it is possible to detect colon cancer at an early stage by looking at the 

genetic codes that come with the feces from polyps suitable for cancer in the large 

intestines, called fecal DNA. 

 

Double contrast barium enema (enema): In this diagnostic method, the intestinal mucosa 

is coated with barium, air is injected into the colon through a catheter from the rectum, 

and many radiographs are taken under fluoroscopy. Patients should undergo bowel 

preparation before the examination. Sedation is usually not performed. Patients may feel 

cramp-like pain during the procedure, but they can return to work after the procedure. 

The examination can detect half of adenomas larger than 1 cm and 39 percent of all polyps 

[1]. 

 

Among imaging methods, ultrasonography has lower sensitivity. It may miss small-

diameter polyps, but it may raise the physician's suspicion by showing non-specific 

findings such as increased intestinal wall thickening. There have been many studies in the 

literature on mathematical modelling of colon cancer. Some of them are given below: 

 

Johnston et al. [3] modeled the dynamics of the cell population in colon crypt and 

colorectal cancer. The models they established as a result of their study revealed that 

increased cell renewal, which is equivalent to cell differentiation or cell death, can cause 

cancer to grow. Li et al. [4] pointed out that tumor heterogeneity is a major problem for 
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treatment and cancer research. Therefore, they built and analyzed a mathematical model, 

taking into account all possible mutation sequences in the APC and TP53 driver genes, 

which are important for colon cancer. Lo et al. [5] created a mathematical model of colitis-

associated colon cancer for the first time. They emphasized that this study they created 

could be an informative resource for the early stage of colon cancer. Delilata and Lorenzi 

[6] developed a model that explains cancer dynamics in a cellular way. Their results 

showed that stem cells play an important role in cancer treatment. 

 

Amilo et al. [7] wrote a fractional-order model to analyze metastatic colorectal cancer 

dynamics. In their studies, they covered basics such as immune response and tumor 

growth. As a result, the study helps in the treatment of colorectal cancer and the 

development of special drugs for colorectal cancer patients. Paterson et al. [8] analyzed a 

stochastic transformation model in the colon that quantifies the process of colorectal 

carcinogenesis through loss of tumor suppressors and gain of oncogenes in patients. In 

the study, they used experimentally measured mutation rates in the colon and the growth 

advantages provided by driver mutations. It has been shown that the sequence of causal 

events in colorectal cancer is determined primarily by the fitness effects they provide 

rather than by mutation rates. They concluded that significant immunosuppression may 

not occur in untreated lesions. Kirshtein et al. [9] developed a mathematical model of the 

interaction of colon cancer with the main components of the immune system. They 

grouped patients according to their immune patterns by estimating the relative abundance 

of each immune cell from the gene expression profiles of the tumors. They compared the 

tumor susceptibility and progression of patients in these groups, observing differences in 

tumor growth. 

 

Anaya et al. [10] have established a mathematical model that models the relationship 

between chemotherapy concentration in the tumor area and treatment in colorectal cancer 

patients. The resulting findings are planned to be helpful in potentially treatable patients 

with colorectal cancer. Hesse et al. [11] created a mathematical model, emphasizing that 

planning the use of anticancer drugs on patients for 24 hours can increase the success rate 

of patients' treatments. In the model, they discussed the personalization of treatment 

timing for colon cancer. They created three different scenarios using mouse liver and two 

human colorectal cancer cells for in-vitro experiments. As a result, they said that in the 

future, the model could be used to create the most appropriate drug timing for patients 

and support personalized drug therapy. Sameen et al. [12] created a model addressing 

KRAS mutation in colorectal cancer. They analyzed the behavior of KRAS mutations 

occurring after moAb treatments. They developed equations for two types of tumor cells: 

mutated KRAS and wild-type KRAS. Their results revealed that the combined treatment 

they recommended could only be an effective method for patients with high immunity. 

 

DePillis et al. [15] presented a new mathematical model for colorectal cancer progression 

and treatment of this cancer. The model includes patient-specific parameters to account 

for individual differences in immune system strength and anti-tumor drug efficacy. They 

also simulated experimental dosing schedules and found new schedules in their 

simulations to reduce tumor size more effectively than existing treatment schedules. De 

Mattei et al. [16] presented a mathematical model based on ordinary differential equations 

for the evolution of solid tumors and their response to treatment, using variables such as 

the number of cancer cells sensitive to chemotherapy, the number of cancer cells resistant 

to chemotherapy. Abernathy et al. [17] presented and analyzed a mathematical model of 

colorectal cancer treatment using a system of nonlinear ordinary differential equations. 
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Their model describes the effectiveness of immunotherapy and chemotherapy in the 

treatment of tumor cells and cancer stem cells (CSCs). 

 

Recently Raeisi et al. [18] have constructed a mathematical model investigating the 

interactions between colon cancer and immune system with a deep learning algorithm. In 

the literature, studies on mathematical modelling of breast cancer [19-23], lung cancer 

[24–27], prostate cancer [28–31], ovarian cancer [32–35], liver cancer [36–39] and other 

types of infectious disease and cancers [40–45, 57-67] have also been performed. 

 

 

2.  Preliminaries 

 

This section provides several definitions to be used in the next stages of the paper. 

 

Definition 1: [46] The Caputo fractional derivative of order 𝜆 of 𝜉(𝑡), 𝑡 > 0 is defined as  

 𝐷𝜆𝜉(𝑡) =
1

𝛤(𝑛−𝜆)
∫ (𝑡 − 𝜏)𝑛−𝜆−1𝜉𝑛(𝜏)𝑑𝜏

𝑡

0
, 

 

where 𝛤(⋅) is the Gamma function, 𝜆 ∈ (𝑛 − 1, 𝑛), 𝑛 ∈ 𝑍+. 

 

 

Definition 2: [46] The fractional integral operator of Riemann-Liouville type for a 

function 𝜉: (0, ∞) → 𝑅 of order 𝜆 > 0 is denoted as  

 

  0
𝑅𝐿𝐷𝑡

−𝜆𝜉(𝑡) =
1

𝛤(𝜆)
∫ (𝑡 − 𝜏)𝜆−1𝜉(𝜏)𝑑𝜏

𝑡

0
, 𝑡 > 0, (1) 

 or  

  0
𝑅𝐿𝐼𝑡

𝜆𝜉(𝑡) =
1

𝛤(𝜆)
∫ (𝑡 − 𝜏)𝜆−1𝜉(𝜏)𝑑𝜏 

𝑡

0
, 𝑡 > 0, (2) 

  

  0
𝑅𝐿𝐼𝑡

0𝜉(𝜏) = 𝜉(𝜏). 
 

 

Definition 3: [46] The fractional derivative of Riemann-Liouville type for a function 

𝜉: (0, ∞) → 𝑅 of order 𝜆 > 0 is denoted as  

 

 0
𝑅𝐿𝐷𝑡

𝜆𝜉(𝑡) = {

1

𝛤(𝑛−𝜆)
(

𝑑

𝑑𝑡
)

𝑛

∫
𝜉(𝜏)

(𝑡−𝜏)𝜆−𝑛+1 𝑑𝜏 
𝑡

0
,      0 ≤ 𝑛 − 1 < 𝜆 < 𝑛, 𝑛 = [𝜆],

 (
𝑑

𝑑𝑡
)

𝑛

𝜉(𝑡),      𝜆 = 𝑛 ∈ 𝑁.
   (3) 

 

 

 

3. Mathematical model of colon cancer 

 

In this section, we construct a new mathematical model for colon cancer. To construct a 

mathematical model of colon cancer that considers the interactions between tumor cells, 

macrophages, dendritic cells, and CD4+ T helper cells, we can use a system of differential 

equations. This type of model is commonly used in computational biology to describe the 

dynamic interactions between different cell populations over time. To incorporate 
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Michaelis-Menten kinetics [13] into the model, we adjust the interaction terms to include 

saturation effects. The Michaelis-Menten equation is often used to describe the rate of 

enzymatic reactions, but it can also be applied to describe the rate of cell-cell interactions 

where saturation occurs. We consider the following assumptions to extend the idea of 

modelling: 

 

● Tumor Cells 𝑇(𝑡) grow at a rate 𝑔𝑇. 

● Tumor cells are killed by macrophages and CD4+ T cells with Michaelis-Menten 

kinetics. 

 

By incorporating the above conditions, we can obtain the following differential equation 

for tumor cells: 

 

 
𝑑𝑇(𝑡)

𝑑𝑡
= 𝑔𝑇𝑇(1 −

𝑇

𝑆𝑇
) − 𝛽𝑇

𝑇𝑀

𝑆𝑀+𝑇
− 𝜔𝑇

𝑇𝐶

𝑆𝐶+𝑇
, (4) 

 

where 𝑆𝑇 is the carrying capacity of the environment for tumor cells. 

 

● Macrophages 𝑀(𝑡) are recruited to the tumor site at a rate proportional to the 

tumor cell population. 

● Macrophages can be activated to kill tumor cells with Michaelis-Menten 

kinetics. 

● Macrophages die at a natural death rate. 

Then we have the following differential equation for macrophage cells: 

 

                                         
𝑑𝑀(𝑡)

𝑑𝑡
= 𝑔𝑀

𝑇

𝑆𝑀+𝑇
− 𝛽𝑀𝑀.                    (5)   

 

● Dendritic cells 𝐺(𝑡) are recruited at a rate that may depend on both tumor cells 

and macrophages. 

● 𝑟𝐺 is the production rate of dendritic cells. 

● Dendritic cells present antigens to CD4+ T cells, activating them. 

● Dendritic cells die at a natural death rate. 

 

According to the assumptions above, we get the following equation for the dendritic cells:  

 
𝑑𝐺(𝑡)

𝑑𝑡
= 𝑟𝐺 + 𝑔𝐺

𝑇

𝑆𝐺+𝑇
− 𝛽𝐺𝐺.           (6) 

 

● CD4+ T cells can be produced at a constant rate of 𝑟𝐶.   

● CD4+ T cells 𝐶(𝑡) are activated by dendritic cells.  

● Activated CD4+ T cells help macrophages and directly attack tumor cells with 

Michaelis-Menten kinetics.  

● CD4+ T cells die at a natural death rate.  

Following the mentioned assumptions yields: 

 
𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶 + 𝑔𝐶𝐺 − 𝛽𝐶𝐶.                      (7) 

 

The resulting dynamics of the interactions between colon cancer cells and the immune 

system in Eqs. (4)-(7) can be described by the following system of differential equations:  
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𝑑𝑇(𝑡)

𝑑𝑡
= 𝑔𝑇𝑇 (1 −

𝑇

𝑆𝑇
) − 𝛽𝑇

𝑇𝑀

𝑆𝑀+𝑇
− 𝜔𝑇

𝑇𝐶

𝑆𝐶+𝑇
, 

 
𝑑𝑀(𝑡)

𝑑𝑡
= 𝑔𝑀

𝑇

𝑆𝑀+𝑇
− 𝛽𝑀𝑀,            (8) 

 
𝑑𝐺(𝑡)

𝑑𝑡
= 𝑟𝐺 + 𝑔𝐺

𝑇

𝑆𝐺+𝑇
− 𝛽𝐺𝐺, 

 
𝑑𝐶(𝑡)

𝑑𝑡
= 𝑟𝐶 + 𝑔𝐶𝐺 − 𝛽𝐶𝐶, 

 where   

● 𝑆𝑀 is the half-saturation constant for macrophages,  

● 𝑆𝐶 is the half-saturation constant for tumor cells,  

● 𝑆𝐺 is the half-saturation constant for dendritic cells.  

 

These constants represent the cell population at which the killing rate or recruitment rate 

is half its maximum value. In the system of Eq. (8), the killing terms for tumor cells by 

macrophages and CD4+T cells include saturation through the Michaelis-Menten 

functions. 

Moreover, the recruitment terms for macrophages and dendritic cells also incorporate 

saturation effects, reflecting a more realistic biological scenario where recruitment rates 

are not linear at higher tumor cell populations. This extended model provides a more 

accurate representation of the dynamics in a colon cancer environment, capturing the 

nonlinear interactions between tumor cells and the immune response.   

 

On the other hand, fractional-order differential equations can be used to model systems 

with memory effects, which can be more accurate for biological systems like cancer 

dynamics. The Caputo derivative [14] is often used for such models. Solving fractional-

order differential equations using the Caputo derivative requires a different approach than 

integer-order differential equations. One common method to handle Caputo derivatives 

is to use numerical techniques such as the Adams-Bashforth-Moulton method for 

fractional differential equations. In order to achieve this idea, we extend the model to the 

fractional-order differential equation system as: 

 

 
𝑑𝜆𝑇(𝑡)

𝑑𝑡𝜆 = 𝑔𝑇
𝜆𝑇 (1 −

𝑇

𝑆𝑇
) − 𝛽𝑇

𝜆 𝑇𝑀

𝑆𝑀+𝑇
− 𝜔𝑇

𝜆 𝑇𝐶

𝑆𝐶+𝑇
, 

 
𝑑𝜆𝑀(𝑡)

𝑑𝑡𝜆
= 𝑔𝑀

𝜆 𝑇

𝑆𝑀+𝑇
− 𝛽𝑀

𝜆 𝑀,                  (9) 

 
𝑑𝜆𝐺(𝑡)

𝑑𝑡𝜆
= 𝑟𝐺

𝜆 + 𝑔𝐺
𝜆 𝑇

𝑆𝐺+𝑇
− 𝛽𝐺

𝜆𝐺, 

 
𝑑𝜆𝐶(𝑡)

𝑑𝑡𝜆 = 𝑟𝐶
𝜆 + 𝑔𝐶

𝜆𝐺 − 𝛽𝐶
𝜆𝐶, 

 

where 𝜆 is the order of fractional differential equations. The term 𝑔𝑇
𝜆𝑇 (1 −

𝑇

𝑆𝑇
) represents 

the logistic growth of tumor cells with the memory effect, considering a carrying 𝑆𝑇 . The 

terms 𝛽
𝑇
𝜆 𝑇𝑀 and 𝜔𝑇

𝜆 𝑇𝐶 represent the killing of tumor cells by macrophages and CD4+ T 

cells with the memory effect, respectively. The term 𝑔𝑀
𝜆 𝑇 represents the recruitment of 

macrophages in response to the presence of tumor cells with the memory effect. The term 

𝑔𝐺
𝜆𝑇 represents the recruitment of dendritic cells in response to the presence of tumor 

cells with the memory effect. The term 𝑔𝐶
𝜆𝐺 represents the activation of CD4+ T cells by 

dendritic cells with the memory effect. 

 

The parameter explanations and their values are represented in Table 1. 
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Table 1. Parameters used for the HBV model and their values 

 
Par. Biological description Value Sources 

𝑔𝑇   Intrinsic growth rate of tumor cells   0.1   Estimated 

𝑆𝑇   Carrying capacity of the environment for tumor cells   1000  Estimated  

𝑆𝑀   Half-saturation constant for macrophages  50  Estimated  

𝑆𝐺   Half-saturation constant for dendritic cells  50   Estimated  

𝑆𝐶   Half-saturation constant for CD4+ T cells   50  Estimated  

𝑟𝐺   The production rate of Dendritic cells   0.3  [18]  

𝑟𝐶   The production rate of CD4+ T cells   0.7  [18]  

𝛽𝑇   Rate at which tumor cells are killed by macrophages   0.1   Estimated  

𝜔𝑇   Rate at which tumor cells are killed by CD4+ T cells   0.3   [48]  

𝑔𝑀   Recruitment rate of macrophages by tumor cells   0.2   Estimated  

𝛽𝑀   Natural death rate of macrophages   0.5   Estimated  

𝑔𝐺   Recruitment rate of dendritic cells by tumor cells   0.3   [48]  

𝛽𝐷   Natural death rate of dendritic cells   0.4   [48] 

𝑔𝐶   Activation rate of CD4+ T cells by dendritic cells   0.1   Estimated  

𝛽𝐶   Natural death rate of CD4+ T cells   0.7   Estimated 

𝑇(0)   Initial Tumor Cells   10   Estimated 

𝑀(0)   Initial Macrophage Cells   0   Estimated 

𝐺(0)   Initial Dendritic Cells   0   Estimated  

𝐶(0)   Initial CD4+ T Helper Cells   0   Estimated 

  

 

4. Mathematical investigations of the model  

 

4.1 Positivity and boundedness 

Since each class in system (9) denotes the cell population, we get to show all variables  

𝑇(𝑡), 𝑀(𝑡), 𝐺(𝑡), 𝐶(𝑡) are all positive for time 𝑡 ≥ 0. We prove this in the form of the 

following theorem. 

Before proceeding with the proof of the main theorem regarding the non-negativity of the 

obtained solutions, here we first need the following Lemma [47]: 

Lemma 1: Let function 𝜉(𝑡) ∈ 𝐶[𝑎, 𝑏] and Caputo fractional derivative  0
𝐶𝐷𝑡

𝜆𝜉(𝑡) ∈
𝐶(𝑎, 𝑏] for 0 < 𝜆 ≤ 1, then we have  

 

 𝜉(𝑡) = 𝜉(𝑥) +
1

𝛤(𝜆)
 0
𝐶𝐷𝑡

𝜆𝜉(𝜓)(𝑡 − 𝑥)𝜆, 

 

with 0 ≤ 𝜓 ≤ 𝑡, ∀𝑡 ∈ (𝑎, 𝑏]. 
 

 

Remark 1: Let function 𝜉(𝑡) ∈ 𝐶[0, 𝑏] and Caputo fractional derivative   0
𝐶𝐷𝑡

𝜆𝜉(𝑡) ∈

𝐶(0, 𝑏] for 0 < 𝜆 ≤ 1. It is clear from the Lemma 1 that if  0
𝐶𝐷𝑡

𝜆𝜉(𝑡) ≥ 0, ∀𝑡 ∈ (0, 𝑏], 

then the function 𝜉(𝑡) is non-decreasing and if  0
𝐶𝐷𝑡

𝜆𝜉(𝑡) ≤ 0, ∀𝑡 ∈ (0, 𝑏], then the 

function 𝜉(𝑡) is non-increasing ∀𝑡 ∈ (0, 𝑏]. 

Theorem 1: All the solutions of model (9) with nonnegative initial conditions remain 

positive for all 𝑡 ≥ 0. 
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 Proof. To prove the non-negativity of each component in system (9), we use the 

assumption of contradiction process, that is, let’s suppose that there exists a first time 𝑡1, 

such that 

𝑚𝑖𝑛  {𝛬(𝑡1)} = 0    𝑎𝑛𝑑    𝑚𝑖𝑛  {𝛬(𝑡)} > 0,    𝑓𝑜𝑟  𝑎𝑙𝑙    𝑡 ∈ [0, 𝑡1). 
 

Here, 𝛬(𝑡) = 𝑇(𝑡), 𝑀(𝑡), 𝐺(𝑡), 𝐶(𝑡), separately. As per our assumption, we first let,  

 

 𝑚𝑖𝑛  {𝛬(𝑡1)} = 𝑇(𝑡1). 
 

This gives 𝑇(𝑡1) = 0  𝑎𝑛𝑑  𝑇(𝑡) > 0    𝑓𝑜𝑟  𝑎𝑙𝑙    𝑡 ∈ [0, 𝑡1). But from the first equation 

of system (9), we get  

  0
𝐶𝐷𝑡

𝜆𝑇(𝑡1) = 𝑔𝑇
𝜆𝑇(1 −

𝑇

𝑆𝑇
) − 𝛽𝑇

𝜆 𝑇𝑀

𝑆𝑀+𝑇
− 𝜔𝑇

𝜆 𝑇𝐶

𝑆𝐶+𝑇
  

≤  𝑔𝑇
𝜆𝑇(1 −

𝑇

𝑆𝑇
), 

 which contradicts our assumption 𝑇(𝑡1) = 0. Hence 𝑇(𝑡) > 0  𝑓𝑜𝑟  𝑎𝑙𝑙    𝑡 ≥ 0. In a 

similar way, we can prove that all solution components are nonnegative in all other cases 

𝑓𝑜𝑟  𝑎𝑙𝑙    𝑡 ≥ 0. Therefore according to Lin [47] from Lemma 1 and Remark 1, we get 

the proof of Theorem 1. 

Theorem 2: The closed region 

 𝐾 = {(𝑇, 𝑀, 𝐺, 𝐶) ∈ 𝑅+
4 : 𝛷(𝑡) ≤

𝑠𝐺
𝜆+𝑠𝐶

𝜆

𝛽𝜆 } 

is a biologically feasible region which means it is a positively invariant set for the model 

(9) that attracts all positive solutions. 

 Proof. To prove the theorem, we have from the total population 𝛷(𝑡) for model (9) after 

taking its derivation as 

𝑑𝜆𝛷(𝑡)

𝑑𝑡𝜆
= 𝑔𝑇

𝜆𝑇(1 −
𝑇

𝑆𝑇
) − 𝛽𝑇

𝜆
𝑇𝑀

𝑆𝑀 + 𝑇
− 𝜔𝑇

𝜆
𝑇𝐶

𝑆𝐶 + 𝑇
+ 𝑔𝑀

𝜆
𝑇

𝑆𝑀 + 𝑇
− 𝛽𝑀

𝜆 𝑀 + 𝑔𝐺
𝜆

𝑇

𝑆𝐺 + 𝑇
 

 −𝛽𝐺
𝜆𝐺 + 𝑔𝐶

𝜆𝐺 − 𝛽𝐶
𝜆𝐶 

 ≤ 𝑠𝐺
𝜆 + 𝑠𝐶

𝜆 − 𝛽𝜆𝛷(𝑡). 
 

 Therefore, applying the Laplace transform of Caputo derivative follows that  

 

 𝛷(𝑡) ≤
𝑠𝐺

𝜆+𝑠𝐶
𝜆

𝛽𝜆 . 

That is, 𝛷(𝑡) is bounded and all solutions beginning in 𝐾 approach, enter and remain in 

𝐾. Therefore, as per Lemma 1 [47], on each hyperplane bounding the non-negative 

orthant, the vector field points into 𝑅+
4 . As a result, the model represented by (9) can be 

regarded as a positively invariant set being well-posed. This proves Theorem 2. 

5.  Numerical solutions to the colon cancer model 

The system of integer-order ODEs given in Eq. (8) can be solved numerically using 

methods such as the Runge-Kutta, Euler, etc. methods. Moreover, there have been several 

semi-analytical methods to solve the integer order models such as homotopy methods, 
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decomposition methods, iteration methods, etc. Then the solutions of the system give us 

the population dynamics of tumor cells, macrophages, dendritic cells, and CD4+T helper 

cells over time. 

5.1. Methodology for the solution 

There are many strong arguments in favor of employing numerical methods for solving 

systems of fractional ODEs. Because of the presence of derivatives of non-local and non-

integer order in fractional calculus, analytical solutions to problems involving fractional 

ODEs are notoriously difficult and rarely useful as can be seen in [49- 52]. In many cases, 

it is impossible to find or extremely challenging to create a closed-form solution. 

Numerical approaches provide another option for approximating the solutions of systems 

of fractional ODEs. Numerical methods simplify the modelling of complex fractional 

ODE systems. By allowing for a wide range of boundary conditions, initial conditions, 

and nonlinearities, they facilitate the detailed investigation of a large range of physical 

processes and systems. 

This versatility comes in handy when traditional methods of analysis fail to produce 

fruitful outcomes. Numerical approaches can provide fast and precise results to problems 

involving fractional ODEs. Accurate and reliable solutions can now be obtained with the 

use of increasingly complex computational tools and algorithms. By modelling and 

analyzing systems containing fractional ODEs, researchers can get insight into their 

behavior and dynamics. Numerical instability is typical of fractional ODE systems 

because of the presence of non-local and non-integer-order derivatives. Numerical 

algorithms can be engineered for stability and protection against error amplification. 

Using various numerical techniques, such as implicit schemes and stabilizing algorithms, 

it is possible to maintain stability and accuracy when modelling fractional ODE systems. 

The use of numerical approaches enables experimental confirmation of results from 

fractional ODE systems. Direct experimental measurements are often unavailable or 

impracticable due to the complexity of the system. 

By simulating the system with numerical tools, researchers can make sure their 

predictions hold up under real-world conditions. This allows for the accuracy of the 

numerical models to be verified and re-verified. Numerical approaches are useful for 

optimizing systems of fractional ODEs. The system can be made to behave as desired by 

scientists by first identifying an optimization issue and then employing numerical 

optimization techniques to locate an ideal answer. As a result, parameter spaces can be 

optimized and explored, even for systems that are hard to analyze analytically. In 

conclusion, numerical techniques provide a useful and efficient means of solving 

fractional ODE systems when analytical solutions are unavailable or insufficient. Their 

adaptability, efficiency, precision, stability, and verifiability against experimental data 

make them useful instruments for studying and analyzing complex fractional ODE 

systems. 

Given all of this, we tried to solve the Caputo system in (9) by using a popular numerical 

method called the fractional Adams method (FAM). The FAM uses a predictor-corrector 

structure, which is explained in [46, 53]. In order to quickly and accurately resolve 

fractional ordinary differential equations, the Adams-Bashforth-Moulton (ABM) 

fractional numerical approach combines explicit and implicit procedures. The use of 

fractional derivatives in numerical simulations can improve precision, robustness, and 

robustness against stiff equations. We use the system of nonlinear fractional-order 

differential equations given by [53] to get an approximation of the solution of the Caputo 
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model (9) via ABM: 

 0
𝐶𝐷𝑡

𝜆𝐺(𝑡) = 𝐹(𝑡, 𝐺(𝑡)), 0 ≤ 𝑡 ≤ 𝑡𝑓 ,   𝐺(𝑗)(0) = 𝐺0
𝑗
,   𝑗 = 0,1,2, . . . , 𝑚 − 1, (10) 

 

where 𝜆 > 0 and 𝑚 = ⌈𝜆⌉ is the integer greater than or equal to 𝜆. The 𝜆 order fractional 

derivative of 𝐺(𝑡) in the Caputo sense given in Definition 1 and denoted by  0
𝐶𝐷𝑡

𝜆𝐺(𝑡) is 

defined by 

 

 0
𝐶𝐷𝑡

𝜆𝐺(𝑡) =
1

𝛤(𝑛 − 𝜆)
∫ (𝑡 − 𝑟)𝑛−𝜆−1𝐺(𝑛)(𝑟)𝑑𝑟 

𝑡

0

,   𝑛 − 1 < 𝜆 < 𝑛,   𝑛 ∈ 𝑍+. 

Note that the notation 𝐺(𝑛)(𝑟) denotes the 𝑛𝑡ℎ integer order derivative of 𝐺(𝑟). It is worth 

mentioning that the theorems of existence and uniqueness for the fractional IVP in (10) 

can be found in [53]. The fractional differential Eq. (10) is also equivalent to the Volterra 

integral equation given by 

𝐺(𝑡) = ∑ 𝐺0
(𝑗) 𝑡𝑗

𝑗!

𝑚−1
𝑗=0 +

1

𝛤(𝜆)
∫ (𝑡 − 𝑟)𝜆−1𝐹(𝑟, 𝐺(𝑟))𝑑𝑟 

𝑡

0
∑ 𝐺0

(𝑗) 𝑡𝑗

𝑗!

𝑚−1
𝑗=0 +0

𝐶𝐷𝑡
−𝜆𝐹(𝑟, 𝐺(𝑟)).

  (11) 

The predictor-corrector type method (FAM) is used in several existing research works 

such as [54, 55] for integrating equations of the type (11). Each equation in the Caputo 

fractional-order model (9) can be discretized by using Definition 1 in the following way: 

   𝐺𝑛+1
𝑃 = 𝐺0 + ∑ 𝑏𝑗,𝑛+1𝐹(𝑡𝑗 , 𝐺𝑗)𝑛

𝑗=0 ,   𝐺𝑛+1 = 𝐺0 + ∑ 𝑎𝑗,𝑛+1𝐹(𝑡𝑗 , 𝐺𝑗)𝑛
𝑗=0  

+𝑎𝑛+1,𝑛+1𝐹(𝑡𝑛+1, 𝐺𝑛+1
𝑃 ),   (12) 

where 

𝑎𝑗,𝑛+1 =
𝛥𝑡𝜆

𝛤(𝜆 + 2)
{𝑛𝜆+1 − (𝑛 − 𝜆)(𝑛 + 1)𝜆,   𝑖𝑓 𝑗 = 0, (𝑛 − 𝑗 + 2)𝜆+1 − 2(𝑛 − 𝑗 

+1)𝜆+1 + (𝑛 − 𝑗)𝜆+1,    𝑖𝑓, 1 ≤ 𝑗 ≤ 𝑛, 1, 𝑖𝑓 𝑗 = 𝑛 + 1.  (13) 

The above-discussed fractional Adams method is employed to simulate the Caputo model 

given in (9). We have used MATLAB R2023b software installed on a Windows laptop 

with 24GB RAM to run the required numerical simulations. 

5.2 Numerical outcomes and discussion 

In this section, we obtain the numerical solutions to the constructed model (9) of 

fractional order by considering the solution procedures given in the previous Section 5.1. 

In the following, we provide several figures regarding the model to understand the 

behavior of colon cancer by simulating the parameter values. Especially, we consider the 

growth rates and recruitment rates for each cell population to point out the future size of 

the populations. Indeed, due to the difficulty of collecting real data for patients, we use 

the random values for each parameter stated in the model. According to Figure 1, tumor 

cells grow logistically as time passes through different values of growth rates. As the 

growth rate increases. The peak point of tumor cells rises rapidly. 



BAUN Fen Bil. Enst. Dergisi, 27(1), 126-144, (2025) 

138 

 

Figure 1. Tumor cell behaviors for the various values of the growth rate. 

 

Figure 2. Macrophage cell behaviors for the various values of the growth rate. 

 

Figure 3. Dendritic cell behaviors for the various values of the growth rate. 
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In Figure 2, we represent the macrophage cell behaviors for the various values of the 

growth rate. As the value of growth rate increases, the number of macrophage cells 

increases as well. Figure 3 shows the dendritic cell behaviors for the various values of the 

growth rate. After 50th days, the number of dendritic cells become stable. As the growth 

rate increases, the number of dendritic cells increases, too. In Figure 4, we figure out the 

behaviour of Hepler T cells for the various values of the growth rate. 

 

Figure 4. Helper T cell behaviors for the various values of the growth rate. 

 

5. Conclusions 

 

Colon cancer is a disease with a genetically complex structure. To better understand the 

complexity and structure of colon cancer cells, we have developed a mathematical model 

in this study. Our model includes a new fractional order differential equation system for 

colon cancer. In our model, the interaction between tumor cells, macrophage cells, 

dendritic cells, and CD4+ T helper cells was determined using Michaelis-Menten 

kinetics. The purpose of this article is to observe the cancer cell behavior along with the 

parameters that play an important role in the entire process or elimination of the cancer 

cells in the model from the moment they settle in the body. However, many parameters 

in the model are difficult to estimate because they are patient-specific. Moreover, 

biological interpretations have been performed. In addition, mathematical analysis such 

as positivity and boundedness have also been carried out. Numerical results have been 

obtained to observe the intercellular course of colon cancer and estimate its future 

direction. Using a numerical solution algorithm, detailed simulations of the most reliable 

model behavior might be possible in the coming periods. Our sensitivity analysis of the 

relationship between parameters and cancer cell population can guide future research and 

treatment strategies. To summarize, in our work we highlight the potential of using 

fractional differential equations to optimize the resulting application for colon cancer 

treatment. The information we obtained and the results we provided give important 

information about the complex structure of colon cancer and its interaction with the 

immune system and may guide future research and treatment approaches for this disease. 
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