
 1

  
 
 
 
 

 
NUMERICAL ANALYSIS OF LAMINAR AND TURBULENT SWIRL FLOWS  

 
Tülin BALİ 

Karadeniz Teknik Üniversitesi Mühendislik Fakültesi Makina Mühendisliği Bölümü 
61080 Trabzon, bali@ktu.edu.tr 

 
(Geliş Tarihi: 15. 11. 2005) 

 
Abstract: A computational study is conducted to investigate laminar and turbulent swirl flows. The governing 
equations are solved using the k-ε  model and the finite volume method. SIMPLE and SIMPLEC algorithms are 
comparatively used for pressure correction. Convective terms are discretized through the hybrid differencing scheme. 
At first, the computer code developed is checked against two problems of which analytical solutions are known from 
the existing literature, the solid body rotation and the source/sink flow. Then, turbulent flow in a pipe is analyzed. 
Finally, decaying turbulent swirl flow inside the pipe is examined in detail. Decaying swirl flow is assumed to be 
generated by the insertion of propeller type generators. The results obtained for this case have been also compared 
with those obtained experimentally and a good agreement is observed. 
Keywords: Numerical, Finite volume method, SIMPLE and SIMPLEC algorithm, Swirl flow, Laminar, Turbulent. 
 

LAMİNER VE TÜRBÜLANSLI DÖNMELİ AKIŞLARIN SAYISAL ANALİZİ 
Özet: Sayısal çalışma laminer ve türbülanslı dönmeli akışların incelenmesi amacıyla yapılmıştır. Akış eşitlikleri sonlu 
hacim metodu ve k-ε türbülans modeli kullanılarak çözülmüştür. SIMPLE ve SIMPLEC algoritmaları basınç 
düzeltmeleri için karşılaştırmalı olarak kullanılmıştır. Konvektif terimler HDS yöntemi ile diskritize edilmiştir. 
Geliştirilen bilgisayar kodu ilk aşamada analitik çözümleri bilinen katı cisim dönmesi ve kaynak kuyu akışı 
problemleri ile test edilmiştir. Daha sonra türbülanslı boru akışı analiz edilmiştir. Son olarak da boru içinde azalan 
dönmeli akış ayrıntılı olarak incelenmiştir. Azalan dönmeli akışın pervane tipli dönme üretecinin yerleştirilmesi ile 
üretildiği farzedilmiştir. Bu durum için elde edilen sayısal sonuçlar deneysel sonuçlarla karşılaştırılmış ve iyi bir 
uyum gözlenmiştir. 
Anahtar Kelimeler: Sayısal, Sonlu hacim metodu, SIMPLE ve SIMPLEC algoritmaları, Dönmeli akış, Laminer, 
Türbülans. 
 
     
NOMENCLATURE 
 

2C ,1C  Constants for k-ε turbulent model 

μC   Constant for turbulent viscosity 
D Diameter  of  pipe [m] 
E  relaxation factor 
In Iteration number 
K Turbulent kinetic energy [m2/s2] 
L lenght of pipe [m] 
P pressure [N/m2] 
q  volumetric flow rate per unit length of cylinder 

[m2/s] 
r  radial coordinate [m] 
R  Radius of pipe [m] 
Re  Reynolds number [=ρVD/μ] 
S   source Reynolds number 
Sφ   source term 
u  axial velocity component [m/s] 
v radial velocity component [m/s] 
v*  friction velocity [m/s] 
x  axial coordinate [m] 
w  circumferential velocity component [m/s] 

 
 

y  distance from pipe wall [m]  
Greek Symbols 
χ von Karman constant   
ε  dissipation rate of k 
φ  dependent variable 
Γφ  exchance coefficient for φ 
μ  dynamic viscosity [N/ms2] 
ν   kinematic viscosity [m2/s] 
ρ   density [kg/m3] 
σ  turbulent diffusion coefficient 
Ω angular velocity [1/s] 
 
Subscripts 
a inner cylinder 
b outher cylinder 
d decay 
eff effective  
i inlet  
m mean 
max maximum 
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INTRODUCTION 
 

Having a broad range of applications including 
chemical and mechanical mixing and separation 
devices, chemical reactors, combustion chambers, 
turbo machinery, rocketry, fusion reactors, pollution 
control devices, etc., swirl flows are used to enhance 
convective heat and mass transfer. The presence of 
swirl introduces some favorable changes to the flow, 
such as increasing the flow paths (but at the expense 
of increasing energy dissipated by friction), 
decreasing the free area and introducing an angular 
acceleration to the fluid flow. In heat exchangers, a 
swirl generated by twisted types, propellers, fins and 
wires for low Reynolds numbers is shown to lead to 
increased heat transfer rates. 
 
Many scientists have investigated the influence of 
swirl on fluid flow and heat transfer. Kreith and Sonju 
(1965) investigated the average decay of a tape-
induced fully developed turbulent swirl flow through 
a pipe. Smithberg and Landis (1964) analytically and 
experimentally studied velocity distributions, friction 
losses and heat transfer characteristics for fully 
developed turbulent flow in tubes with twisted tape 
swirl generators. Bali (1998) numerically and Bali and 
Ayhan (1999) experimentally studied the decay of 
swirl behind of propeller type swirl generator and the 
effects of decaying turbulent swirl flow on heat 
transfer and pressure drop. Nikjooy and Mongia 
(1991) presented a numerical study of a confined 
strong swirling flow. Computations were performed 
using a differential second-moment closure. The 
effect of inlet dissipation rate on calculated mean and 
turbulence fields was investigated. Sampers et al. 
(1993) carried out local velocity measurements and a 
numerical analysis using the k-ε model and the 
Algebraic Stress Model. Hoekstra et al. (1999) carried 
out an experimental and numerical study of turbulent 
swirling flow in gas cyclones. The performances of 
three turbulence closure models were comparatively 
evaluated based on the experimental results. Yang 
(2000) applied large eddy simulation (LES) to study 
the fully developed turbulent pipe flow, in particular, 
to examine the effects of swirl driven by the rotating 
wall of the pipe. Mondal et al. (2004)  numerically 
studied turbulent isothermal (non-reacting) swirl flow 
in a combustor for varying side wall expansion angle 
and different types of swirl generators using a finite 
difference method. The standard k-ε turbulence model 
with logarithmic wall function was adopted for the 
closure. Wang et al. (2004) used laser Doppler 
velocimetry (LDV) measurement and large eddy 
simulation (LES) to study confined isothermal 
turbulent swirling flows in a model dump combustor. 
 
The aim of this study is to numerically investigate 
decaying turbulent swirl flow in a pipe. A computer 
code was developed using the finite volume method. 
The code was checked against some problems for 

which analytical data is available in the open literature. 
The comparison gave a credit to the validity of the code. 
For the decaying turbulent swirl flows, computational 
results were compared with the experimental ones and a 
good correspondence was observed. 
 
MATHEMATICAL MODEL 

 
The transport equations representing the conservation of 
mass, momentum, turbulent kinetic energy and its 
dissipation rate is written in a general, usual form for 
steady state and axisymmetric cylindrical coordinates: 

 

φφφ ∂
∂φ

Γ
∂
∂

∂
∂φ

Γ
∂
∂φρ

∂
∂φρ

∂
∂ S)

r
r(

r
)

x
r(

x
)rv(

r
)ru(

xr
=⎥

⎦

⎤
⎢
⎣

⎡
−−+

1

                 (1) 
where φ is a general dependent variable. The 
corresponding expressions of φΓ and φS are summarized 
in Table 1. 
 
The finite control volume method is used. SIMPLE and 
SIMPLEC algorithms are employed to correct pressures in 
the solution (Patankar, 1980; Doormall and Raithby, 
1984). Hybrid differencing scheme is used to discretize 
convective terms while viscous terms are discretized with 
the central differencing scheme. Computations are 
conducted using a steady-state axisymmetric elliptic flow 
solver incorporated with the k-ε turbulent model (Bali, 
1998). The turbulent viscosity is determined as 

ερμ μ /2kCt = and the following values for the empirical 
constants seen in the equations of the turbulent energy and 
its dissipation rate are used (Launder and Spalding, 1974; 
Rodi, 1975): 

3.1,0.1,92.1,44.1,09.0 ===== εμ σσ     C  C  k21C . 
 
RESULTS AND DISCUSSION 
 
In this study, a computer code is developed to study 
turbulent decaying swirl flow in a pipe. At first, the code 
is validated for the following problems: Solid body 
rotation, source-sink flows and turbulent pipe flow. 

 
Solid Body Rotation: Fluid in a cylinder case, rotating 
with a fixed Ω angular speed around its own axis, acts as a 
solid body because of viscous frictions. In this case, fluid 
swirls on a cycle without changing its shape, and there is 
no shear stress. The velocity field is u=0, v = 0, w =Ωr, 
and the pressure field is p=ρΩ2r2/2 (Schlichting, 1979). 
Figure 1 shows the boundary conditions of the solid body 
rotation. 
 
The geometry with a 0.1x0.1m2 has an angular velocity of 
Ω = 10π/3. The solution domain is discretize by a 20x20 
uniform grid. Relaxation factor is set to be E = 2. A 
convergence factor of 5x10-6 needed 34 iterations to reach 
to convergent solution.  
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                  Table 1. φΓ  and φS expressions. 

Conservation of φ φΓ  φS  

Mass 1 0 0 
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Circumferential momentum 
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Turbulent kinetic energy 
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                       Figure 1.  Solid body rotation. 
 

Figure 2 shows circumferential velocity and pressure 
variations with corresponding analytical solutions. w* 
and p* are non-dimensional circumferential velocity and  
pressure  and  they  define  as  w*= w/ΩR, p*= 
2p/ρΩ2r2. As seen in Figure 2, analytical and numerical 
solutions are in a good agreement. 
 
Source-Sink Flows : The second test problem is the 
laminar source-sink flow. The problem geometry 
consists of two interconnected cylinders rotating with a 
fixed Ω angular velocity on the same axis. Depending 
on the flow direction, the inner and outer cylinders are 
defined as a source or a sink. Neglecting axial 
variations, analytical solutions were obtained by Hide 
(1968) for the source-sink flows. The source Reynolds 
number is given as πν2/qS ≡ , where q is the 
volumetric flow rate entering from the unit length of the 
cylinder. Analytical solution, in a stationary cylindrical 
coordinate system, is given as (Hide,1968):  
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Figure 2. Circumferential velocity and pressure distributions 
on radial direction ( Ω=10π/3 ). 
 
The flow was examined in two different cases with 
S=10 and S = -10. S = 10 represents the source-sink 
flow while S = -10 represents the sink-source flow. 
Figure 3 depicts geometry of these flows and relevant 
boundary conditions.  
 
A 15x20 uniform grid is generated. The following data 
are used. Ra = 0.02m, Rb = 0.08m and L = 0.1m. 
Angular velocity is Ω = 2π. Relaxation factor is taken 
to be 2 for S = 10, and 5 for S = -10. A convergence 
criterion of 5x10-5  is used for each equations. For  
S = 10, converged solutions are obtained in 34 
iterations, while 74 iterations are needed for S = -10. 
Figure 4 shows the variation of non-dimensional 
circumferential velocity distribution in the radial 
direction for S = 10 and S = -10. Non-dimensional 
circumferential velocity in the rotating coordinate  
 

R 

r 
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 Figure 3. Source-sink flows and boundary conditions           
(a) S = 10; (b) S = -10. 
 
system defines as w*= (Ωr-w)/ΩRb. As seen the 
numerical results are found to be consistent with the 
analytical results given by Eq. (2). At S = 10, 
circumferential velocity increases from the source and 
reaches the level in the sink by decreasing in the 
boundary layer near the sink.  In S = -10, the maximum 
circumferential velocity occurs nearly over the sink and 
reaches the level in the sink by decreasing in the thin 
boundary layer.  
 
Turbulent Pipe Flow: In this part, the problem of 
turbulent flow in a pipe is considered. Turbulence is 
closed with the k-ε model. The fluid enters the pipe with 
a uniform velocity and flow continues through the pipe. 
Figure 6 shows the flow geometry and related boundary 
conditions.The turbulence quantities at the pipe entrance 
are calculated as follows (Chang et al., 1991): 
 

R
kC

uk i
i 03.0,003.0

23
2 με == i                 (3) 

 
A pipe with a diameter of 0.2m and a length of 12m is 
chosen. A non-uniform grid consisting of 25x15 points 
in the axial and radial directions, respectively; is used. 
Here SIMPLEC algorithm, which has been proven to be 
computationally effective, is preferred. A convergence 
criterion of 10-3  is chosen. The relaxation parameter is 
chosen to be 9 for all the equations.  
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Figure 4. Radial velocity distributions for S = 10 ve S = -10. 
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Figure 5. Pressure distributions for source-sink flows. 
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Figure 6. Schematic of turbulent flow in a pipe and boundary conditions. 
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Figure 7. Logarithmic velocity distribution law for smooth 
pipe. 

 
Figure 7 shows the comparison of the logarithmic 
wall law, the non-dimensional velocity profiles in 
laminar sublayer and the turbulent boundary layer. 
Prandtl and von-Karman universal velocity 
distribution law expressions are given as follows, 
respectively (Schlichting, 1979). Symbols U and y are 
defined as:    U = max(u),  y = R-r. 

y
RvuU log75.5 *=−  :  Prandtl                               

(4) 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−=

−
R
y

R
yln

v
uU  : Karman-von

*
1111

χ

 
Figure 8 illustrates optimization of the relaxation 
factors according to the iteration number needed for 
converged solutions for the problems considered 
above. 
 
Decaying Swirl Flow: Swirl decaying through the 
pipe for twisted turbulators was experimentally 
examined by Kreith and Sonju (1965). Initial swirl for 
twisted turbulator is given as:  
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where w* is non-dimensional circumferential velocity, 
H is the non-dimensional characteristic length of the 
turbulator and r/R is the non-dimensional radial 
coordinate. 

 
Figure 9a shows the axial velocity profile at the 
entrance. Eq.(5) defines the circumferential velocity, 
and the radial velocity is taken as zero at the entrance. 
Distribution of circumferential the velocity given in 
Fig. 9b is obtained from the experimental data and the 
deviations resulting from the secondary flow effects 
are shown in the graphic. The turbulent kinetic energy 
and kinetic energy dissipation are determined by 

Eq.(3). The radial velocity in the pipe axis and exit is 
taken as zero. The pipe was long enough to provide the 
derivative boundary condition at the exit. No-slip 
condition is assumed at the pipe wall. Axial velocity and 
turbulence-related values near the wall was calculated 
with the wall functions and the balance equation. 
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Figure 8. Variation of iteration number with relaxation factor for 
different flow types considered. 
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Figure 9. Distributions of initial velocities for H = 10 [1];     (a) 
axial, (b) circumferential. 
 
Pipe diameter is 0.0254m and the pipe length is 120D. A 
uniform grid structure with 50x20 points at axial and 
radial directions is defined which is proven to present 
grid-independent results. A longer pipe (120D) than that 
of Kreith and Sonju (1965) (100D) is prescribed in order 
to define the regarding boundary conditions at the pipe 
exit more accurately. Relaxation factor is defined as 8. 
The convergence criterion is defined as 5.10-2 for the 
turbulent kinetic energy dissipation, ε while it is 10-4 for 
the remaining variables. Figure 10 shows the radial 
distributions of the circumferential velocity through pipe 
for Re=48000 and initial swirl number of 0.387. The 
experimental data of Kreith and Sonju (1965) is included 
in the figure. As seen, the experimental and numerical 
results agreed well when the swirl is decayed (i.e. for 
higher values of x/D) except near the wall, which gives a 
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credit to the validity of the computer code developed 
here. Decay of swirl through the pipe was calculated 
as Wd = ( Wm/Win)  and shown in Fig. 11. Again, the 
correspondence between the numerical and 
experimental results (Kreith and Sonju, 1965) are 
found to be adequate. 
 
Decaying Swirl Flow with Propeller Type Swirl 
Generator:  In this final part of the study, we 
investigate both experimentally and numerically the 
effects of swirl flow generated by the propeller type 
swirl generator on fluid flow. The dimensions of the 
test section are 54.7mm diameter, 2m length. Air is 
used as the test fluid. Velocity distributions behind the 
swirl generator are measured using a hot-wire 
anemometry (x=0mm, x=120mm, x=620mm and 
x=1430mm) for the Reynolds numbers of 7491, 
13948 and 27036. Measured axial and tangential 
velocity distributions are taken as the inlet velocity 
boundary conditions. The inlet values of k and ε were 
taken from Eq. (6). Since the computational domain is 
extended to an axial distance of 36.5 diameter of the 
inner pipe, the outflow boundary conditions are 
assumed to be fully developed in the calculations and 
a non-uniform grid with 40x13 points is used. At 
symmetry axis, for all primitive variables (not v), 
axial symmetry boundary condition is given 
as: 0=x/ ∂∂φ ;    0.=v  ,r/ 0=∂∂φ Turbulence 

kinetic energy and its dissipation are determined at the 
pipe inlet as (Chang et al., 1991): 
 

R./k C=  ,   u.k .
ininin 0300030 512

με=                               (6) 
 
From the engineering interest, it is important to determine 
the decay rate of the swirl number along the pipe. The 
local swirl number which is the ratio of tangential to axial 
momentum flux at a cross section can be defined as 
(Senoo and Nagata, 1972): 
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Numerical results predicted here and the experimental 
measurements for velocity distributions are shown in Fig. 
12. It is shown that the profiles of axial and tangential 
velocity profiles at various locations for Re = 13948 and 
initial swirl number of 0.5. Calculations were performed 
to compare with the experimental results at x=0mm, 
x=120mm, x=620mm and x=1430mm and a good 
agreement was found. The flow was initially 
axisymmetric, but the axisymmetry decayed much more 
rapidly than the swirl. In each case, after a sufficient 
distance, the swirl profile was in good agreement with that 
expected from the axisymmetric computation. 
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Figure 10. Distributions of circumferential velocity in radial direction through pipe for Re = 48000. 
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Figure 11. Decay of swirl through the pipe. 
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Figure 13 shows the variation of the local swirl number 
with relation to different Reynolds numbers. The data of 
Kitoh (1991) are also included in Figure 13. In Kitoh’s 
experiments, the swirl was generated by the guide vanes 
and smaller swirl intensities were studied.  The present 
data as well as Kitoh’s data show that the swirl intensity 
decays approximately exponentially with the axial 
distance. It was also found that the swirl number 

increases with the increasing Reynolds number. Since 
the swirl number decreases along the pipe, the highest 
decrement of the swirl number occurs at Re=7491. 
 
Finally, it should be noted here that a grid refinement 
study is carried out for each of the above cases. For each 
case, the grid size chosen is proven to suggest grid-
independent results. 
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Figure 12. Axial and tangential velocity distributions at the pipe downstream for Re = 13948. 
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Figure 13. Decay of the swirl numbers at the pipe 
downstream. 
 
 

CONCLUSIONS 
 
The elliptic Navier-Stokes equations have been solved 
through a computer code developed. The computer code 
developed has been checked against two classical 
problems, solid body rotation and laminar source-sink 
flow, and, an excellent agreement has been obtained. 
Then, the turbulent flow in a circular pipe has been 
solved using the k-ε  model. Finally, turbulent decaying 
swirl flow has been simulated. The obtained 
computational results have been validated by comparing 
them with the experimental results and a satisfactory 
agreement has been reached. The k-ε  model has been 
disclosed to be an efficient model for the simulation of 
weak swirl turbulent flows. In addition, two pressure 
correction algorithms, SIMPLE and SIMPLEC, have 
been comparatively used and SIMPLEC has been 
shown to be superior to SIMPLE in terms of computing 
time. 
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