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Abstract: In the present study, inward spherical melting of a solid subject to convection and radiation initially at the 
fusion temperature has been investigated. The governing equations for liquid phase and the interface have been 
expressed in dimensionless form and then, computational domain has been fixed using the well-known Landau 
transformation. The dimensionless governing equations showed that the velocity of the interface depends on Biot 
number, Stefan number, conduction-radiation parameter and dimensionless temperatures. The dimensionless liquid 
phase and interface equations have been solved numerically using a finite difference method. Employing the 
developed numerical model, the effects of the problem parameters on melting process have been investigated and 
results have been presented graphically.  
Keywords: Phase change, Melting, Finite difference method. 
 

TAŞINIM VE IŞINIMA MARUZ KALAN BİR KÜRENİN İÇE DOĞRU ERİMESİNİN 
ANALİZİ 

 
Özet: Bu çalışmada taşınım ve ışınıma maruz kalan bir kürenin erimesi problemi incelenmiştir. Sıvı faza ait ısı iletim 
denklemi ile ara yüzey enerji dengesi denklemleri boyutsuz olarak ifade edildikten sonra, hareketli ara yüzey 
nedeniyle değişken olan problem bölgesi Landau dönüşümü kullanılarak  sabitlenmiştir. Boyutsuz denklemler ve sınır 
koşulları; ara yüzey hızının Biot ve Stefan sayıları, iletim-ışınım parametresi ve boyutsuz sıcaklıklara bağlı olduğunu 
göstermiştir. Bu yeni sabitlenmiş koordinatlarda ifade edilen problem sonlu farklar yöntemi ile çözülmüştür. Elde 
edilen sayısal model kullanılarak, erime işlemi üzerine problem parametrelerinin etkisi araştırılmış ve sonuçlar 
grafiklerle ifade edilmiştir.   
Anahtar Kelimeler: Faz değişimi, Erime, Sonlu farklar yöntemi.
 
 

 

NOMENCLATURE 
  
Bi Biot number 
CP specific heat [kJ/(kgK)] 
D the difference between dimensionless melting 

environment temperature 
F radiation shape factor 
Fo Fourier number  
h heat transfer coefficient [W/(m2K)] 
k thermal conductivity [W/(mK)] 
L latent heat of fusion [kJ/kg] 
Nc conduction-to-radiation parameter 
r radial coordinate [m] 
R dimensionless radial coordinate  
r0 sphere radius [m] 
s position of solid-liquid interface [m] 
S dimensionless position of solid-liquid interface 
Ste Stefan number 
t time [s] 
T temperature [K] 
U dimensionless temperature 
σ Stefan-Boltzmann coefficient, [W/(m2K4)] 
α thermal diffusivity [m2/s] 

β dimensionless fixed coordinate  
ε emissivity  
ρ density [kg/m3] 
τ dimensionless time 
m melting 
w surroundings 
∞ ambient fluid 
 
INTRODUCTION 

 
Heat transfer problems including solidification or 
melting processes are called heat transfer problems with 
phase change. The problems involving unknown 
boundaries are inherently non-linear even for linear 
differential equations. The location of interface is a part 
of the problem in addition to the temperature 
distribution in the solid and liquid phases. If the 
temperature gradient appears in only one phase then the 
problem is called one-phase otherwise two-phase 
(Özışık, 1980). The phase change problems can be 
encountered in many applications such as ice 
production, freezing of foods, casting, and latent heat 
thermal energy storage. Furthermore, one can face to 
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phase change problems in designing of buildings and 
pipe lines in cold climates (Lunardini, 1981). 
 
There are few exact solutions about phase change 
problems for only some idealized situations subject to 
simple boundary and initial conditions. For the 
situations for which the exact solutions are not 
available; approximate, semi-analytical and numerical 
methods have been used to solve the phase change 
problems. An extensive review of these methods can be 
found in (Crank, 1984). Phase change problems with 
first and third kind of boundary conditions in the 
spherical domain have been numerically investigated in 
the literature (Riley and Smith, 1974; Cho and 
Sunderland, 1970; Pedroso and Domoto, 1973a; 
Pedroso and Domoto, 1973b; Huang and Shih, 1975; 
Ismail and Henriquez, 2000; Bilir and İlken, 2005). 
Goodling and Khader (1974) numerically investigated 
the freezing of a sphere with convection and radiation at 
the surface of the sphere. The numerical results were too 
limited to reproduce, but, if 2

0
3

f Bi)3/1(k/rT <σε , the 
solidification time with radiation will exceed 90% of the 
time only convection. Hill and Kucera (1983) presented 
a series solution method for the problem of freezing a 
saturated liquid inside a sphere with the effect of 
radiation at the container surface. Biot’s variational 
method to obtain an approximate analytical solution for 
the phase change of a finite medium whose one surface 
is subject to radiative and convective cooling is used by 
Yeh and Chuang (1979). Also, Yan and Huang (1979) 
used the perturbation solution for phase change problem 
in a finite region whose one surface is subject to 
convective and radiative boundary condition, while the 
other is insulated. The above approximate solutions are 
not valid for the ranges of the problem parameters. 
Therefore it is need a numerical solution which is valid 
for wide ranges of problem parameters.    
 
The aim of this work is to solve inward spherical 
melting problem of a sphere which is initially at the 
fusion temperature by using a finite difference method. 
For this purpose, applying the front-fixing 
transformation which is first proposed by Landau 
(1950) for heat diffusion equation, the problem has been 
expressed in a fixed coordinate system. Since the 
problem has singularity at the initial time, this 
singularity has been eliminated by the use of the starting 
small-time solution. In the numerical procedure, the 
initial layer of the melted mass is calculated using a 
perturbation solution for Ste<1 given by Bulunti (2003), 
and the model due to Shih and Tsay (1971) for Ste>1. 
The results from the numerical model have been 
presented graphically. 
 
PROBLEM DESCRIPTION  
 
A homogenous sphere of radius r0 is situated at its 
fusion temperature, Tm, initially as shown in Figure 1. 
At time t=0, convective and radiative heating is applied 
at the sphere surface, r=r0 and melting starts. If the 
physical properties are independent of temperature and 

no density change occurs during melting process and no 
natural convection within the liquid region, the energy 
equation in the liquid phase is given as; 

wT,ε

∞T,h

s(t) 
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solid 

Tm r0 

T0 

 
Figure 1. Geometry and coordinates for one-dimensional 
inward melting problem. 
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where s(t) is the location of the interface. The boundary 
and interface conditions of the problem are given by 
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T∞ and Tm in the above equations are the environment 
temperature and the fusion temperature, respectively, 
and L is the latent heat of melting. For simplicity in 
above equations, both the surroundings temperature Tw 
and the ambient fluid temperature T∞ are assumed to be 
equal in the present analysis.  Altough Eq. (1) is 
transient, due to the lack of any liquid region at initial 
time of melting the equation has no an initial condition 
(Özışık, 1980). Therefore, Eq. (1) is singular at this 
time. This singularity can be eliminated by the use of a 
starting small-time solution which will be seen in the 
following “Numerical Analysis” section. 
 
Using the following dimensionless parameters 
 

0r
rR =           

0r
)t(sS =        ( )

2
0

m

Lr
TTkt

ρ
−

=τ ∞  (5a) 

k
hrBi 0=   ( )

L
TTCSte mP −

= ∞   
mTT

TU
−

=
∞

    (5b) 

Ste
Fo τ

=         
0

3
mw r)TT(

kNc
−σ

=     (5c)  



 13

 
the formulation of the problem reduces to 
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The Landau transformation is used to convert the 
moving boundary problem into one of fixed domain 
(Landau, 1950). Thus, movement of the interface is 
inserted into the liquid phase equation and interface 
velocity equation. The new spatial variable in the liquid 
is 
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Using the new spatial variable, the governing equations 
and their initial and boundary conditions can be written 
as follows:  
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NUMERICAL SOLUTION 
 
The numerical solution is realized using the finite 
difference approximation and the front-fixing approach. 
 
 Equation (11) is rewritten as follows.  
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To obtain the finite difference form of Equation (15), 
we may use the Cranck-Nicolson method which is an 
implicit scheme (Pepper and Baker, 1993). The method 
averages the new and old values in time. Subscript, i, 
may be used to designate the location of discrete nodal 

points. The integer n is introduced for discretizing in 
time as  
 

τΔ=τ n  (16) 
 
The finite difference form of Equation (15) is expressed 
as follows.  
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There are three unknowns as in the implicit method, i.e., 
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+
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++
−  In this case, we have averaged the 

unknown values with the previously calculated values at 
the same nodal locations. The averaging yields a 
solution that is now O(Δτ2) in time and is 
unconditionally stable (Pepper and Baker, 1993). 
 
For the interior points, Equation (17) can be rewritten as 
follows: 
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The coefficients in Equation (19d) are defined as 
follows. 
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In order to complete the finite difference formulation, 
Equation (17) is written for end points and the boundary 
conditions given in Equations (12) and (13) are used. 
Thus, a nonlinear algebraic equation system is obtained 
as the following matrix form.  
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1n,n1n1n }M{}U{]K[ +++ =  (21) 
 
where 1n}U{ +  and 1n,n}M{ +  are the N-dimensional 

column vectors, and 1n]K[ + is a NxN dimensional 
tridiagonal matrix.  
 
The initial layer of the melted mass is calculated using 
the perturbation series solution given by Bulunti (2003) 
for Ste<1 and the semi-analytical model due to Shih and 
Tsay (1971) for Ste>1. The solution of the system of 
nonlinear equations given Equation (21) can be 
provided according to following algorithm. 
 
1) Calculate the initial temperature distribution and 

interface location from two previous studies in the 
literature (Bulunti, 2003; Shih and Tsay, 1971).  

2) Perform the simple predictions using linear 
interpolation 
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3) In order to obtain 1n}U{ + , solve Equation (21) using 
tridiagonal matrix algorithm. 

4) To calculate the interface location at new time, 
perform the integration of the interface equation 
given Equation (14) on the interval (τn, τn+1) 
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The iterative process is repeated until convergence, i.e., 
when the maximum norm of the relative difference 
between two successive iterates is within a tolerance of 
10-5. Numerical solution is carried out by taking 
different values of Δτ for convergence of solution. 
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Figure 2. Temperature distributions in the liquid phase 
(Ste=0.05, Bi=1.0, U∞=1.37, Um=0.37, Nc=0.45). 

RESULTS AND DISCUSSION 
 
Figure 2 shows the temperature distribution within the 
liquid phase for different Fourier number and constant 
values of problem parameters. From the figure, it can be 
seen that the surface temperature of the sphere increases 
with Fourier number and approaches the dimensionless 
ambient fluid temperatures, i.e. U∞. 
 
Figure 3 shows that the variation of interface location 
with Fourier number for different Biot and Stefan 
numbers. It can be seen that Stefan number plays more 
important role on interface velocity than Biot number. 
During the melting process, the heat transfer 
mechanisms undergone in the phase change material are 
controlled by two different heat transfer rates. One is the 
absorbed latent heat during melting, and the other is the 
heat transfer inside the phase change material. When the 
melting front moves inward the absorbed latent heat 
decreases due to the decreased melting mass for unit 
movement of the interface and the heat transfer rate is 
reduced due to the increased conduction thermal 
resistance of the melting phase change material. The 
curves in Fig. 3 are nearly linear except for their ends. 
As can be seen from Figure 3, the first and second 
effects are dominant at the beginning and at the end of 
melting process, respectively. 
 
Figure 4 presents the dimensionless interface location as 
a function of Fourier number for four different 
conduction-to-radiation parameters. The results from the 
figure show that the total melting time strongly depends 
on the conduction-to-radiation parameter. 
 
Figure 5 shows the variation of complete melting time 
with Stefan number for different values of Biot 
numbers. For the same values of Biot numbers, 
complete melting time decrease for the different values 
of Stefan numbers. Consequently, the decrease of 
Stefan number leads to increasing the time for 
complete melting. 
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Figure 3. The variation of interface location with Fourier 
number for different Biot and Stefan numbers (U∞=1.37, 
Um=0.37, Nc=0.45). 
 
CONCLUSIONS 
 
Inward phase change of a spherical body subject to 
radiation and convection at the surface is considered. 
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The initial temperature of the body is assumed constant 
at the fusion temperature and the boundary surface 
temperature is assumed to change simultaneously. The 
governing equations for liquid phase and the interface 
have been expressed in dimensionless form and then, 
computational domain has been fixed using the well-
known Landau transformation. The dimensionless 
liquid-phase and interface equations have been solved 
numerically using a finite difference method. In the 
present study, it has been observed that the velocity of 
the interface depends on Biot number, Stefan number, 
conduction-radiation parameter and dimensionless 
temperatures. Employing the present numerical model, 
the effects of the problem parameters on melting 
process are investigated and results are presented 
graphically.  
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Figure 4. The variation of interface location with Fourier 
number for different conduction-to-radiation parameter 
(Ste=0.05, Bi=1.0, U∞=1.37, Um=0.37) 
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Figure 5. Completed melting time as a function of Stefan 
number for three different Biot numbers (U∞=4.44, Um=3.44, 
Nc=387). 
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