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Abstract: In this study, exergy destruction is studied theoretically in a methodological manner for flow systems. The 
equation of the rate of flow exergy destruction is derived beginning from the definition of exergy for forced 
convective flow through a duct. The second law of thermodynamics is applied on convective systems to investigate 
the irreversibilities which are the indicator of the destruction of available work named also as exergy destruction.  
Explicit form of exergy destruction equation for incompressible Newtonian fluid flow in two-dimensional Cartesian 
coordinates is presented as an example. A new term for dimensional quantitative results of flow exergy destruction, 
named exergy destruction factor, is also introduced. The study, being important for all academic researchers as well 
as engineers in efforts of research and development, will be helpful for understanding exergy destruction with the 
physics of incompressible transient laminar convection in ducts. The study addresses the fundamentals of 
thermodynamics.   
Keywords: Exergy, Exergy destruction factor, Entropy generation, Laminar convection. 
 

KANALLARDA AKIŞ EKSERJİ YIKIMI 
 
Özet: Bu çalışmada, ekserji yıkımı akış sistemleri için teorik olarak metodolojik şekilde çalışılmaktadır. Akış 
ekserjisi yıkım hızı denklemi bir kanal boyunca zorlanmış taşınım için ekserjinin tanımından başlayarak 
türetilmektedir. Termodinamiğin ikinci yasası ekserji yıkımı olarak da adlandırılan kullanılabilir enerjinin kaybının 
belirtisi olan tersinmezlikleri araştırmak için taşınım sistemlerine uygulanır. İki boyutlu kartezyen koordinatlarda 
sıkıştırılamaz Newtonyen akışkan akışı için ekserji yıkımı denkleminin açık şekli örnek olarak sunulmaktadır. Akış 
ekserji yıkımının boyutlu sayısal sonuçları için ekserji yıkım faktörü adı verilen yeni bir terimde tanıtılmaktadır. 
Bütün akademik araştırmacılara olduğu kadar araştırma ve geliştirme çabasındaki mühendisler içinde önemli olan bu 
çalışma, kanallarda sıkıştırılamaz geçici laminer taşınımın fiziği ile ekserji yıkımının anlaşılabilmesinde yararlı 
olacaktır. Çalışma termodinamiğin temellerine hitap etmektedir.   
Anahtar kelimeler: Ekserji, Ekserji yıkım faktörü, Entropi üretimi, Laminer taşınım. 
 
 
NOMENCLATURE 
 
AR aspect ratio (D/L) 

Br Brinkman number
2
0

 
uBr
k T

μ=
Δ

 

D hydraulic diameter, [m] 

xE&  exergy [W/m3] 
k  thermal conductivity, [W/m K] 
L length, m 
Ma Mach number 
Ns dimensionless entropy generation number       

Pr  Prandtl number Pr ν
α

=  

Re Reynolds number 0Re u D
ν

=  

'''S&  entropy, [W/m3K] 
T temperature,  [K] 

u dimensionless horizontal velocity component 
v dimensionless vertical velocity component 

lostW&  lost available work, [W/m3] 
x, y dimensionless coordinates 
 
Greek letters   
α thermal diffusivity, [m2/s]  
δ         cronecker delta 
            ijδ =1 for i=j and ijδ =0 otherwise 

ε energy-scale of the molecules 
γ specific heat ratio (cp /cv ) 
ρ dimensionless density 
ν kinematic viscosity, [m2/s] 
τ dimensionless time 
Φ viscous dissipation function, [s−2] 
μ dynamic viscosity, [N s/m2] 
Φ  irreversibility distribution function 
Ω dimensionless temperature difference 
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Subscribes 
0          reference state, ambient 
gen    generation 
in   inlet 
max   maximum 
wall   wall 
xd       exergy destruction 
xdf      exergy destruction factor 

 
INTRODUCTION 
 
During last decades the investigation of exergy appears 
as an equivalent term of availability in Europe in 1950’s 
and defined as the research of the maximum amount of 
work that can be produced by a system or a flow of 
matter or energy (Wylen et al. 1993, Bejan, 1979, 
Moran and Shapiro, 2004). Analysis of the exergy 
destruction is important in upgrading the energy 
utilization performance of thermal systems suffering 
from energy loses. Various applications including the 
stationary ducts can be found in the open literature. The 
engineering function of ducts is considered as the heat 
transfer between the walls and the flowing fluid. The 
quantities that affect the energy utilization performance 
of the convective flow are the heat transfer rate and 
irreversibility. The irreversibility is an indicator of the 
destruction of available work of the system and it is 
measured by exergy destruction; therefore, the second 
law analysis is applied to investigate exergy destruction 
rate. 
 
In this study, the rate of flow exergy destruction is 
analyzed by spending effort to supply an easy method 
starting from thermodynamic analysis to the calculation 
of forced convective flow exergy destruction in ducts. 
The study addresses the fundamentals of 
thermodynamics and will be helpful for understanding 
the exergy destruction with the physics of forced 
convection. A new term for quantitative results of flow 
exergy destruction, named exergy destruction factor, is 
introduced. In the manuscript, the reader can find 
respectively that the derivation of equations of entropy 
generation and exergy destruction, definition of exergy 
destruction factor and an example which is considered 
to indicate explicit forms of governing equations in 
connection with the exergy destruction in a convective 
system modeled as transient and incompressible in two-
dimensional parallel-plate ducts.  
 
FUNDAMENTALS OF THE PROBLEM 
 
EXERGY DESTRUCTION 
 
In upgrading the system performances, the efficient 
energy utilization should be managed by quantitative 
controls of energy loses. The measure of energetic 
losses is treated as the existence of irreversibilities 
indicating the distinction between ideal and real 
processes. Exergy is a powerful concept supporting the 
efforts of energy lost investigations for energy system’s 
enhancement. Exergy is destructed due to 
irreversibilities within the system. The entropy 

generation defined by the second-law of 
thermodynamics is the measure of irreversibilities. The 
relation between the entropy generation genS&  and the 

lost of available work lostW&  is given by the Gouy –
Stodole theorem (Wylen et al. 1993; Bejan, 1979; 
Moran and Shapiro, 2004) written by 
 

0lost genW T S= &&                                                              (1) 
 
where 0T  is the environmental absolute temperature. 
The Gouy –Stodole theorem states that the lost available 
work i.e. exergy destruction is directly proportional to 
the entropy generation. Exergy is maximum theoretical 
work, i.e. corresponds to the definition of available 
work. Therefore, Eq. (1) can be rewritten as 
 

0xd genE T S= &&                                                               (2) 
 
to follow progressive literature on exergy. 
 
In a convective system xdE&  can be derived in an 
explicit form by following a hierarchical derivation 
which is necessary to supply a clear physical insight in 
order to make the reader follow easily the path from the 
fundamental equations of entropy generation to the 
exergy destruction.  
 
LOSS OF WORK 
 
The energy transport equations written for a convective 
transient system constitute the best starting point to 
derive the rate of exergy destruction explicitly. In 
vector-tensor notation the rate of accumulation of 
internal and kinetic energies per unit volume by 
considering the equation of continuity is (Bird et al. 
1960) 
 

( ) ( ) ( ) [ ]( )1ˆ V
2

D U p
Dt

ρ ρ⎛ ⎞+ =− + − −⎜ ⎟
⎝ ⎠

2 q Vg V VÑ. . Ñ. Ñ. τ .

                                                                                      (3) 
 
where Û  is the internal energy per unit mass of the 
fluid and V  is the local velocity of fluid. The term on 
the left hand side is the rate of accumulation of energy 
and equals to the collective contribution of energy input 
by conduction, ( )qÑ . , work done by gravitational 

force ( )ρ V g. , pressure ( )pVÑ . , and viscous 

[ ]( )VÑ . τ .  forces on the fluid per unit volume. When 

the equations of mechanical and thermal energies are 
considered separately, identification of mutually 
dependent terms become possible. The equation of 
mechanical energy is  
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( ) ( ) ( )

[ ]( ) ( )

1 V
2

                        

D p p
Dt

ρ ρ⎛ ⎞ = − − +⎜ ⎟
⎝ ⎠

− −

2 V V V g

V V

Ñ . Ñ . .

Ñ . Ñτ . τ : 
 

                                                                                      (4) 
 
and the equation of thermal energy in terms of internal 
energy is 
 

( ) ( ) ( )
ˆDU p

Dt
ρ = − − +q V Vτ : Ñ . Ñ . Ñ           (5) 

 
The original forms of terms in Eq. (3) are observed in 
Eqs. (4) and (5). It is observed that two terms, 

( )p VÑ . and ( )VÑτ : are found mutually in Eqs. 

(4) and (5) with opposite signs. The term, ( )p VÑ . , 
represents the rate of reversible conversion of  
mechanical energy to internal energy per unit volume 
due to work done by the fluid against the pressure at the 
faces of the control volume. Second term, ( )VÑτ : , 
is the rate of irreversible conversion of  mechanical 
energy to internal energy per unit volume due to viscous 
forces. In Cartesian coordinates for incompressible 
Newtonian fluids the term has the following explicit 
form (Bird et al. 1960) 
 
( )

( )
2

ji
ij

i j j i

1 2        
2 3

vv
x x

μ

μ δ

− = Φ

⎡ ⎤⎛ ⎞∂∂= + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑

V

V

Ñ

Ñ .

τ : 

  .                                                                                  (6) 
 
Here Φ is viscous dissipation function,  i  and j  are 

x , y , and z , and ijδ  is the cronecker delta. It is 

provided by thermodynamics that μΦ  accounts for 
heat added to the fluid flowing through the control 
volume due to internal irreversibilities indicating the 
loss of work that we seek.  
 
EQUATION FOR ENTROPY GENERATION 
 
In vector-tensor notation the entropy transport equation 
is written (Bejan, 1979; Moran and Shapiro, 2004; Bird 
et al. 1960) as 
 

( )
ˆ

gen
DS S
Dt

ρ = − +s &Ñ .                                            (7) 

 
where Ŝ  is the entropy per unit mass, s  an entropy 
flux associated with heat transfer and measured with 
respect to the fluid velocity V , and genS&  is the rate of 

entropy generation of all local irreversibilities per unit 
volume. The local entropy flux is equal to  
 

T
qs =                                                                           (8) 

 
where T  is local temperature of the surface through 
which heat is transferred. By applying the rule for 
differentiation of products 
 

( ) ( )2

1 1 T
T T T

= −qs = q q.Ñ . Ñ . Ñ . Ñ                (9)  

 
is written. When Eq. (9) is inserted into Eq. (7), the rate 
of change of entropy becomes 
 

( ) ( )2

ˆ 1 1 T gen
DS S
Dt T T

ρ − + += q q. &Ñ . Ñ                                        

or 

( ) ( )2

ˆ1 1 Tgen
DSS

T T Dt
ρ− += q q.& Ñ . Ñ  .           (10) 

 
On the other hand internal energy Û  is related to Ŝ  

and V̂  the volume per unit mass, via the canonical 
thermodynamic relation given as 
 

ˆˆ ˆdU TdS pdV= −  .                                                (11) 
 
The substantial derivative of Eq. (11) becomes 
 

ˆˆ ˆDU DS DVT p
Dt Dt Dt

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                               (12a) 

                  
Multiplying the both sides of Eq. (12a) by  ρ ,  
 

ˆˆ ˆDU DS DVT p
Dt Dt Dt

ρ ρ ρ
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
                     (12) 

 
is obtained. Considering the continuity, following 
transformation  
 

( )
ˆ 1 1DV D D

Dt Dt Dt
ρρ ρ

ρ ρ
⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

VÑ .         (13) 

 
is written. When Eq. (13) is used in Eq. (12), 
 

( )
ˆˆDU DST p

Dt Dt
ρ ρ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
VÑ .                          (14) 
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is obtained. Thermal energy equation given by Eq. (5) is 
used in Eq. (14) to get the rate of change of entropy as 
follows 
 

( ) ( )
ˆ 1 1DS

Dt T T
ρ − += q VÑ . Ñτ :                      (15) 

 
Hence the rate of entropy generation is obtained by 
inserting Eq. (15) into Eq. (10). After some 
manipulation 
 

( ) ( )2

1 1TgenS
T T

− += q. V& τ : Ñ Ñ                     (16) 

 
is obtained. This expression states that the rate of 
entropy generation is the sum of two terms; the entropy 
generation associated with irreversibility due to heat 
transfer thorough out the interior of the control volume 
of fluid over a finite temperature difference ΤÑ  and 
the positive internal- irreversibility entropy generation 
term due to viscous forces. In a non-isothermal flow 
system there is conductive heat transfer between 
molecules along with the fluid motion. Fourier’s law of 
conduction for isotropic media explains the relation 
between the heat flux and temperature gradient as 
follows  
 

k Τq = Ñ                                                                  (17) 
 
Here k is the proportionality constant named thermal 
conductivity and represents the characteristics of matter 
for heat transfer capability. When Eq. (17) and Eq. (6) 
are used in Eq. (16), the rate of entropy generation per 
unit volume becomes (Bejan, 1979; Bejan, 1980; Bejan, 
1994) 
 

( )2
2gen

kS
T T

μΤ + Φ=& Ñ                                       (18) 

 
Providing the temperature and velocity distributions 
throughout the control volume in a convective flow 
system, genS&  can be calculated. The local temperature, 

T , should be evaluated attentively during the second 
law analyses of thermal systems.  
 
EQUATION FOR FLOW EXERGY 
DESTRUCTION 
 
The equation for flow exergy destruction presented by 
Eq. (2) is obtained by using Eq. (18) as 
 

( )2
0 2xd

kE T
T T

μ⎡ ⎤Τ + Φ⎢ ⎥⎣ ⎦
=& Ñ                (19) 

 
For evaluating xdE&  quantitatively it is necessary to be 
written more explicitly by using the exact definition of 

the flow system. For two-dimensional Cartesian flow 
system xdE&  becomes 
 

22

0 2

2 22

0

T T

       2

xd
kE T

T x y

u v u vT
T x y T y x
μ μ

⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪⎛ ⎞ +⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞+ + + +⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

& =

                                                                                    (20) 
 
Obviously the exergy destruction is calculated as a post-
processed derived quantity after providing the velocity 
and temperature distributions. The environmental 
absolute temperature, 0T , and the local absolute 

temperature, T , should be handled attentively, which 
effects directly the results of analysis for exergy 
destruction. The local temperature T  is taken typically 
as the temperature of the walls of control volume. For 
overall entropy generation in case of external flows, the 
local absolute temperature is treated as that of the body 
or undisturbed external fluid by assuming that 
difference between these temperatures is much smaller 
that either absolute temperature of the body or fluid. 
When the temperature variation over the body cross-
section is negligible compared with the absolute 
temperature,  T  is taken as equal to 0T  characteristic 
absolute temperature (Bejan, 1979). During internal 
flows T  is most probably considered as the inlet fluid 
temperature (Erbay et al, 2007a; Erbay et al, 2007b; 
Erbay et al, 2003a). For examples of enclosure problems 
(Erbay et al, 2003b; Erbay et al, 2004) it is observed 
that T  is taken as an average of hot and cold wall 
temperatures. In the literature it is observed that T  is 
taken depending on the nature of the problem (Mahmud 
and Fraser, 2002; Ko and Ting, 2005). These 
alternatives may suppose a researcher to be in dubious 
situation therefore the researcher must comprehend the 
fundamental characteristics of his/her own problem. 
 
GOVERNING EQUATIONS 
 
The governing equations consisting of continuity, 
momentum and energy equations are necessary to 
solved calculating the post processed quantity exergy 
destruction within a fluid flowing in a duct written 
preferably in dimensionless forms for numerical 
solutions. From here on using superscript “* ” for 
representing dimensional forms of the terms to get easy 
outlook, the following set of dimensionless transient 
governing equations and entropy generation are 
considered for incompressible Newtonian fluids; 
 
( ) 0=V∇.                                              (21) 
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1p
Re

D
Dt

ρ = − +V V2∇ ∇                             (22) 

 
1

Re Pr
DT T
Dt

= 2∇  .                            (23) 

 
The set of governing equations can be given by 
considering two-dimensional Cartesian coordinates as  
 

0u v
x y

∂ ∂+ =
∂ ∂

                   (24) 

( ) ( ) ( )

2 2

2 2

1                               
Re

u u u
u v

t x y

P u u
x x y

ρ ρ ρ∂ ∂ ∂
+ +

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂= − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
                                            (25) 

( ) ( ) ( )

2 2

2 2

1                               
Re

v v v
u v

t x y

P v v
y x y

ρ ρ ρ∂ ∂ ∂
+ +

∂ ∂ ∂

⎛ ⎞∂ ∂ ∂= − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
                                            (26) 

2 2

2 2

1
Re Pr

T T T T Tu v
t x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
       (27) 

 
where 

0Re u D
ν

= ,  Pr ν
α

= , 
*xx

D
= , 

*yy
D

= , 
*

0t ut
D

=  

*

0

uu
u

=  ,   
*

0

vv
u

= ,     
*

0

ρρ
ρ

=  

*

2
0 0

pP
uρ

=  , 
*

in

wall in

T TT
T T

−=
−

                            (28) 

 
The dimensionless entropy generation is obtained as 
 

22

2 22

            2

s
T TN
x y

u v u v
x y y x

φ

⎡ ⎤⎛ ⎞∂ ∂⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎧ ⎡ ⎤ ⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞+ + + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎪ ⎣ ⎦ ⎭⎩

   

                                                                                    (29) 
 
by using the following parameters  
 

2

2s gen
DN S

k
′′′=

Ω
&  ,   

Brφ =
Ω

 ,    
2
0

 
uBr
k T

μ=
Δ

 , 

in

T
T
ΔΩ = ,   wall inT T TΔ = −                                   (30) 

 
CALCULATION OF EXERGY DESTRUCTION 
 
The rate of exergy destruction in connection with the 
dimensionless solutions can be calculated. The 
dimensionless entropy generation number sN  given in 
Eq. (29) is calculated for various Reynolds numbers, 
Brinkman numbers, and wall - fluid temperatures for 
various fluids. The entropy generation per unit volume 

genS′′′&  is extracted from the dimensionless entropy 

generation number sN  as 
2

2

2 2

2

2

2 2

 
 

 
      

in
gen s s

wall in

in wall in
s s

in

Tk
TkS N N

D D

T Tk
T T TkN N

D D T

⎛ ⎞Δ
⎜ ⎟Ω ⎝ ⎠′′′ = =

⎛ ⎞−
⎜ ⎟ ⎛ ⎞−⎝ ⎠= = ⎜ ⎟

⎝ ⎠

&

                                                                                    (31) 
 
By substituting Eq. (31) into Eq. (2), the rate of exergy 
destruction per unit volume becomes 
 

2

0 0 2
wall in

xd gen s
in

T TkE T S T N
D T

⎧ ⎫⎛ ⎞−⎪ ⎪= = ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

&&         (32) 

Or 
 

xd s xdfE N E=& &                                                           (33) 
 
where xdfE&  can be called as exergy destruction factor. 
Considering Eq. (33), exergy destruction factor is a 
group of parameters given by 
 

2

0 2
wall in

xdf
in

T TkE T
D T

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

& .                                 (34) 

 
In an analysis of energy-exergy losses there is no need 
to get absolute values at the beginning. The fact is to 
learn the places at which losses are greater that others 
and hence relative values are good indicators. 
Therefore, normalized exergy destruction values are 
sufficient to describe the volumetric exergy destruction 
rates in a given geometry for a certain fluid under 
prescribed thermal hydraulic conditions. Normalized 
exergy is calculated by 
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max

xd
xd

xd

EE
E

=
&

&
                                                          (35) 

 
The solution procedure for numerical applications are 
simple. The dimensionless entropy generation 
number, sN , is solved first. If exergy is required, Eq. 
(35) is used without hesitation. For the dimensional 
studies when dimensional and absolute results are 
necessary, then exergy destruction factor becomes 
necessary and is supplied by Eq. (34). 
 
CONCLUSION 
 
The engineering functions of ducts are to transfer heat 
and fluid in the mechanical installation. The quantities 
that affect the energy utilization performance of the 
convective duct flow are the heat transfer rate and 
irreversibility. The irreversibility is an indicator of the 
destruction of available work measured by exergy 
destruction; therefore, second law analysis is necessarily 
applied on convective systems to investigate the exergy 
destruction rate.  
 
In this study, the derivation of the rate of exergy 
destruction equation and the calculation of exergy 
destruction rate indicating the whole set of governing 
equations have been given. It is said that xdE&  can be 
found quantitatively from Eq. (32) providing the 
temperature and velocity distributions by numerical 
solution of the sets of governing equations from Eq. 
(21) to (23), for the entropy generation number sN  by 
Eq. (29) and supplying the parameters for exergy 
destruction factor on the right hand side of Eq. (34). 
Obviously the normalized exergy destruction 
number, xdE , can be obtained with Eq. (35) by giving 
attention to the environmental absolute temperature, 

0T , and the local absolute temperature, T .  Foregoing 

analysis of xdE&  is continuing and will be presented in 
the next study. 
 
Analysis of the exergy destruction is important in 
upgrading the system performances. The numerical 
techniques are very helpful for analyzing the effect of all 
parameters separately. Therefore the comments on the 
numerical results obtained from the idealized physical 
model have powerful importance on practical 
applications to abstain from misleading findings.  
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