Is1 Bilimi ve Teknigi Dergisi, 27, 2, 1-6, 2007
J. of Thermal Science and Technology
©2007 TIBTD Printed in Turkey

ISSN 1300-3615

FLOW EXERGY DESTRUCTION IN DUCTS

L. Berrin ERBAY
Eskisehir Osmangazi University, School of Engineering and Architecture 26480 Bat1 Meselik, Eskisehir, Turkey.
Iberbay@ogu.edu.tr

(Gelis Tarihi: 10. 07. 2007)

Abstract: In this study, exergy destruction is studied theoretically in a methodological manner for flow systems. The
equation of the rate of flow exergy destruction is derived beginning from the definition of exergy for forced
convective flow through a duct. The second law of thermodynamics is applied on convective systems to investigate
the irreversibilities which are the indicator of the destruction of available work named also as exergy destruction.
Explicit form of exergy destruction equation for incompressible Newtonian fluid flow in two-dimensional Cartesian
coordinates is presented as an example. A new term for dimensional quantitative results of flow exergy destruction,
named exergy destruction factor, is also introduced. The study, being important for all academic researchers as well
as engineers in efforts of research and development, will be helpful for understanding exergy destruction with the
physics of incompressible transient laminar convection in ducts. The study addresses the fundamentals of
thermodynamics.
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KANALLARDA AKIS EKSERJI YIKIMI

Ozet: Bu c¢alismada, ekserji yikimi akis sistemleri igin teorik olarak metodolojik sekilde galisiimaktadir. Akis
ekserjisi yikim hizi denklemi bir kanal boyunca zorlanmis tasimm igin ekserjinin tamimindan baslayarak
tiiretilmektedir. Termodinamigin ikinci yasas1 ekserji yikimi olarak da adlandirilan kullanilabilir enerjinin kaybinin
belirtisi olan tersinmezlikleri arastirmak igin tasmim sistemlerine uygulanir. iki boyutlu kartezyen koordinatlarda
sikistirllamaz Newtonyen akigkan akist i¢in ekserji yikimi denkleminin agik sekli 6rnek olarak sunulmaktadir. Akis
ekserji yikiminin boyutlu sayisal sonuglar1 igin ekserji yikim faktorli adi verilen yeni bir terimde tanitilmaktadir.
Biitiin akademik arastirmacilara oldugu kadar arastirma ve gelistirme ¢abasindaki miihendisler i¢cinde 6nemli olan bu
calisma, kanallarda sikistirillamaz gecici laminer tasinimin fizigi ile ekserji yikiminin anlasilabilmesinde yararh
olacaktir. Caligma termodinamigin temellerine hitap etmektedir.

Anahtar kelimeler: Ekserji, Ekserji yikim faktorii, Entropi tiretimi, Laminer taginim.

NOMENCLATURE u dimensionless horizontal velocity component
v dimensionless vertical velocity component
Ap aspect ratio (D/L) \
w2 Wies lost available work, [W/m?’]
Br Brinkman number Br = oM X,y dimensionless coordinates
AT
D hydraulic diameter, [m] Greek letters
E exergy [W/m3] o thermal diffusivity, [m*/s]
X

k thermal conductivity, [W/m K] g cronecker delta

L length, m 5ij=1 for i=j and é;j =0 otherwise

Ma Mach n.umber ) € energy-scale of the molecules
N dimensionless entropy generation number y specific heat ratio (c, /c, )

_v p dimensionless density
Pr Prandt] number Pr = E A kinematic viscosity, [m*/s]
u T dimensionless time
Re Reynolds number Re = —2 () viscous dissipation function, [s ]
14 i) dynamic viscosity, [N s/m’]
g entropy, [W/m*K] 0] irreversibility distribution function
’ Q dimensionless temperature difference

T temperature, [K]



Subscribes

0 reference state, ambient
gen generation

in inlet

max maximum

wall wall

xd exergy destruction

xdf exergy destruction factor
INTRODUCTION

During last decades the investigation of exergy appears
as an equivalent term of availability in Europe in 1950’s
and defined as the research of the maximum amount of
work that can be produced by a system or a flow of
matter or energy (Wylen et al. 1993, Bejan, 1979,
Moran and Shapiro, 2004). Analysis of the exergy
destruction is important in upgrading the energy
utilization performance of thermal systems suffering
from energy loses. Various applications including the
stationary ducts can be found in the open literature. The
engineering function of ducts is considered as the heat
transfer between the walls and the flowing fluid. The
quantities that affect the energy utilization performance
of the convective flow are the heat transfer rate and
irreversibility. The irreversibility is an indicator of the
destruction of available work of the system and it is
measured by exergy destruction; therefore, the second
law analysis is applied to investigate exergy destruction
rate.

In this study, the rate of flow exergy destruction is
analyzed by spending effort to supply an easy method
starting from thermodynamic analysis to the calculation
of forced convective flow exergy destruction in ducts.
The study addresses the fundamentals of
thermodynamics and will be helpful for understanding
the exergy destruction with the physics of forced
convection. A new term for quantitative results of flow
exergy destruction, named exergy destruction factor, is
introduced. In the manuscript, the reader can find
respectively that the derivation of equations of entropy
generation and exergy destruction, definition of exergy
destruction factor and an example which is considered
to indicate explicit forms of governing equations in
connection with the exergy destruction in a convective
system modeled as transient and incompressible in two-
dimensional parallel-plate ducts.

FUNDAMENTALS OF THE PROBLEM
EXERGY DESTRUCTION

In upgrading the system performances, the efficient
energy utilization should be managed by quantitative
controls of energy loses. The measure of energetic
losses is treated as the existence of irreversibilities
indicating the distinction between ideal and real
processes. Exergy is a powerful concept supporting the
efforts of energy lost investigations for energy system’s
enhancement. Exergy is destructed due to
irreversibilities within the system. The entropy

generation  defined by the second-law  of
thermodynamics is the measure of irreversibilities. The

relation between the entropy generation Sgen and the

lost of available work V\./Iost is given by the Gouy —

Stodole theorem (Wylen et al. 1993; Bejan, 1979;
Moran and Shapiro, 2004) written by

W

lost

=TOSgen (1)

where To is the environmental absolute temperature.

The Gouy —Stodole theorem states that the lost available
work i.e. exergy destruction is directly proportional to
the entropy generation. Exergy is maximum theoretical
work, i.e. corresponds to the definition of available
work. Therefore, Eq. (1) can be rewritten as

Exd = TO Sgen (2)
to follow progressive literature on exergy.

In a convective system E,, can be derived in an

explicit form by following a hierarchical derivation
which is necessary to supply a clear physical insight in
order to make the reader follow easily the path from the
fundamental equations of entropy generation to the
exergy destruction.

LOSS OF WORK

The energy transport equations written for a convective
transient system constitute the best starting point to
derive the rate of exergy destruction explicitly. In
vector-tensor notation the rate of accumulation of
internal and kinetic energies per unit volume by
considering the equation of continuity is (Bird et al.
1960)

pg(o%vz]:_(ﬁ.q) +p(Veg)(R.pV) (R [z.V])
3)

where U is the internal energy per unit mass of the

fluid and V is the local velocity of fluid. The term on
the left hand side is the rate of accumulation of energy
and equals to the collective contribution of energy input

by conduction, (N .q), work done by gravitational
force p(V.g), pressure (N.pV), and viscous

(N . [’C V]) forces on the fluid per unit volume. When

the equations of mechanical and thermal energies are
considered separately, identification of mutually
dependent terms become possible. The equation of
mechanical energy is



P 3V = p(NV) (8 .pv) - p(Vae)
-(N.[t.V])-(T:NV)
4)

and the equation of thermal energy in terms of internal
energy is

DU < . -
pﬁz—(N.q)—p(N.V)'l‘(T:NV) 5)

The original forms of terms in Eq. (3) are observed in
Egs. (4) and (5). It is observed that two terms,

p(N .V) and (T:N V) are found mutually in Egs.
(4) and (5) with opposite signs. The term, p(N .V) ,

represents the rate of reversible conversion of
mechanical energy to internal energy per unit volume
due to work done by the fluid against the pressure at the

faces of the control volume. Second term, (’E N V) s

is the rate of irreversible conversion of mechanical
energy to internal energy per unit volume due to viscous
forces. In Cartesian coordinates for incompressible
Newtonian fluids the term has the following explicit
form (Bird et al. 1960)

(-t:NV)=pud

1 ov. ov.| 2, .
=— —4—JI_Z(N.V)6.

(6)

Here @ is viscous dissipation function, | and | are
X, Y,and Z, and é;j is the cronecker delta. It is

provided by thermodynamics that 4@ accounts for

heat added to the fluid flowing through the control
volume due to internal irreversibilities indicating the
loss of work that we seek.

EQUATION FOR ENTROPY GENERATION

In vector-tensor notation the entropy transport equation
is written (Bejan, 1979; Moran and Shapiro, 2004; Bird
et al. 1960) as

DS < :
pﬁz_(N ‘S)+Sgen 7

where S is the entropy per unit mass, $§ an entropy
flux associated with heat transfer and measured with

respect to the fluid velocity V , and Sgen is the rate of

entropy generation of all local irreversibilities per unit
volume. The local entropy flux is equal to

®)

— |

where T is local temperature of the surface through
which heat is transferred. By applying the rule for
differentiation of products

o o 1,4~
Ns=N.d-2(N.q)-=(qNT) ©)

is written. When Eq. (9) is inserted into Eq. (7), the rate
of change of entropy becomes

DS | S 1 o

—=——(N. —(g.NT)+S
or

. 1. 1, - DS

S =—(N.q)——(qNT)+p— . 10
i =7 (NQ)~ =5 (aNT)+ o (10)

On the other hand internal energy U is related to é

and V the volume per unit mass, via the canonical
thermodynamic relation given as

dU =TdS- pdV . (11)
The substantial derivative of Eq. (11) becomes
DU DS DV
- = T = p I
Dt Dt Dt

Multiplying the both sides of Eq. (12a) by 0,

D_U—T D_é _p D_\7 (12)
P Dt P Dt P Dt

is obtained. Considering the continuity, following
transformation

(12a)

DV D1 1Dp .
—=p—|—|=—=E=RN.V 13
£ Dt th(pj p Dt ( )

is written. When Eq. (13) is used in Eq. (12),

DU DS -
22T p=2 |- p(N.Y 14
P o (p DJ P(N.V) (14)



is obtained. Thermal energy equation given by Eq. (5) is
used in Eq. (14) to get the rate of change of entropy as
follows

T:NV) (15)

Hence the rate of entropy generation is obtained by

inserting Eq. (15) into Eq. (10). After some
manipulation

NN USRS [P

S = _F(qN T)+?(1:.N V) (16)

is obtained. This expression states that the rate of
entropy generation is the sum of two terms; the entropy
generation associated with irreversibility due to heat
transfer thorough out the interior of the control volume
of fluid over a finite temperature difference N T and
the positive internal- irreversibility entropy generation
term due to viscous forces. In a non-isothermal flow
system there is conductive heat transfer between
molecules along with the fluid motion. Fourier’s law of
conduction for isotropic media explains the relation
between the heat flux and temperature gradient as
follows

q=kNT (17)

Here Kis the proportionality constant named thermal
conductivity and represents the characteristics of matter
for heat transfer capability. When Eq. (17) and Eq. (6)
are used in Eq. (16), the rate of entropy generation per
unit volume becomes (Bejan, 1979; Bejan, 1980; Bejan,
1994)

: K <.\ U
Sgen=F(N T) +?<1> (18)

Providing the temperature and velocity distributions

throughout the control volume in a convective flow

system, Sgen can be calculated. The local temperature,

T, should be evaluated attentively during the second
law analyses of thermal systems.

EQUATION FOR FLOW EXERGY
DESTRUCTION

The equation for flow exergy destruction presented by
Eq. (2) is obtained by using Eq. (18) as

E,=T, {T—kz(N T)ﬂ%d)} (19)

For evaluating Exd quantitatively it is necessary to be

written more explicitly by using the exact definition of

the flow system. For two-dimensional Cartesian flow

system E ; becomes
2 2
Exd =TO L2 (a_Tj + a_T
T Lox oy

2 2 2
+T0 2& (a_uJ + & +£ a_u+%
T\ ox ay T|\ldy ox

(20)

Obviously the exergy destruction is calculated as a post-
processed derived quantity after providing the velocity
and temperature distributions. The environmental

absolute temperature, To , and the local absolute

temperature, | , should be handled attentively, which
effects directly the results of analysis for exergy
destruction. The local temperature T is taken typically
as the temperature of the walls of control volume. For
overall entropy generation in case of external flows, the
local absolute temperature is treated as that of the body
or undisturbed external fluid by assuming that
difference between these temperatures is much smaller
that either absolute temperature of the body or fluid.
When the temperature variation over the body cross-
section is negligible compared with the absolute

temperature, | is taken as equal to To characteristic

absolute temperature (Bejan, 1979). During internal
flows T is most probably considered as the inlet fluid
temperature (Erbay et al, 2007a; Erbay et al, 2007b;
Erbay et al, 2003a). For examples of enclosure problems
(Erbay et al, 2003b; Erbay et al, 2004) it is observed
that T is taken as an average of hot and cold wall
temperatures. In the literature it is observed that T is
taken depending on the nature of the problem (Mahmud
and Fraser, 2002; Ko and Ting, 2005). These
alternatives may suppose a researcher to be in dubious
situation therefore the researcher must comprehend the
fundamental characteristics of his/her own problem.

GOVERNING EQUATIONS

The governing equations consisting of continuity,
momentum and energy equations are necessary to
solved calculating the post processed quantity exergy
destruction within a fluid flowing in a duct written
preferably in dimensionless forms for numerical
solutions. From here on using superscript «* » for
representing dimensional forms of the terms to get easy
outlook, the following set of dimensionless transient
governing equations and entropy generation are
considered for incompressible Newtonian fluids;

(V.V)=0 (1)



p%=—Vp +éV2V (22)
PT__1 g (23)
Dt RePr

The set of governing equations can be given by
considering two-dimensional Cartesian coordinates as

ou ov
—+—=0 (24)
oX oy
d(pu)  9(pu),  9(pu)
ot oX oy
oP 1 (0°u d%u
=t —| —+—
ox Relox* oy’
(25)
8(pv)+u8(pv)+va(pv)
ot oX oy
oP 1 (0°v 9%
=t — | —+—
dy Relox’ oy’
(26)
oT oT T 1 (o°T o°T
—+U—+V—= + 27)
ot  ox 9y RePrlox’ oy’
where
Rezu"D, Pr:K, Xzi, yzi,t:tﬂ
1% o D D D
u=2 v=¥ p:p_
U, U, Lo
p=—F_ T=" "Tn (28)
PolYy Twall _Tin

The dimensionless entropy generation is obtained as
2
oTY (aT
Ne=||— | +| —
oX oy

(aujz Y | (ou ovY

+P2| — | | =— | |+ =—*+=—

oX oy dy oX
(29

by using the following parameters

D’ Br u; i
N, = , p=— , Br=—U_
SOk Q? 9 Q k AT
Q:—?_T, AT =T, -T, (30)

CALCULATION OF EXERGY DESTRUCTION

The rate of exergy destruction in connection with the
dimensionless solutions can be calculated. The

dimensionless entropy generation number Ns given in

Eq. (29) is calculated for various Reynolds numbers,
Brinkman numbers, and wall - fluid temperatures for
various fluids. The entropy generation per unit volume

Sg'm is extracted from the dimensionless entropy

generation number N as

2
AT
, k| —
k Q _N T

en S 2 S 2
? D D

2
k [Twall _Tinj )
N Tin N L[Twall _TinJ

° D °D? T

n

1)

By substituting Eq. (31) into Eq. (2), the rate of exergy
destruction per unit volume becomes

2
- - k Tw _Tin
Ev=TiSewm=T NSF[SJ'II'TJ (32)
Or
E'><d = NsExdf (33)

where Exdf can be called as exergy destruction factor.

Considering Eq. (33), exergy destruction factor is a
group of parameters given by

2
- K Twall _Tin
E. =TO—2 —_— | . (34)
DL T

In an analysis of energy-exergy losses there is no need
to get absolute values at the beginning. The fact is to
learn the places at which losses are greater that others
and hence relative values are good indicators.
Therefore, normalized exergy destruction values are
sufficient to describe the volumetric exergy destruction
rates in a given geometry for a certain fluid under
prescribed thermal hydraulic conditions. Normalized
exergy is calculated by



E,= = (35)

xd max

The solution procedure for numerical applications are
simple. The dimensionless entropy generation

number, N_, is solved first. If exergy is required, Eq.

s
(35) is used without hesitation. For the dimensional
studies when dimensional and absolute results are
necessary, then exergy destruction factor becomes
necessary and is supplied by Eq. (34).

CONCLUSION

The engineering functions of ducts are to transfer heat
and fluid in the mechanical installation. The quantities
that affect the energy utilization performance of the
convective duct flow are the heat transfer rate and
irreversibility. The irreversibility is an indicator of the
destruction of available work measured by exergy
destruction; therefore, second law analysis is necessarily
applied on convective systems to investigate the exergy
destruction rate.

In this study, the derivation of the rate of exergy
destruction equation and the calculation of exergy
destruction rate indicating the whole set of governing

equations have been given. It is said that E can be

found quantitatively from Eq. (32) providing the
temperature and velocity distributions by numerical
solution of the sets of governing equations from Eq.
(21) to (23), for the entropy generation number N by

Eq. (29) and supplying the parameters for exergy
destruction factor on the right hand side of Eq. (34).
Obviously the normalized exergy destruction

number, Exd, can be obtained with Eq. (35) by giving
attention to the environmental absolute temperature,
T, . and the local absolute temperature, T . Foregoing

analysis of E, is continuing and will be presented in
the next study.

Analysis of the exergy destruction is important in
upgrading the system performances. The numerical
techniques are very helpful for analyzing the effect of all
parameters separately. Therefore the comments on the
numerical results obtained from the idealized physical
model have powerful importance on practical
applications to abstain from misleading findings.
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