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The infrarenal flow waveform (IFW) demonstrates distinct patterns in response to varying
cardiac conditions, raising questions regarding the applicability of the Newtonian model due to
variations of the shear rate (|𝛾ሶ |) distribution across different IFW patterns. This study aims to
investigate the hemodynamic conditions generated by different IFW patterns within an
Abdominal Aortic Aneurysm (AAA) model, and the impact of various rheological models on
their predictions. Three IFW patterns are applied to the Newtonian, several shear-thinning and
viscoelastic (Oldroyd-B) models. The results of numerical simulations demonstrate the
transportation time of the vortices from proximal to distal regions within the bulge decreases
by up to 50% with an increase in the mean flow rate. These alterations in the vortex transport
mechanism (VTM) affect |𝛾ሶ | distribution, causing significant variations in the predictions of the
rheological models. Even at high mean flow rates, the Newtonian predicts an OSI௠௔௫  twice as
large as that predicted by the Carreau and Power models, along with an ECAP௠௔௫  that is 5 times
greater. Therefore, the Newtonian model is not appropriate for the AAA simulations. Together
with |𝛾ሶ |, a comprehensive assessment of IFW pattern and resulting VTM prior to the rheological
model selection is critical and recommended.  
 

	

İnfrarenal Akış Dalga Formunun Abdominal Aort Anevrizmalarının 
Hemodinamiği ve Reoloji Modellerinin Seçimi Üzerindeki Etkisi  
	

M A K A L E  B İ L G İ S İ   Ö Z E T  

Anahtar	Kelimeler:	
Abdominal aort anevrizması 
hemodinamiği 
Duvar kayma gerilimi (WSS) 
tanımlayıcıları  
Girdap taşınması 
Kan reolojisi 
Oldroyd-B modeli 
 
 
 

 İnfrarenal akış dalga formu (IFW), farklı kardiyak koşullara yanıt olarak belirgin paternler
sergilemektedir. Newtonyen modelin Abdominal Aort Anevrizması (AAA) hemodinamiği
simülasyonlarında kullanılabilirliği, farklı IFW paternleri arasında kayma hızı (|𝛾ሶ |)
dağılımındaki değişiklikler nedeniyle soru işaretleri doğurmaktadır. Bu çalışma, bir AAA
modeli içinde farklı IFW paternleri tarafından oluşturulan hemodinamik koşulları ve bu
paternlerin çeşitli reolojik modellerin tahminlerine olan etkilerini araştırmayı
amaçlamaktadır. Newtonyen, çeşitli kayma inceltici ve viskoelastik (Oldroyd-B) modellerine
üç farklı IFW deseni uygulanmıştır. Sayısal simülasyonların sonuçları, anevrizma içinde
proksimalden distal bölgelere doğru girdapların taşıma süresinin ortalama akış hızındaki
artışla birlikte %50'ye kadar azaldığını göstermektedir. Girdap taşınma mekanizmasındaki
(VTM) bu değişiklikler, |𝛾ሶ | dağılımını etkileyerek reolojik modellerin tahminlerinde önemli
varyasyonlara yol açmaktadır. Yüksek ortalama akış hızlarında bile, Newtonyen model,
Carreau ve Power modelleri tarafından tahmin edilenden iki kat daha büyük bir OSI௠௔௫  ve
beş kat daha büyük bir ECAP௠௔௫ öngörmektedir. Bu nedenle, Newtonyen model, AAA
simülasyonları için uygun değildir denilebilir. Sonuç olarak, |𝛾ሶ |'nin yanı sıra, reolojik model
seçimi öncesinde IFW paternlerinin ve buna bağlı VTM'nin kapsamlı bir şekilde
değerlendirilmesi kritik ve önerilmektedir. 

	



23 

SEMBOLLER	/	NOMENCLATURE	
AAA abdominal aortic aneurysm  𝜆௖௜ 𝜆௖௜-criterion, swirling strength [1/s] 

IFW infrarenal flow waveform  𝜆௖ప
തതതത time – averaged 𝜆௖௜-criterion [1/s] 

WSS wall shear stress (Pa)  𝛾ሶ  shear rate (1/s) 

TAWSS time-averaged wall shear stress (Pa)  𝛾ሶ ̅  time-averaged shear rate (1/s) 

ECAP endothelial cell activation potential (1/Pa)  𝛼   Womersley number 

OSI oscillatory shear index  𝜈 kinematic viscosity (m2/s) 

𝑅𝑒௠ mean Reynolds number  𝜇 dynamic viscosity (Pa.s) 

INTRODUCTION	
	
Abdominal aortic aneurysm (AAA) is the dilatation of the 
abdominal aorta beyond 50% of the normal vessel diameter, 
due to degeneration of the arterial wall (McGloughlin and 
Doyle, 2010). The physiological flow waveform at the 
infrarenal section of the aorta, which is just upstream part of 
AAA, shows different patterns in different patients. Figure 1  
shows measured infrarenal flow waveforms (IFW) for the 
resting condition of two different patients (Les et al., 2010). 
There is a significant variation between the peak systolic flow 
rate values, while the diastolic flow rate is nearly zero for 
both. However, for exercise conditions, the diastolic flow rate 
might be higher than zero. According to Les et al. (2010), the 
diastolic flow rate might reach up to 100 ml/sec during 
exercise. The variations in the IFW pattern might lead to 
differences in the hemodynamic conditions such as |𝛾ሶ | 
distributions and evolution of the vortex structures through 
AAAs during systolic and diastolic phases (Fuchs et al., 2021). 
 

 
Figure	1. A comparison of measured physiological infrarenal flow 
rate during rest for two different patients (Les et al., 2010). 
 
Blood is a concentrated suspension of various cellular 
elements, which are red blood cells, white blood cells and 
thrombocytes, within the plasma. Plasma, containing 93% 
water and 3% particles composed of organic molecules, 
electrolytes, proteins, and waste materials collected from the 
organism, behaves as a Newtonian fluid with a constant 
viscosity (Bessonov et al., 2016). However, at low |𝛾ሶ |, 
especially |𝛾ሶ | ൏ 100 s-1, the non-Newtonian behavior of blood 
becomes more apparent. Red blood cells aggregate and form 
rouleaux, which are rod shaped stacks of individual cells 
(Bessonov et al., 2016). The aggregation and disaggregation 
of rouleaux results in a shear-thinning and elastic behavior of 
blood (Bessonov et al., 2016; Bilgi and Atalik, 2020; Bodnár et 
al., 2011). The abdominal aorta is a large artery with a high 
shear rate (|𝛾ሶ |ሻ distribution because the mean flow rate is 
also larger compared to other arteries (Salman et al., 2019). 
In literature, it is a common approach to assume the blood as 
a Newtonian fluid for the hemodynamic simulations of AAAs 
(Salman et al., 2019; Arzani and Shadden, 2016; Qiu et al., 
2018; Soudah et al., 2013) because a vast number of studies 
agree that non-Newtonian effects diminish with increasing 

flow rate (Shibeshi and Collins, 2005; Soulis et al., 2008; 
Skiadopoulos et al., 2017), which leads to a high |𝛾ሶ | 
distribution. Indeed, inside the aneurysm sac, there are 
stagnant low-velocity recirculation regions due to the 
separation of bulk flow at the diastolic phase (Salman et al., 
2019; Arzani, 2018), causing low |𝛾ሶ | at those zones. Non-
Newtonian properties of blood might be more influential 
during diastole due to lower flow and shear rates (Fisher and 
Rossmann, 2009), compared to the peak systole. Moreover, 
aforementioned variations in the IFW pattern might lead 
different |𝛾ሶ | distributions through AAAs during the systolic 
and diastolic phases. Therefore, applicability of the 
Newtonian model to AAA hemodynamics under various 
physiological flow conditions remains uncertain. 
 
In numerical studies, shear-thinning behavior of the blood is 
generally modeled by using various viscosity models, such as 
Carreau, Carreau-Yasuda, Cross, Casson, Quemada and 
Power-law. To evaluate differences between the shear-
thinning and Newtonian viscosity models, studies have 
compared hemodynamic descriptors obtained by different 
shear-thinning models in the cerebral (Fisher and Rossmann, 
2009), carotid (Razavi et al., 2011; Morbiducci et al., 2011; Lee 
and Steinman, 2007; Mendieta et al., 2020) and thoracic 
(Karimi et al., 2014; Faraji et al., 2022) arteries. For AAAs, 
several studies (Arzani, 2018; Biasetti et al., 2011; Bilgi and 
Atalik, 2019) have compared the hemodynamic predictions 
obtained by the Carreau-Yasuda and Newtonian models, 
while (Skiadopoulos et al., 2017) compared the results of the 
Casson, Quemada and Newtonian models. Most of these 
studies have reported variations between the results 
obtained with the Newtonian and shear-thinning models. The 
elastic nature of the blood is commonly modeled by using the 
Oldroyd-B model (Bodnár et al., 2011). Elhanafy et al. (2019) 
compared the results obtained by the Newtonian model with 
the results of viscoelastic Oldroyd-B for AAA, while Bilgi and 
Atalik (2020) compared the Newtonian, Carreau-Yasuda and 
modified Oldroyd-B models. However, to the authors’ best 
knowledge, none of the available literature has parametrized 
the behavior of shear-thinning and viscoelastic rheology 
models under different hemodynamic conditions which are 
generated due to varying IFW patterns.  
 
The objective of this study is to investigate the hemodynamic 
conditions generated by different IFW patterns and their 
impact on the predictions of a broad range of rheological 
models including the Newtonian, Carreau, Carreau-Yasuda, 
Casson, Power, Quemada, Cross, Modified and Simplified 
Cross, and Oldroyd-B models. For that purpose, three IFW 
patterns with different peak systolic and diastolic flow rates, 
which are the Base, Case 1 and 2, are utilized. In literature 
(Mutlu et al., 2023; Stergiou et al., 2019), hemodynamics of 
AAA is generally quantified by using WSS descriptors such as 
time-averaged wall shear stress (TAWSS), oscillatory shear 
index (OSI), endothelial cell activation potential (ECAP) and 
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relative residence time (RRT). However, WSS descriptors 
solely are not enough to bridge hemodynamics and aneurysm 
pathology because vortex patterns are also observed in AAAs 
(Saqr et al., 2020; Saha et al., 2024). Fuchs et al. (2021) 
observed the effect of IFW pattern on aorta hemodynamics, 
and their results highlighted a substantial impact of the IFW 
pattern on WSS descriptors. Moreover, they also revealed 
strong variations in vortex structures, but this aspect is not 
fully explored in the scope of their study. Hence, they 
recommend further investigation to understand the impact of 
IFW pattern on vortex evolution (Fuchs et al., 2021). 
Moreover, in a meta literature analysis study, Saqr et al. 
(2020) have reported that WSS is a scalar-tensor field, which 
loses its directionality. Visualizing vortex patterns rather than 
WSS descriptors is more meaningful owing to their 
directional nature. Therefore, together with WSS descriptors, 
quantifying the vortical structures and their evolution may 
lead to better understanding the effect of IFW both on AAA 
hemodynamics and predictions of various rheology models 
(Saqr et al., 2020; Saha et al., 2024). 
 
METHODS	
	
In their patient-specific aorta study, Fuchs et al. (2021) 
emphasized that variations in the IFW pattern 
considerably affect the vortex structures. However, they 
also highlighted that in the context of patient-specific 
geometries, the flow field becomes extremely complex, 
making it impractical to accurately parametrize the effect 
of IFW pattern on vortex structures (Fuchs et al., 2021). In 
this study, an idealized model of AAA is employed, chosen 
for its suitability for a comparative parametric study. 
Owing to its independence from geometric details, the use 
of an idealized geometry is advantageous for 
characterizing and comparing predictions of a broad range 
of rheology models according to different hemodynamic 
conditions under various IFW patterns. The AAA model 
used in this study is given in Fig. 2a. The geometry is two-
dimensional, axisymmetric, and created based on 
Stamatopoulos et. al’s study (2010). The entrance and exit 
parts are straight and cylindrical, while the aneurysm 
bulge is elliptical with a major radius of 0.034 m. The 
lengths of the entrance part, bulge and exit parts are 𝐿௘௡௧ ൌ
935 mm, 𝐿஻ ൌ 62 mm and 𝐿௘௫ ൌ 206 mm, respectively. 
The artery and bulge radii are, 𝑅 ൌ 9 mm and 𝑅஻ ൌ 22 mm, 
respectively. The vessel and bulge dimensions are 
consistent with those of realistic abdominal arteries and 
aneurysms (Brewster et al., 2003; Les et al., 2010).  
 
Figure 2b shows the IFW patterns used at the inlet, which 
are the Base, Case 1, and Case 2. In the Base case, the IFW 
pattern suggested by Finol and Amon is implemented, by 
preserving the overall waveform characteristics. However, 
the peak flow rate suggested by Finol and Amon (2001) is 
lower than the physiologically measured values (Suh et al., 
2011). To align with the physiological range, the peak flow 
rate in the Base case is adjusted upward to reach a peak 
systolic flow rate of 42 ml/sec, starting from a diastolic 
flow rate of zero. It is important to note that, while IFW 
pattern is derived from the Finol and Amon’s study (2001), 
there is no direct comparison between their results and the 
results of this study. Consequently, the results are not 
affected by the difference in the peak flow rates between 
the two studies. In Case 1, the diastolic flow rate remains 
consistent with that of the Base case, while the peak 

systolic flow rate is increased. On the other hand, in Case 2 
the amplitude of peak systole is kept identical to that of the 
Base pattern, albeit with increased diastolic flow rate. 
Therefore, Cases 1 and 2 serve to investigate the impact of 
increased peak systolic and diastolic flow rates, 
respectively. The period of all waveforms is the same and 
equal to 𝑇 ൌ 1 s, yielding a Womersley number of 𝛼 ൌ
0.5𝐷ඥ𝜔/𝜈 ൌ 12.14, where 𝐷 is the artery diameter, 𝜔 ൌ
2𝜋/𝑇 is the frequency, and 𝜈 ൌ  3.45 ൈ 10ି଺  mଶ/s is the 
kinematic viscosity of the Newtonian model. The mean 
Reynolds numbers for the waveforms are 𝑅𝑒௠ ൌ 𝑈௠𝐷/𝜈 ൌ
120, 250 and 1160, where 𝑈୫ ൌ 0.023, 0.048 and 0.223 
m/s are the time averaged velocities over one period for 
the Base, Case 1 and 2, respectively. 
 

 
Figure	2. a. 2D axisymmetric flow domain (out of scale). Flow is 
from left to right, b. Physiological IFW patterns, Base (Finol and 
Amon, 2001), Case 1 and 2. 
 
Unsteady plug flow is specified at the inlet. To capture the 
transient effects of physiological flow, a Womersley profile 
at the inlet is generally recommended (Madhavan and 
Kemmerling, 2018; Moyle et al., 2006; Ramazanli et al., 
2023, Wei et al., 2019; Womersley, 1955). The preliminary 
analysis (Ramazanli et al., 2023) found that while a 
minimum entrance length of 10D is sufficient for fully 
developing Womersley flow, a longer entrance length 
(50D) was applied in this study to achieve consistency 
across different IFW cases and to ensure a fully developed 
profile at the bulge inlet. A constant reference pressure of 
0 Pa is specified at the outlet, which is a frequently utilized 
approach in the literature for hemodynamic studies (Reza 
and Arzani, 2019; Soulis et al., 2008). Through the 
preliminary runs, it is ensured that the length of the exit 
part is long enough that the disturbance created by the 
bulge dies out before the flow reaches the outlet, enabling 
the use of constant pressure outlet.  
 
The wall boundaries are taken as rigid with no-slip 
boundary conditions applied. Excluding the compliance 
effect by using rigid walls is quite common in literature 
(Arzani and Shadden, 2016; Finol and Amon, 2001; Reza 
and Arzani, 2019).  Eight non-Newtonian models, Carreau, 
Carreau-Yasuda, Casson, Quemada, Power, Cross, 
Simplified and Modified Cross, with the details given in 
Table 1, are used. For the Power model, different constants 
are available in literature for the same hematocrit.
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Table	1. Selected shear-thinning rheology models, which are frequently used to model blood (Bessonov et al., 2016; Shibeshi and 
Collins, 2005; Cho and Kensey, 1991; Quemada, 1978; Stergiou et al., 2019).		

 
Carreau 
 
 

𝜇ሺ𝛾ሶ ሻ െ 𝜇ஶ

𝜇଴ െ 𝜇ஶ
ൌ ሺ1 ൅ ሺ𝜆𝛾ሶሻଶሻሺ௡ିଵሻ/ଶ	

𝜇଴ ൌ 0.056 Pa ∙ s 
𝜇ஶ ൌ 0.00345 Pa ∙ s 
𝜆 ൌ 3.313 s	
𝑛 ൌ 0.3568 

   

Carreau-Yasuda 
𝜇ሺ𝛾ሶ ሻ െ 𝜇ஶ

𝜇଴ െ 𝜇ஶ
ൌ ሺ1 ൅ ሺ𝜆𝛾ሶሻ௔ሻሺ௡ିଵሻ/௔	

𝜇଴ ൌ 0.056 Pa ∙ s 
𝜇ஶ ൌ 0.00345 Pa ∙ s 
𝜆    ൌ 1.902 s 
𝑛 ൌ 0.22 
𝑎 ൌ 1.25 

   

Quemada 𝜇 ൌ 𝜇௙

⎣
⎢
⎢
⎡
1 െ

1
2

𝐾଴ ൅ 𝐾ஶට|γሶ |
𝛾௖

1 ൅ ට|γሶ |
𝛾௖

𝜙

⎦
⎥
⎥
⎤
 

𝜇௙ ൌ 0.0012 Pa ∙ s 
𝐾଴ ൌ 4.65 
𝐾ஶ ൌ 1.84 
𝛾௖ ൌ 2.23 sିଵ 
𝜙 ൌ 0.4 

   

 
Casson 
 

√𝜏 ൌ ඥ𝑘଴ ൅ ඥ𝑘ଵ𝛾ሶ 	
 

𝑘଴ ൌ 0.05 dyne/cmଶ	
𝑘ଵ ൌ 0.04 dyne/cmଶ 

   

Cross 
 

𝜇ሺ𝛾ሶ ሻ െ 𝜇ஶ

𝜇଴ െ 𝜇ஶ
ൌ

1
1 ൅ ሺ𝑚𝛾ሶሻ௡	

 

𝜇଴ ൌ 0.056 Pa ∙ s 
𝜇ஶ ൌ 0.00345 Pa ∙ s 
𝑚 ൌ 1.007 s 
𝑛 ൌ 1.028 

   

Simplified Cross 
 

𝜇ሺ𝛾ሶ ሻ െ 𝜇ஶ

𝜇଴ െ 𝜇ஶ
ൌ

1
1 ൅ 𝑚𝛾ሶ

	

 

𝜇଴ ൌ 0.103 Pa ∙ s 
𝜇ஶ ൌ 0.005 Pa ∙ s 
𝑚 ൌ 8 s 

   

Modified Cross 
 

𝜇ሺ𝛾ሶ ሻ െ 𝜇ஶ

𝜇଴ െ 𝜇ஶ
ൌ

1
ሺ1 ൅ ሺ𝑚𝛾ሶሻ௡ሻ௔	

	
 

𝜇଴ ൌ 0.056 Pa ∙ s 
𝜇ஶ ൌ 0.00345 Pa ∙ s 
𝑚 ൌ 3.736 s 
𝑛 ൌ 2.406 
𝑎 ൌ 0.254 

   

Power 
 𝜇ሺ𝛾ሶ ሻ ൌ 𝐾𝛾ሶ ௡ିଵ	

 
 
 

𝐾 ൌ 0.017 Pa ∙ s୬ 
𝑛 ൌ 0.708  
(Shibeshi and Collins, 2005) 
          and 
𝐾 ൌ 0.035 Pa ∙ s୬ 
𝑛 ൌ 0.6  
(Cho and Kensey, 1991) 

In the present study, Power-1 (Shibeshi and Collins, 2005), and 
Power-2 (Cho and Kensey, 1991) are tested by using two 
frequently used constants. In Table 1, 𝜇 is the viscosity, 
𝜇଴ and 𝜇ஶ are the asymptotic viscosity values at zero and 
infinite shear rates, 𝜆 is the relaxation time constant, 𝐾 is the 
flow consistency index and 𝑛 is the power law index (Bessonov 
et al., 2016; Shibeshi and Collins, 2005; Cho and Kensey, 1991). 
The kinematic viscosity is 3.45 ൈ 10ି଺  mଶ/s for the 
Newtonian approach, and the density is 1000 kg/mଷ for all 
models (Bessonov et al., 2016)To account for the elastic nature 
of blood, the stress tensor in the linear momentum equation 
can be decomposed into viscous and elastic parts as 𝜏 ൌ  𝜏௦ ൅
𝜏௘. The viscous part of the Oldroyd-B model is Newtonian, 𝜏௦ ൌ
2𝜇௦ሺ∇𝑢 ൅ ∇𝑢்ሻ (Bodnár et al., 2011). The elastic part satisfies 
the following constitutive equation. 
 

  𝜏௘  ൅ 𝜆ଵ ൬
𝜕𝜏௘

𝜕𝑡
൅ 𝑢 ∙ 𝛻𝜏௘ െ 𝜏௘ ∙ 𝛻𝑢 െ 𝛻𝑢் ∙ 𝜏௘൰          

ൌ   𝜇௘ሺ𝛻𝑢 ൅ 𝛻𝑢்ሻ                                        ሺ1ሻ 
 
where 𝜇௘ is the elastic viscosity coefficient, and 𝜆ଵ is the 
relaxation time (Leuprecht and Perktold, 2001). For blood, 
𝜇௘ ൌ 0.0004 Pa ∙ s and 𝜆ଵ ൌ 0.06 s (Leuprecht and Perktold, 
2001). The Oldroyd-B model available in OpenFOAM is 
tested previosly (Habla et al., 2014; Guranov et al., 2013; 
Javidi et al. 2015).  

The maximum number of iterations performed at each time 
step is taken as 10, and the solutions are considered to be 
converged when residuals for axial velocity component and 
pressure are less than 10ିସ. Time step for all simulations is 
selected as 10ିହ sec, and to ensure that the time periodic state 
is reached, calculations are repeated for 6 cardiac cycles for 
shear-thinning and Newtonian models. However, 12 cardiac 
cycles are used to reach the time periodic state for Oldroyd-B 
model. To select a suitable mesh, a mesh independence study is 
performed using four structured meshes given in Fig. 3.  
 

 
Figure	3. Four meshes used for the mesh independence check. 
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Figure 4a shows axial velocity profiles at the mid-plane of 
the aneurysm and swirling strength, 𝜆௖௜ contours obtained 
at the peak systole and early diastole. In Figure 4b, OSI and 
ECAP distributions obtained are provided. The axial velocity 
profiles are identical and swirling strength contours are 
very similar for meshes 3 and 4. Albeit OSI and ECAP 
distributions are very sensitive to the mesh selection, Mesh 
3 and 4 provided very similar OSI and ECAP distributions. 
Therefore, Mesh 3 is evaluated to be suitable and used to 
perform the simulations in the present study. 
 
Stamatopoulos et al. (2010) have performed an 
experimental and numerical study in axisymmetric bulges 
similar to the those used in the present study with a steady 
inlet flow. As a general verification of the currently used 
simulation setup, axial velocity profiles obtained by 
Stamatopoulos et al. (2010) are compared with those 
obtained in the present study with a steady inlet flow in Fig. 
5a. The match in the profiles is considered to be satisfactory. 
Ohtaroglu (2020) performed experiments with 
physiological, unsteady inlets using Stamatopoulos et al.’s 
geometry. Figure 5c compares the streamlines obtained in 
those experiments with the current simulation results at 
four different time instants of the physiological cycle. 
Progression of focus points in streamlines, which are the 
indication of vortex core movement, shows good agreement. 
Considering both the spatial and the temporal evolution 
during the cycle, the model predictions are considered to be 
satisfactory. In addition, simulations are performed to 
ensure the validity of 2D axisymmetric simplification by 
comparing results with those of 3D simulations. Considering 
the velocity profiles plotted at the mid plane of the bulge in 
Fig. 5c, 2D axisymmetric and 3D results turn out to be almost 
identical.  
 
WSS	descriptors	and	swirling	strength	
	
Generally, wall shear stress (WSS) distribution and different 
WSS descriptors are used in the literature to predict 
aneurysm development, thrombosis formation and rupture 
(Salman et al., 2019; Mutlu et al., 2023). TAWSS descriptor 
evaluates the total shear stress exerted on the wall 
throughout a cardiac cycle and OSI highlights zones where 
WSS shows directional changes over the cardiac cycle (Pinto 
and Campos, 2016). ECAP and RRT combine TAWSS and OSI 
in different ways. Mathematical definitions of these 
descriptors are given below 
 

𝑇𝐴𝑊𝑆𝑆 ൌ  
1
𝑇

න |𝜏௪|𝑑𝑡                                 ሺ2ሻ
்

଴
	

 

𝑂𝑆𝐼 ൌ 0.5 ቌ1 െ
ቚ
1
𝑇 ׬ 𝜏௪𝑑𝑡

்
଴ ቚ

1
𝑇 ׬ |𝜏௪|𝑑𝑡

்
଴

ቍ                       ሺ3ሻ	

 

𝐸𝐶𝐴𝑃 ൌ  
𝑂𝑆𝐼

𝑇𝐴𝑊𝑆𝑆
                                    ሺ4ሻ 

 

𝑅𝑅𝑇 ൌ  
1

ሺ1 െ 2𝑂𝑆𝐼ሻ𝑇𝐴𝑊𝑆𝑆
                        ሺ5ሻ 

 
where 𝑇 and 𝜏௪ are the cardiac cycle period and the wall 
shear stress, respectively.  

Vortex structures are studied extensively in fluid mechanics 
(Epps, 2017; Chen et al., 2015) because in many cases they 
provide important insights into the flow field. Inside the 
aneurysm sac, there is a vortex ring that evolves throughout 
the cardiac cycle (Bilgi and Atalik, 2019; Deplano et al., 
2016). Therefore, together with WSS descriptors, vortex 
patterns also provide valuable information regarding AAA 
hemodynamics. Saqr et al. (2020) suggested investigating 
flow field within aneurysms via vector fields such as 
vorticity, rather than scalar-tensor fields. However, the 
vorticity field is not able to discriminate shear layers and 
vortices (Chen et al., 2015). Swirling strength, 𝜆௖௜, is a 
velocity gradient-based vortex identification criteria, which 
uses discriminant of characteristic equation to define a 
vortex without shear layers and takes the following form for 
a 2D axisymmetric flow (Chen et al., 2015) 
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where 𝑢௥ and 𝑢௫ are radial and axial velocity components, 
respectively. 𝜆௖௜ is larger than zero around a vortex region 
(Chen et al., 2015).  
 
RESULTS	
 
Effect	of	IFW	pattern	on	AAA	hemodynamics	
 
To understand the hemodynamics of the three IFW 
patterns inside the AAA model, the temporal evolution of 
vortex structures, obtained by using the Carreau model, is 
presented in Supplementary Video 1. For all IFW patterns 
which are presented as the Base, Case 1 and 2, a primary 
vortex is generated due to acceleration of the bulk flow 
during early systole. It is separated from the inlet of the 
bulge at the peak systole, t = 0.3 sec, and transported 
downstream by means of advection. The primary 
phenomena differing from those of the Base, Case 1 and 2 
are the acceleration and advection of the bulk flow. For the 
Base waveform, the acceleration is relatively minor 
compared to that in Case 1, resulting in only a weaker 
primary vortex with a small |𝜆௖௜|. Advective effects are also 
not dominant due to low mean flow rate. Therefore, the 
primary vortex dissipates due to viscous diffusive effects 
before it reaches the central region. The largest 
acceleration is obtained by Case 1. During early systole, the 
larger acceleration generates a stronger vortex with a large 
|𝜆௖௜| compared to the Base case and Case 2. The vortex 
maintains itself as a strong identity and remains 
transported to the distal region until the end of the cardiac 
cycle at 𝑡 ൌ 𝑇. On the other hand, increased advective 
effects due to the larger mean flow rate in Case 2 resulted 
in the transport of the vortex to the distal site being 
completed by the end of the systolic phase at 𝑡 ൌ 0.5𝑇. 
During the diastolic phase, the vortex in Case 2 is located 
at the distal zone and dissipates due to viscous effects by 
the end of the cycle, whereas the primary vortex of Case 1 
maintains its strong identity even during late diastole.  
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Figure	4. a.	Axial velocity profiles obtained with four different meshes at the mid-plane of the aneurysm, 𝑥/𝐿஻ ൌ 0.5, and swirling 
strength contours through the bulge at the peak systole and mid diastole, b. OSI and ECAP distributions of four meshes for Case 2. 
 

 

 

 
Figure	5. a. Comparison of the normalized axial velocity profile of the current study at x/LB=0.5 with results of Stamatopoulos et al. (2010) for a steady 
inlet velocity, b. Comparison of the streamline patterns of different time instants for a cardiac cycle; upper halves show the current results and lower halves 
are from Ohtaroglu (2020), c. Comparison of the axial velocity profiles of 2D axisymmetric and 3D geometries at x/LB=0.5 at t=0.3 sec of Base case. 
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Figure 6 presents the contours of the time-averaged 
swirling strength, 𝜆௖ప

തതതത, streamlines and variations in WSS 
descriptors for three IFW patterns. The Base pattern 
generates a single primary vortex pattern, in the proximal 
region of the bulge. However, for Cases 1 and 2, a second 
primary and a secondary vortex are also generated, and 
the primary vortex is located in the distal region with a 
larger magnitude of 𝜆௖ప

തതതത than in the Base case. For Case 1, 
the second primary and secondary vortices are in the 
proximal and central regions, respectively. However, for 
Case 2, they are both located in the distal zone, in contrast 
to the Base case. As illustrated in Fig. 6, there is a strong 
correlation between WSS descriptors and vortex patterns. 
TAWSS obtains high values around the vortices, 
particularly in large ห𝜆௖ప

തതതതห zones in proximity to the wall, 
where the OSI, ECAP and RRT are low. For all the cases 
magnitudes of the ECAP and RRT become zero with high 
ห𝜆௖ప
തതതതห in the regions where the primary vortex is located. 

However, the ECAP and RRT values increase significantly 
in regions with high stagnation. ECAPmax and RRTmax for the 
Base case are three times larger than those of Case 1, which 
has low stagnancy. 
 
Effect	of	the	IFW	pattern	on	predictions	of	the	rheology	
models		
	
To investigate the effect of the IFW pattern on the behavior 
of rheology models, instantaneous WSS distributions, 
contours of swirling strength, 𝜆௖௜, and shear rate, 𝛾ሶ , are 
plotted in Fig. 7. In the literature, the most significant 
deviations between the Newtonian and shear-thinning 
models are observed at the diastolic phase due to the low 
flow rate (Shibeshi and Collins, 2005), which is consistent 
with the results of the present study. The mid-diastolic 
phase (Egelhoff et al., 1999) was selected as it corresponds 
to the lowest shear rates, where non-Newtonian blood 
behavior becomes more significant. To provide a 
comprehensive investigation of hemodynamics, 
Supplementary Material includes figures and videos 
showing the evolution of swirling strength throughout the 
entire cardiac cycle, covering all diastolic phases for each 
IFW case. Therefore, the results of mid diastolic phase, t = 
0.73 sec, are presented in Fig. 7. In Case 1, |𝛾ሶ | remains low 
for most of the bulge, while |𝛾ሶ | ൐ 50 sିଵ around the 
primary vortex. Compared to shear-thinning models, the 
Newtonian model overestimates the WSS peak, intensity of 
swirling strength contours and |𝛾ሶ |, which is consistent 
with literature (Biasetti et al., 2011). The WSS 
distributions, patterns of 𝜆௖௜ contours and their locations 
are very similar for the Casson and Quemada models, 
consistent with the results of (Skiadopoulos et al., 2017). 
The Carreau and Power models predict comparable 𝜆௖௜ 
patterns and WSS distributions, as reported by (Shibeshi 
and Collins, 2005). Although not presented here, the 
Carreau-Yasuda, Cross, Modified and Simplified Cross 
models are also tested. The results obtained by the 
Carreau-Yasuda, Cross and Modified Cross are the same 
with Carreau and Power-1, while the Simplified Cross 
model provided very similar hemodynamic descriptors 
with the Casson and Quemada for all cases.  For Case 2, 
|𝛾ሶ | ൐ 50 sିଵ is obtained near the distal region and at the 

centerline of the aneurysm, while it remains close to zero 
in proximity to the wall for proximal and central regions. 
At regions with high |𝛾ሶ |, contours of 𝜆௖௜ and WSS 
distribution obtained by the Carreau, Carreau-Yasuda, 
Cross, Modified and Simplified Cross, Casson, Quemada 
and Newtonian models are very similar to each other. 
Therefore, the Newtonian model might be sufficient for the 
zones with |𝛾ሶ | ൐ 50 sିଵ, while the shear-thinning models 
are necessary for the stagnant regions with significantly 
lower shear rates.  
 
In Supplementary Figure, the WSS distributions, 𝜆௖௜ and 
|𝛾ሶ | contours of peak systolic phase, t = 0.3 sec, are 
presented at the post-bulge, straight artery segment for 
Case 1 and 2. In this specific region, near-wall |𝛾ሶ | values 
exhibit a significant increase compared to the values in 
proximity to the bulge. The results demonstrate that, the 
Casson and Quemada models demonstrate a diverging 
behavior from the Newtonian model as |𝛾ሶ | values are 
increasing, whereas the Carreau and Power models exhibit 
a more consistent behavior. It is the fact that for large |𝛾ሶ | 
values (|𝛾ሶ | ൐ 100 sିଵሻ, blood demonstrates Newtonian 
characteristics (Bessonov et al., 2016), the suitability of 
Casson and Quemada models in modeling the rheological 
behavior of blood might be questionable, particularly in 
scenarios characterized by elevated |𝛾ሶ | values.  
 
Figure 8 shows contours of time-averaged swirling 
strength, 𝜆௖ప

തതതത, shear rate, 𝛾ሶ ̅ , and streamlines obtained by the 
Carreau, Power, Casson, Quemada and Newtonian models 
for Base, Case 1 and 2. For the Base case, |𝛾ሶ ̅| ൏ 10 sିଵ 
throughout the bulge, and the Newtonian model 
overestimates the magnitude and intensity of 𝜆௖ప

തതതത contours 
of vortices. From the 𝜆௖ప

തതതത contours, non-Newtonian 
behavior in low shear zones minimizes the size of the 
primary vortex pattern for all of the shear-thinning models 
(Soulis et al., 2008), and a second primary vortex is only 
obtained by the Newtonian model.  
 
For Case 1, |𝛾ሶ ̅| is larger than 50 sିଵ only around the 
primary vortex, but it is nearly zero at other regions. 𝜆௖ప

തതതത 
contours and streamline patterns of the Newtonian model 
are significantly different than the other rheology models. 
On the other hand, except the proximal and central regions, 
|𝛾ሶ ̅| ൐ 50 sିଵ inside the bulge for Case 2. Therefore, 𝜆௖ప

തതതത and 
streamline predictions of all shear-thinning models 
become very similar to the Newtonian model. With 
increasing shear rate, except the Power-2, all rheology 
models can predict the primary, second primary and 
secondary vortices. Biasetti et al. (2011) have reported 
that the Newtonian model predicted vortex structures at 
the core region, away from the near wall, which were not 
observed with the more accurate Carreau–Yasuda model. 
Moreover, Arzani (2016) has hypothesized that shear-
thinning models predict different vortex patterns than the 
Newtonian model. The present study further supports 
those hypotheses quantitatively, revealing that the 
Newtonian model especially tends to overestimate the 
magnitude and intensity of 𝜆௖ప

തതതത contours of secondary and 
second primary vortices.
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Figure	6. Comparison of time-averaged swirl strength contours, streamlines and variations in WSS measures on the aneurysm wall for 
the Carreau model for three IFW patterns 
 
In Figure 9, OSI and ECAP distributions obtained by 
selected rheology models are presented. As observed in 
Fig. 6, OSI and ECAP values are near to zero around high 
ห𝜆௖ప
തതതതห region, while they tend to increase for decreasing ห𝜆௖ప

തതതതห 
for each waveform and rheology model. OSI and ECAP 
distributions obtained by the Casson and Quemada models 
are nearly the same, and closer to the Newtonian pattern 
at each waveform, consistent with the results of Fig. 8. OSI 
and ECAP estimations of the Carreau and Power-1 models 
are very similar and more dissipative than the Casson and 
Quemada, which is an expected behavior for a shear-
thinning model (Biasetti et al., 2011). Power-2 is 
significantly dissipative and its OSI and ECAP patterns are 
very different than other shear-thinning models. Even for 
Case 1 and 2, with comparatively higher |𝛾ሶ ̅| values inside 
the bulge, the Newtonian model overestimates the OSI and 
ECAP values. Especially for Case 2 with the highest mean 
flow rate, OSI and ECAP values obtained by the Newtonian 
model are significantly larger for the proximal and central 
regions of the bulge (0 ൏ 𝑥/𝐿஻ ൏ 0.65) than the shear-
thinning models, although they obtain quite similar 𝜆௖ప

തതതത 
patterns as seen in Fig. 8. 

OSI and ECAP estimations of the Carreau and Power-1 
models are very similar and more dissipative than the 
Casson and Quemada, which is an expected behavior for a 
shear-thinning model (Biasetti et al., 2011). Power-2 is 
significantly dissipative and its OSI and ECAP patterns are 
very different than other shear-thinning models. Even for 
Case 1 and 2, with comparatively higher |𝛾ሶ ̅| values inside 
the bulge, the Newtonian model overestimates the OSI and 
ECAP values. Especially for Case 2 with the highest mean 
flow rate, OSI and ECAP values obtained by the Newtonian 
model are significantly larger for the proximal and central 
regions of the bulge (0 ൏ 𝑥/𝐿஻ ൏ 0.65) than the shear-
thinning models, although they obtain quite similar 𝜆௖ప

തതതത 
patterns as seen in Fig. 8. OSI௠௔௫ value obtained by the 
Newtonian model at that segment is 2 times larger than the 
Carreau and Power, while 1.5 times larger than Casson and 
Quemada models. ECAP௠௔௫ value of the Newtonian at that 
zone is 5 and 2.5 times larger than Carreau-Power and 
Casson-Quemada pairs, respectively. 
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Figure	7.	 Comparison of WSS distributions, 𝜆௖௜ and |𝛾ሶ | contours of Newtonian and selected shear-thinning rheology models 
at t = 0.73 sec, for cases 1 and 2. 
 
Differences	 of	 the	 hemodynamic	 predictions	 of	 the	
Newtonian,	shear‐thinning	and	Viscoelastic	models	
	
To the author’s best knowledge, this is the first study which 
utilizes Oldroyd-B model of OpenFOAM to simulate 
hemodynamics of an AAA model. Base case is selected here 
because the Oldroyd-B model available in OpenFOAM fails 
to provide a stable solution for high mean Reynolds 
numbers, such as Case 1 and 2. This observation is 
consistent with literature, where multiple studies have 
documented the inadequacies of the Oldroyd-B model in 
accurately capturing flow dynamics of high Reynolds 
numbers (Elhanafy et al., 2019; Leuprecht and Perktold, 
2001). Indeed, the elasticity of blood is dominant for low 
shear rates, demonstrating a diminishing pattern with 
increasing shear rate ሺ|𝛾ሶ | ൐ 100 𝑠ିଵሻ (Bodnár et al., 2011). 
Therefore, comparing the results of the Newtonian, 
Viscoelastic, Quemada and Carreau models for the Base case 

with lower shear provides insights into the differences 
introduced by blood elasticity.  
 
In Figure 10a, 𝜆௖௜ contours and streamline patterns for the 
Base case are presented for the Newtonian, Viscoelastic, 
Quemada and Carreau models at the mid-diastolic phase (t 
= 0.73 sec). The selection of the Base case is motivated by its 
characteristic low shear rates. The viscous part of the 
Viscoelastic Oldroyd-B model is Newtonian, not shear-
thinning. On the other hand, the Carreau and Quemada 
models are shear-thinning models and could only provide 
viscous behavior. Therefore, the difference between the 
Newtonian and Viscoelastic results is caused by the elastic 
effects, while the shear-thinning models and Newtonian 
case present variations caused only by viscous effects.  
 
 

 



31 

 
Figure	8.	Comparison of time-averaged streamline patterns, 𝜆௖ప

തതതത (upper parts) and |𝛾ሶ ̅ | contours (bottom parts) of selected rheology models 
	

 
Figure	9.	Comparison of OSI and ECAP distribution on the aneurysm wall of selected rheology models. 
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Figure	10.	Comparison of a. 𝜆௖௜ contours and instantaneous streamline patterns at t = 0.73 sec, b. 𝜆௖ప

തതതത contours and time-averaged 
streamline patterns of selected models for the Base case. 

Compared to other models, the size of primary vortex obtained 
by the Viscoelastic model is smaller and it is located in closer 
proximity to the inlet of the bulge. From the streamlines and 
contours of 𝜆௖௜, a second primary vortex is observed for the 
Newtonian, Viscoelastic and Quemada models, but the core 
locations are different. The core of the second primary vortex 
of the Newtonian model is located near to the distal region, 
while it is located at the central zone for the Viscoelastic and 
Quemada models. In Fig. 10b, the time-averaged streamline 
patterns are presented. Location of the time-averaged primary 
and second primary vortex cores and 𝜆௖ప

തതതത contours obtained by 
the Viscoelastic model are more similar to the Newtonian 
model, compared to the Carreau and Quemada models. 
Aforementioned shear-thinning models do not predict a time-
averaged second primary vortex. 
	
DISCUSSION	
 
The current study investigates the impact of infrarenal flow 
waveform (IFW) patterns on AAA hemodynamics and the 
behavior of the Newtonian, viscous shear-thinning and 
viscoelastic rheology models. For that purpose, three IFW 
patterns, Base, Case 1 and 2, are implemented in a simplified 
AAA model as the inlet boundary conditions. In comparison to 

the baseline represented by the Base case, Cases 1 and 2 are 
specifically designed to assess the impact of increased peak 
systolic and diastolic flow rates, respectively. Fig. 6 and 
Supplementary Video-1 clearly demonstrate that the IFW 
pattern exerts a significant influence on both the vortex 
structure and WSS descriptors. The primary vortex of the Base 
case cannot reach the distal region, while its transportation to 
the distal site is completed by the end of the systolic phase at 
𝑡 ൌ 0.5𝑇. On the other hand, the vortex transport for Case 1 
persists until the end of one full cardiac cycle, 𝑡 ൌ 𝑇, with no 
fixed settling zone for an extended period. This prolongs the 
oscillatory nature of the flow pattern, resulting in elevated OSI 
values. Throughout the bulge, the magnitude of OSI for Case 1 
is greater than that for the other waveforms, which might be 
related to vortex transport. Moreover, regions with large ห𝜆௖ప

തതതതห 
values exhibit nearly zero OSI, ECAP and RRT values. Hence, 
both the strength of the vortex and its transportation 
mechanism (VTM) influence the distribution and magnitude of 
WSS descriptors.   
 
Fig. 7 reveals that the shear-thinning rheology model is as 
effective for determining AAA hemodynamics as is the case for 
IFW patterns. The Newtonian model tends to overestimate the 
WSS peak, intensity, and magnitude of swirling strength of the 
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vortex patterns, compared to those of all shear-thinning 
models. Although instantaneous WSS distributions, and 𝜆௖௜ and 
𝜆௖ప
തതതത contours agree that the Newtonian model is applicable for 
the regions with |𝛾ሶ | ൐ 50 sିଵ, in Fig. 9, there are significant 
differences in OSI and ECAP distributions between the 
Newtonian and shear-thinning models, especially for Case 2, 
which has the highest mean flow rate. Supplementary Video-2 
presents the temporal evolution of |𝛾ሶ | distribution inside the 
bulge for all three waveforms. Together with the vortex 
structure, a larger |𝛾ሶ | region is also transported through the 
bulge. Although Case 1 could not obtain a large |𝛾ሶ | through the 
aneurysm, the transport of vortex pattern is slow, eliminating 
the long stagnation at specified sections inside the bulge. 
However, for Case 2, the transport of vortex pattern is 
accomplished within a very short time, leading to a highly 
stagnant flow structure at the proximal and central regions. In 
those highly stagnant regions, the Newtonian predicts an 
OSI௠௔௫  twice as large as that predicted by the Carreau and 
Power models, along with an ECAP௠௔௫  that is 5 times greater. 
Therefore, within the aneurysm bulge, in addition to |𝛾ሶ | 
distribution, the vortex transport mechanism (VTM) is also an 
important factor to consider when selecting a rheology model. 
 
For the shear-thinning models, the Casson and Quemada 
models are closer to the Newtonian model than the Carreau 
and Power models for |𝛾ሶ | ൏ 100 sିଵ, and they exhibit 
diverging behavior from the Newtonian model at high |𝛾ሶ |, 
which is not expected. However, according to Fig. 10, the 
difference between the viscoelastic and Newtonian models is 
relatively small compared to that between the shear-thinning 
models even at low |𝛾ሶ ̅|, which is consistent with the findings of 
(Bodnár et al., 2011). 
	
CONCLUSIONS	
	
The study yields the following conclusions: 
 

• The IFW pattern has a significant impact on VTM,  
• The strength of the vortices and their transportation 

mechanism (VTM) both influence the distribution and 
magnitude of the TAWSS, OSI, ECAP, and RRT, 

• The vortex transport mechanism (VTM) is also an 
important factor to consider when selecting a rheology 
model because high |𝛾ሶ | region is also transported with 
VTM, 

• The effect of elastic behavior is relatively minor compared 
to the effect of viscous shear-thinning behavior, 

• Even at high flow rates, the Newtonian model is not 
appropriate for modeling AAA hemodynamics. Rather than 
the Newtonian model, the Carreau and Power models, 
together with proper patient-specific constants, are more 
stable than Casson and Quemada, and recommended (Saqr 
et al., 2020). 

 

This study, as a comparative parametric analysis, is subject to 
several limitations that could influence the obtained results. 
The idealization of aneurysm bulge rather than utilizing 
patient-specific geometry may lead to inadequate simulation of 
the exact aneurysm hemodynamics, together with omitting the 
wall compliance and Windkessel boundary conditions. 
Therefore, future studies will aim to incorporate patient-
specific geometries with elastic walls, Windkessel boundary 
conditions, along with implementing the Oldroyd-B model for 
high Reynolds number. Finally, VTM can be observed by 
applying a turbulence model such as LES.  
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