

AYBU Business Journal, 4(1), 1-23

https://dergipark.org.tr/tr/pub/abj

https://aybu.edu.tr/isletme/tr/sayfa/5218/AYBU-BUSINESS-JOURNAL

Submitted: 11 June 2024

Accepted: 29 June 2024

 Published Online: 30 June 2024

RESEARCH ARTICLE DOI: 10.61725/abj.1499654

 This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License

A Comprehensive Analysis of Multi-Strategy Memetic Algorithms Incorporating Low-

Level Heuristics and Acceptance Mechanisms

Mazlum Özçağdavul a*

 aManagement Information Systems, Ankara Yildirim Beyazit University, Ankara, Turkey

1. INTRODUCTION

The effectiveness of heuristic approaches in addressing practical computer optimisation problems has been

demonstrated. Applying them to both new problem domains and new instances of the same problem domain

has many disadvantages, though. It is challenging to apply such search strategies to a wide range of

*Corresponding author.

Contact: Mazlum Özçağdavul mozcagdavul@aybu.edu.tr

To cite this article: Özçağdavul, M. (2024). An emprical study on multi-meme memetic algorithms which includes Choice Function,
Reinforcement Learning and Simple Random Hyper-heuristics. AYBU Business Journal, 4(1), 1-23.

Abstract

Hyper-heuristics are designed to be reusable, domain-independent methods for

addressing complex computational issues. While there are specialized approaches
that work well for particular problems, they often require parameter tuning and cannot

be transferred to other problems. Memetic Algorithms combine genetic algorithms

and local search techniques. The evolutionary interaction of memes allows for the

creation of intelligent complexes capable of solving computational problems. Hyper-
heuristics are a high-level search technique that operates on a set of low-level

heuristics that directly address the solution. They have two main components:

heuristic selection and move acceptance mechanisms. The heuristic selection method
determines which low-level heuristic to use, while the move acceptance mechanism

decides whether to accept or reject the resulting solution. In this study, we explore a

multi-meme memetic algorithm as a hyper-heuristic that integrates and manages
multiple hyper-heuristics (Modified Choice Function All Moves, Reinforcement

Learning with Great Deluge, and Simple Random Only Improvement) and

parameters of heuristics (such as mutation rates and search depth). We conducted an

empirical study testing two different variations of the proposed hyper-heuristic. The
first algorithm uses the Only Improvement acceptance technique for both

Reinforcement Learning and Simple Random, and All Moves for Modified Choice

Function. In the second version, the Great Deluge method replaces Only
Improvement for Reinforcement Learning. The second algorithm's results were the

best of all competitors from the CHeSC2011 competition, achieving the fourth-best

hyper-heuristic performance.

Keyword

Hyper-Heuristic,

Cross-domain

Heuristic Search

Challenge (CHeSC

2011), Multi-meme
memetic algorithm,

parameter tuning.

https://dergipark.org.tr/tr/pub/abj
https://aybu.edu.tr/isletme/tr/sayfa/5218/AYBU-BUSINESS-JOURNAL
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-7712-3549

Özçağdavul AYBU Business Journal, 4(1), 1-23

2

computational search problems since there is a lack of guidance about the selection of algorithms and their

parameters during the search process (Özcan et al., 2010; Burke et al., 2003). Furthermore, the fact that

state-of-the-art heuristics are custom problem-specific approaches that take a long time and extensive

domain expertise to design adds to the difficulty of actual procedures (Burke et al., 2009; Ross, 2005)

Burke et al.'s description of metaheuristics as a framework for structuring a search algorithm to locate

an ideal or nearly ideal solution for challenging combinatorial optimization problems is found in

(Burke and Kendall, 2005). Despite being categorized as universal algorithms, metaheuristics require

modification for every issue domain. In addition to single-point based metaheuristics, which employ

a single candidate solution, multi-point based metaheuristics employ several candidate solutions to

carry out the search process. Among the population-based metaheuristics are genetic programming

and genetic algorithms (Burke and Kendall, 2005).

Using a variety of genetic operators, including crossover and mutation to produce new people, genetic

algorithms aim to raise the objective value of candidate solutions within a population (Moscato,

1989). Afterwards, created individuals are swapped out for other population members using

replacement procedures such as the Steady State Genetic Algorithm (Gendreau and Potvin, 2005).

The selection of these operators may have a significant impact on the balance between intensification

and diversification.

By adding an extra intensification level to the evolutionary iterations, multipoint-based evolutionary

algorithms combined with single-point-based local search heuristics get better results. This is

Memetic Algorithms' primary reasoning. It was Muscato who initially proposed memetic algorithms

(Moscato, 1989). That being said, Dawkins was the first scientist to coin the term "meme." According

to him, a meme is a bit of information that spreads and becomes managed, accepted, acclimated to,

and passed to the affected individual (Dawkins, 1976). Furthermore, a genetic algorithm (GA) can be

employed to identify the optimal feature selection for learning-based issues by applying a

metaheuristic approach (Yılmaz et al., 2020)

There are similarities between this acclimatization process and local search. Thus, hill climbing is

often used in memetic algorithms. Stated differently, memetic algorithms combine local search (hill

climbers) and genetic algorithms. In order to enhance the population's objective quality, hill climbers

are used in a specific lap of each course throughout the development phase. Numerous memetic

algorithms have been proposed. Two primary examples of these algorithms are transgenerational

memetic algorithms and steady state memetic algorithms. Memetic algorithms are typically

customized for a particular problem domain (Neri and Cotta, 2012)

Aims and Objectives

It is challenging to create a custom method for every problem domain since computational problems

have a large number of distinct domains. Furthermore, in order to construct a solver, each instance of

a domain could call for specialized domain knowledge. The goal is to produce high-level algorithms

that are independent of issue domains because of this. Numerous studies have been conducted in the

literature, and it has been demonstrated that a number of algorithms including Reinforcement

Learning, Choice Function, Simple Random and acceptance mechanisms including Great Deluge,

Simulated Annealing, and Only Improvement can yield encouraging outcomes.

This work examines a multi-meme memetic algorithm as a hyper-heuristic that combines and

regulates many heuristic selection techniques (Modified Choice Function, Reinforcement Learning,

Özçağdavul AYBU Business Journal, 4(1), 1-23

3

and Simple Random), as well as low-level heuristic parameters (operators), in light of these studies.

The primary goal is to create an intelligent algorithm that can select the appropriate heuristic selection

technique on its own and adjust the low-level heuristic's parameters for each kind of heuristic

selection method.

2. Hyper-heuristics

2.1. Hyper-Heuristics overview and History

A unique, problem-independent method for resolving and optimizing computational issues is the use of hyper-

heuristics. In a work published in 2001, Cowling et al. (2001), used the term "hyper-heuristic" for the first

time. Hyper-heuristics are defined as general techniques that can be applied to a wide range of problems. Özcan

et al. highlight in (Kendall and Mohamad, 2004) that the development of meta-heuristics stems from their

application to a variety of problem domains. The neighborhood operators that transform meta-heuristics into

problem-specific structures rather than broad frameworks are what make them effective. For this reason, it is

inappropriate to use meta-heuristics as a framework independent of problems.

Since hyper-heuristics operate on the space of heuristics rather than the space of solutions, they are often

applicable to a wide range of problem domains (Cowling et al., 2001). From a given set of heuristics, a hyper-

heuristic technique can intelligently select the most appropriate low-level heuristic to utilize at any given time.

Thus, rather than providing a solution for a particular issue instance at hand, we in hyper-heuristics concentrate

on adaptively developing organization approaches (Özcan et al., 2010). Hyper-heuristics can be employed in

place of meta-heuristics since they don't require as much knowledge and experience with the problem domain.

Thus, even a programmer without any prior knowledge of the issue domain can use them (Kaelbling et al.,

1996).

This research began with a study published at the start of the 1960s that expressed a concept comparable to the

behavior of hyper-heuristics. Fisher and Thompson (1963) contend that a great accomplishment in production

scheduling can be achieved by combining scheduling rules, as opposed to utilizing them separately. It is

possible to demonstrate that the effective research in hyper-heuristics began with this paper (Fisher and

Thompson, 1963).

2.2. Classification of Hyper-heuristic approaches

Two primary groups of hyper-heuristics have been distinguished by Burke et al. (2010). The first is heuristic

selection, which comprises methods for picking or selecting low-level heuristics that already exist, and the

second is heuristic creation, which generates heuristics from the parts of various low-level heuristics that

already exist. The distinction between the constructive and perturbative search paradigms is the next step in

this dimension (Burke et al., 2013)

However, there are also two major classes when considering the quantity of solutions used during the search

process. These are multi-point-based search, which operates on several solutions, and single solution, which

acts on a single-point-based search.

According to Özcan et al. (2013), a hyper-heuristic is a learning algorithm if it makes use of evaluation

throughout the search process. They divide the feedback received during learning into two classes: online

learning and offline learning, depending on where it came from. Hyperheuristics for online learning involve

Özçağdavul AYBU Business Journal, 4(1), 1-23

4

learning while solving problems. In offline learning, on the other hand, the system learns from a collection of

training cases with the intention of generalizing to solve problems in cases that have not yet been observed.

2.3 Multi-meme Memetic Algorithms

From a conceptual standpoint, metaheuristics are utilized as a template for addressing challenging

combinatorial optimization issues and aid in the creation of search algorithms. Metaheuristics cannot be

categorized as universal techniques since they require knowledge particular to the issue domain. There are two

different kinds of metaheuristics based on how many points they use during the search process. These

metaheuristics are based on both single and multiple points. Another name for multi-point-based

metaheuristics is population-based metaheuristics. Genetic algorithms are one type of potential solution used

by population-based metaheuristics (Burke and Kendall, 2005). In an evolutionary cycle, genetic algorithms

iteratively improve population quality using a set of genetic operators. The best one may survive, or the old

person may be replaced by kids. Crossover, mutation, and local searches are among names for these operators.

Local searches are employed to intensify the solution, whereas crossover and mutation heuristics are used to

avoid local optima (Gendreau and. Potvin, 2005). The balance between diversification and intensity is a critical

decision that impacts an individual's level of fitness.

2.3.1 Multi-meme memetic algorithm taxonomy

Memetic algorithms are divided into two categories by Ong et al. (2006): the process of adaptation, also known

as the adaptation type (Hinterding et al., 1997; Eiben et al., 1999) and the adaptation level, which modifies the

selection of memes in adaptive memetic algorithms. Another name for adaptation level is meme history

knowledge. The taxonomy of adaptive memetic algorithm techniques in use is shown in Figure 1.

Figure 1: A Classification of Memes Adaptation in Adaptive Memetic Algorithms (Ong et al., 2006)

This taxonomy divides co-evolution memetic algorithms (Smith et al., 2002; Smith, 2003) and multi-meme

memetic algorithms (Krasnogor et al., 2002; (Krasnogor, 2002) into self-adaptive categories since the memes

are coded as a component of the population and also go through conventional evolution. Additionally, a multi-

meme memetic algorithm or a memetic algorithm is categorized based on the decision-making process based

on the degree of adaption. This meme selection procedure is local if it just takes into account a portion of

historical knowledge. As a result, this taxonomy places our multi-meme memetic algorithm in the local level

and self-adaptive category.

Özçağdavul AYBU Business Journal, 4(1), 1-23

5

2.4 Heuristic selection methodologies

Many hyper-heuristic approaches that are divided into two categories can be found in the literature. These

categories can be divided into two groups: those based on constructive low-level heuristics and those based on

perturbative low-level heuristics. Starting with a blank solution, the constructive low-level heuristics construct

attempts to gradually develop the entire solution (Özcan et al., 2010). They have had success using them to

solve combinatorial optimization issues. Bin-packing (Ross et al., 2003) timetabling (Terashima-Marin et al.,

1999; Asumuni et al., 2007; Qu, et al., 2008) production scheduling (Vazquez-Rodriguez et al., 2007) and

reducing stock (Terashima-Marin et al., 2005) are a few examples of these issues.

Within the second category, methods utilizing perturbative low-level heuristics attempt to identify a feasible

starting solution using some straightforward mechanisms; these can be determined arbitrarily or through the

application of a fundamental constructive heuristic. Subsequently, the solution is attempted to be improved by

applying shift and swap perturbations (Özcan et al., 2010). In other words, they pick or choose from a group

of neighborhoods that can yield better results than the initial, full answer. Perturbative hyper-heuristics are

sometimes referred to as improvement hyper-heuristics by Özcan et al. (2005). Improvement hyper-heuristics

like this have been effectively used to solve real-world issues including staff scheduling (Cowling et al., 2001),

timetabling (Terashima-Marin et al., 2005), and (Burke et al., 2003). In most cases, perturbative hyper-

heuristics are used on a single candidate solution. These hyper-heuristics aim to improve a particular answer.

Most search operations in a perturbative hyper-heuristic framework are carried out with a single candidate

solution. Iteratively, these hyper-heuristics aim to enhance a given solution by averaging two successive steps:

heuristic selection and move acceptance, as seen in Figure 1. Using a chosen heuristic (or heuristics), a

candidate solution (St) at a specified time (t) is disturbed into a new solution (or solutions). After this stage is

complete, the found solution is either rejected or accepted using a technique known as move acceptance. Until

a predetermined halting requirement is satisfied, this procedure is repeated (Özcan et al., 2010). Information

related to the problem cannot be transferred from the problem domain to the hyper-heuristic layers due to a

domain barrier.

Figure 2. Hyper-heuristic Domain Barrier (Burke et al., 2009)

Özçağdavul AYBU Business Journal, 4(1), 1-23

6

2.4.1 Simple Random

Simple Random uses a uniform random distribution to randomly select low-level heuristics. This heuristic

selection process lacks a learning mechanism because no information is kept (Neri and Cotta, 2012)

2.4.2 Reinforcement Learning

The ability to be applied to a broad range of problem cases, some of which may come from other problem

domains with unique features, is one of the primary characteristics of hyperheuristics. For hyper-heuristics to

choose the best heuristic during the selection phase, machine learning processes are therefore necessary. One

of the current hyper-heuristics for learning is reinforcement learning (Kaelbling, et al., 1996; Sutton and Barto,

1998). The reinforcement learning process chooses an action to raise or reduce a value in exchange for a long-

term reward, working in tandem with the environment to change its state (Özcan et al., 2010). For this reason,

for any low-level heuristic, a learning hyper-heuristic updates a utility value that is acquired through a

predefined system of rewards and punishments.

2.4.3 Modified Choice Function

Low-level heuristics are scored by the Choice Function based on three different variables. The strategy that

depends on these scores helps choose the low-level heuristic that will be used. First, the low-level heuristic's

prior performance (f1) is noted. The low-level done more recently is given more weight. Equation 1's formula

is then used to calculate the value for each heuristic:

Equation 1 : Choice Function f1

Where Tn(hj) is the time taken to invoke the low-level heuristic for each precedent appeal n of the low-level

heuristic hj, α is a value between 0 and 1 that has a higher influence to late performance, and ln(hj) is the

difference in the evaluation function.

Second, f2 value looks for any pairwise relationships between heuristics at the low-level. Equation 2's formula

is used to determine f2 values when the hj low-level heuristic is used immediately following hk.

Equation 2: Choice Function f2

where Tn(hk, hj) is the amount of time needed to call a low-level heuristic for each precedent appeal, and

In(hk, hj) is the difference in evaluation function. The low-level heuristic hj's n and β have a stronger effect on

late performance when they have a value between 0 and 1.

Özçağdavul AYBU Business Journal, 4(1), 1-23

7

Thirdly, a value f3 is computed that permits the selection of all low-level heuristics. The time elapsed since

the low-level heuristic was selected by the Choice Function is represented by f3.

Equation 3: Choice Function f3

Following the computation of these three f, a score is assigned independently to each low-level heuristic using

the Choice Function F formula, as indicated by Equation 4:

Equation 4: Choice Function Formula [10]

where f1 and f2 are weighted by α and β, giving an intensified heuristic search process. To provide sufficient

diversification, δ weights f3. These variables in the Choice Function were chosen based on the author's prior

experimentation knowledge. They also demonstrated how well Choice Function works in conjunction with the

All Move acceptance technique.

The weight of f1 and f2, as well as the values of α and β, are taken into account by Drake et al. (2012), in their

suggested Modified Choice Function as a single parameter that is employed for intensification. This parameter

was given the name ϕ. This value will also be used, similar to the original Choice Function created by Cowling

et al. (2001), to assign late performance a greater noteworthy relevance. The weight of f3, the parameter that

governs the degree of diversification of the low-level heuristic, will be displayed as δ in the updated version.

For each low-level heuristic hj, the Ft score in the Modified Choice Function will be determined using the

formula in Equation 5:

Equation 5: Modified Choice Function Formula [33]

3. Implementation and Methodology

3.1. HyFlex

A group at The University of Nottingham's Department of Computer Science has created an object-oriented

framework known as HyFlex for testing hyper-heuristic algorithms. The purpose of this framework's design

and development was to enable the CHeSC2011 Cross-domain Heuristic Challenge. Creating a standard

framework for testing and comparing different cross-domain algorithms is one of the key goals of this

framework. HyFlex comprises six domains. These fields include the following: traveling salesman issue, bin-

packing (one-dimensional) flow shop, personnel scheduling, and maximum satisfiability, or MAX-SAT.

Developers can use this framework to test their algorithms' performance directly on past challenge participants

(The University of Nottingham, 2021).

Özçağdavul AYBU Business Journal, 4(1), 1-23

8

3.2 Implementation

Simple Random, Reinforcement Learning, and Modified Choice Function are the three hyper-heuristic

selection methods that the memes regulate. They also determine the mutation rate and depth of search for each

method. Table 1 shows how memes are organized.

Table 1: Representation of Memes

 0 Hyper-Heuristic Selection Method {0: SR, 1: RL, 2: M CF}

SR
1 Mutation Rate {0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8 4: 1}

2 Depth of Search {0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8 4: 1}

RL
3 Mutation Rate {0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8 4: 1}

4 Depth of Search {0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8 4: 1}

M CF
5 Mutation Rate {0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8 4: 1}

6 Depth of Search {0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8 4: 1}

A framework called HyFlex (The University of Nottingham, 2021) is employed. Although it offers nine distinct

domains, only the six that were utilized at CHeSC2011 were actually used. HyFlex offers a partition between

domains and algorithms. The individuals' fitness values and the kinds of low-level heuristics are the only pieces

of information that can go between levels. Only the low-level heuristic's type—whether it's a mutational,

crossover, or local search—is disclosed. Both mutation and ruin and recreate heuristics are included in

mutational heuristics. The number of low-level heuristics of each kind varies between domains (The University

of Nottingham, 2021).

Possible values memes

Özçağdavul AYBU Business Journal, 4(1), 1-23

9

3.2 Algorithms

Algorithm 1: Simple Random - OI + Reinforcement Learning – OI + Modified Choice Function AM

Create a population of populationSize with random individual

Initialise all individuals

Create a two dimmentional array memeplex with size of populationSize by seven

For i=0 to populationSize do

 // Randomly fill heuristic selection method (0: SR, 1: RL, 2: M CF)

 Fill memeplex for each individual with random values from heuristic selection methods

 // Randomly fill mutation_rate and depth_of_search (0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8, 4: 1)

 Fill memeplex for each individual with random values from heuristic selection methods

End For

While termination criterion is not met do

 Parent1 Select Parent (Population, tour-size)

 //Select a different parent than Parent1

 Parent2 Select Parent (Population, tour-size)

 offspring Apply a random a crossover operator (Parent1, Parent2)

 bestParentID set the parents ID who has best function value

 // Inherit best parents memes to offspring

 offspring memes bestParent’s memes

 If memeplex[bestParentID][0]== 0:

 Apply Simple Random Only Improvement Heuristic Selection Method

 Else if memeplex[bestParentID][0]== 1:

 Apply Reinforcement Learning Only Improvement Heuristic Selection Method

 Else if memeplex[bestParentID][0]== 2:

 Apply Modified Choice Function Heuristic Selection Method

 end if

 Replacement: Replace the worst individual by offspring

end while

The first algorithm initializes each individual after generating a random population of size ten. After each

person has been initialized, a two-dimensional array known as a memeplex is produced. The mutation rate,

search depth, and hyper-heuristic that will be applied to each individual are predetermined. Next, a parent who

has picked a tournament with a two-tour option is selected. After the first parent, a second parent is selected.

With parent 1 and parent 2, a random crossover low-level heuristic is used, and an offspring is produced. The

Özçağdavul AYBU Business Journal, 4(1), 1-23

10

child inherits the memes of the parent who is the fittest. The child is randomly assigned to the meme of one

parent if both parents have the same fitness score.

The Simple Random Only Improvement (SR-OI) hyper-heuristic is selected if the hyper-heuristic selection

meme is zero. In case number one and number two are selected, the Modified Choice Function All Move and

Reinforcement Learning Only Improvement (RL-OI) hyper-heuristic, respectively. The heuristics do not

exchange any information.

If there is any improvement, the offspring in the SR-IO is subjected to a randomly chosen low-level heuristic

for mutations, and if not, a randomly chosen local search is used. If there is no improvement, the low-level

heuristics for local search and/or mutation are not applied to the progeny. Then the child takes the position of

the worst person. Following all procedures, each meme may undergo a mutation at a rate of 0.2 innovation to

achieve meme diversification. Every low-heuristic (LLH) in the RL-OI has a score, and the LLH with the

highest score is selected. Once more, only enhanced solutions are approved.

Algorithm 2: Simple Random - OI + Reinforcement Learning – GD + Modified Choice Function AM

Create a population of populationSize with random individual

Initialise all individuals

Create a two dimmentional array memeplex with size of populationSize by seven

For i=0 to populationSize do // Randomly fill heuristic selection method (0: SR, 1: RL, 2: M CF)

 Fill memeplex for each individual with random values from heuristic selection methods

 // Randomly fill mutation_rate and depth_of_search (0: 0.2, 1: 0.4, 2: 0.6, 3: 0.8, 4: 1)

 Fill memeplex for each individual with random values from heuristic selection methods

End For

While termination criterion is not met do

 Parent1 Select Parent (Population, tour-size) //Select a different parent than Parent1

 Parent2 Select Parent (Population, tour-size)

 offspring Apply a random a crossover operator (Parent1, Parent2)

 bestParentID set the parents ID who has best function value // Inherit best parents memes to

offspring

 offspring memes bestParent’s memes

 If memeplex[bestParentID][0]== 0:

 Apply Simple Random Only Improvement Heuristic Selection Method

 Else if memeplex[bestParentID][0]== 1:

 Apply Reinforcement Learning Great Deluge Heuristic Selection Method

 Else if memeplex[bestParentID][0]== 2:

 Apply Modified Choice Function Heuristic Selection Method

Özçağdavul AYBU Business Journal, 4(1), 1-23

11

 end if

 Replacement: Replace the worst individual by offspring

end while

Every setting in the second algorithm was the same as in the first, with the exception that the Great Deluge

was used as the acceptance criterion for reinforcement learning. The hyper-heuristics were still not exchanging

information with each other.

4. Results and Analysis

The first Cross-domain Heuristic Search Challenge (CHeSC 2011) was organized by the Automated

Scheduling Optimisation & Planning Group, or ASAP, at The School of Computer Science at The University

of Nottingham. The purpose of the challenge was to bring together experts from various fields, including

computer science, operational research, and artificial intelligence, to evaluate their advanced methodologies.

Every issue domain has a few low-level heuristics available. These particular low-level heuristics should be

managed by the high-level algorithm in order to tackle various problems from various fields. Each domain has

its own set of low-level heuristics, but the hyper-heuristic, the governing high-level algorithm, must be distinct.

Stated differently, more than one low-level heuristic from a separate issue domain should be controlled by the

same algorithm.

Additionally, ASAP offers a common software framework (HyFlex) designed in Java to handle a variety of

combinatorial optimization issues in diverse fields. HyFlex offers a number of techniques for producing and

assessing solutions. In addition, the hyper-heuristics can apply move operators, hill-climbers (local searches),

ruin and recreate heuristics, and mutation operators to the solutions.

4.1. Formula One Scoring System

Every hyper-heuristic in the CHeSC 2011 has completed 31 runs on five distinct examples from each of the

six problems. Next, each problem instance's median score was taken into account. The Formula One scoring

methodology is then used to order these scores. The top hyper-heuristic receives 10 points for each instance,

followed by eight for the second, six for the third, and five, four, three, two, and one points for the other hyper-

heuristics. From the ninth-best score, every other score is zero (The University of Nottingham, 2021).

4.2 Results of the Algorithms

The competition's ranking mechanism assigns a number to each hyper-heuristic based on its relative

performance. Three distinct algorithms have been created and examined in this study. An Intel i5 fifth

generation 2.7GHZ CPU with four cores and a 3MB L3 cache was used for all tests. To be fair with the 600

seconds of competition running time, the benchmarking tool that ASAP gave offers 464 seconds for each run.

Eleven runs were scheduled for each method, across six distinct domains with five distinct examples each. The

entire algorithm test took 42.53 hours with these parameters.

Özçağdavul AYBU Business Journal, 4(1), 1-23

12

4.2.1 Results of the First Algorithm

The first multi-meme memetic algorithm combines low-level heuristic values for mutation rates and search

parameter depth with hyper-heuristic approaches such as Simple Random Only Improvement, Reinforcement

Learning Only Improvement, and Modified Choice Function All Moves. As in (Özcan et al., 2013). the

population size is ten, and the initialization of each member of the population is done at random. This

population also has a memeplex allocated to it, which governs the attributes of each member, including the

hyper-heuristic and its parameters.

Following eleven runs, the median values are determined. The findings are then compared to the performance

of prior competitors using the Formula One scoring system, which is available on the CHeSC 2011 website.

Figures 3 and 4 illustrate how the created algorithm failed to receive a single point in either Bin Packing or

MAX-SAT. placed sixth with twelve points in Flow Shop, eighth with ten points in TSP, ninth with six points

in VRP, and twelfth with three points in personnel scheduling. Figures 5, 6, 7, and 8 show the rankings for

Flow Shop, TSP, VRP, and Personnel Scheduling, respectively.

When compared to other competitors, this algorithm's overall performance is appalling. With only thirty-one

points altogether, this algorithm finished the competition in thirteenth place. This is depicted in figure 9.

Figure 3: Multi-meme SR OI RL OI M CF AM MAX-SAT Results

Özçağdavul AYBU Business Journal, 4(1), 1-23

13

Figure 4: Multi-meme SR OI RL OI M CF AM Bin Packing Results

Figure 5: Multi-meme SR OI RL OI M CF AM Personnel Scheduling Results

Özçağdavul AYBU Business Journal, 4(1), 1-23

14

Figure 6: Multi-meme SR OI RL OI M CF AM Flow Shop Results

Figure 7: Multi-meme SR OI RL OI M CF AM TSP Results

Özçağdavul AYBU Business Journal, 4(1), 1-23

15

Figure 8: Multi-meme SR OI RL OI M CF AM VRP Results

Figure 9: Multi-meme SR OI RL OI M CF AM Overall Results

Co-evolution of memes was managed using the basic inheritance mechanism in the first algorithm. Reward

Learning Only Improvement was the hyper-heuristic that was most frequently selected. The least chosen hyper-

heuristic was the Simple Random Only improvement one. The mutation rate and search depth that the

mechanism has mostly chosen are 0.2 and 0.4, respectively.

Özçağdavul AYBU Business Journal, 4(1), 1-23

16

Table 2 : Detailed scores for Hyper-Heuristic 1 (Algorithm 1) with compare to other competitors

 Multimeme SR-OI + RL-OI + MCF With NO information Sharing between Heuristics

Rank Heuristic Name MAX-

SAT

Bin

Packing

Personnel

Scheduling

Flow

Shop

TSP VRP TOTAL

1 AdaptiveHH 34.8 45.0 9.0 37.0 38.3 15.0 179.0

2 ML 14.5 12.0 31.0 39.0 13.0 22.0 131.5

3 HsiaoCHeSCHyperheuristic 34.3 3.0 39.5 33.0 16.3 5.0 131.0

4 Pearl Hunter 0.0.6 10.5 3.0 11.5 8.0 26.3 32.0 91.3

5 EPH by David M. 0.0 10.0 10.5 20.0 35.3 12.0 87.8

6 LehrbaumHAHA 32.8 0.0 25.5 1.5 0.0 14.0 73.8

7

 Test Hyper Heuristic

(iridia.ulb.ac.be) 14.0 19.0 1.0 22.0 11.0 5.0 72.0

8 ISEA Hyper-Heuristic 6.0 30.0 14.5 1.5 10.0 5.0 67.0

9 SimSATS_HH 24.0 11.0 8.5 0.0 0.0 21.0 64.5

10

HAEA Hybrid Adaptive

Evolutionary Algorithm 0.5 3.0 2.0 7.0 10.0 27.0 49.5

11 ACO_HH 0.0 20.0 0.0 8.0 8.0 2.0 38.0

12

CS-PUT Genetic Hive Hyper

Heuristic 0.0 14.0 6.5 6.0 3.0 6.0 35.5

13

Multimeme SR-OI + RL-OI +

Modified CF AM 0.0 0.0 3.0 12.0 10.0 6.0 31.0

14

 Dynamic Iterated Local Search

With Non Improvement Bias 0.0 13.0 0.0 0.0 12.0 1.0 26.0

15 sa_ilsHyperHeuristic 0.8 0.0 19.5 0.0 0.0 3.0 23.3

16 ShafiXCJ 5.5 12.0 0.0 0.0 0.0 4.0 21.5

17 AVEG_NeptuneHyperHeuristic 12.0 0.0 0.0 0.0 0.0 9.0 21.0

 Colours representation : First Second Third

Özçağdavul AYBU Business Journal, 4(1), 1-23

17

4.2.2 The Results of the Second Algorithm

With the exception of the Reinforcement Learning acceptance criterion, every setting in the second algorithm

was unchanged. The Great Deluge mechanism is employed rather than settling for only an improved solution.
The hyper-heuristics were still not exchanging information with each other. Memes have been passed down

through the application of the Simple Inheritance Mechanism. Put another way, the child has inherited the

memes of the parent who is the fittest.

Numerous researchers have demonstrated the effectiveness of the Great Deluge acceptance mechanism in the

literature (Özcan et al., 2010). This investigation demonstrated the effectiveness of this technique once more.

The updated algorithm became the best hyper-heuristic in this field with a score of 37.5 in MAX-SAT. Not
only has it improved, but it has also received scores of 10, 14, 5, 20, and 16 in bin packing, PS, TSP, and VRP,

in that order. But in Flow Shop, the score dropped to six.

The improved algorithm now has an overall score of 104.1, and the hyper-heuristic has moved up to fourth

place. The results are shown in Table 3.

The percentage of hyper-heuristic selection was similarly impacted by this modification. While Reinforcement

Learning received the highest selection rate (45.33%) in the first hyper-heuristic, it received a higher

percentage (51.44%) in the second hyper-heuristic.

Table 3: Detailed scores for Hyper-Heuristic 2 (Algorithm 2) with compare to other competitors

 Multi-meme SR-OI + RL-GD + Modified CF With NO Information Sharing between Heuristics

Rank Multimeme SR-OI + RL-GD +

Improved CF

MAX-

SAT

Bin

Packing

Personnel

Scheduling

Flow

Shop

TSP VRP Total

1 AdaptiveHH 29.9 43.0 9.0 36.0 36.3 14.0 168.2

2 HsiaoCHeSCHyperheuristic 29.9 3.0 37.5 33.0 16.3 5.0 124.7

3 ML 10.5 10.0 29.5 39.0 12.0 20.0 121.0

4

Multimeme SR-OI + RL-GD +

Modified CF 37.6 10.0 14.5 6.0 20.0 16.0 104.1

5 Pearl Hunter 0.0.6 7.5 3.0 11.5 8.0 25.3 30.0 85.3

6 EPH by David M. 0.0 9.0 9.5 20.0 33.3 12.0 83.8

7

Test Hyper Heuristic

(iridia.ulb.ac.be) 11.5 19.0 1.0 22.0 11.0 5.0 69.5

8 LehrbaumHAHA 26.9 0.0 24.0 2.8 0.0 14.0 67.8

9 ISEA Hyper-Heuristic 3.5 29.0 14.5 3.5 9.0 4.0 63.5

10 SimSATS_HH 19.9 11.0 7.5 0.0 0.0 21.0 59.4

Özçağdavul AYBU Business Journal, 4(1), 1-23

18

11

 HAEA Hybrid Adaptive

Evolutionary Algorithm 0.0 2.0 2.0 9.3 10.0 26.0 49.3

12 ACO_HH 0.0 20.0 0.0 8.3 7.0 1.0 36.3

13

 CS-PUT Genetic Hive Hyper

Heuristic 0.0 13.0 6.5 7.0 2.0 6.0 34.5

14

Dynamic Iterated Local Search

With Non Improvement Bias 0.0 12.0 0.0 0.0 11.0 0.0 23.0

15 AVEG_NeptuneHyperHeuristic 10.5 0.0 0.0 0.0 0.0 9.0 19.5

16 sa_ilsHyperHeuristic 0.3 0.0 16.0 0.0 0.0 3.0 19.3

17 ShafiXCJ 3.5 11.0 0.0 0.0 0.0 4.0 18.5

 Colours representation : First Second Third

5. Conclusion

Automated techniques that can be used to a wide range of problem situations from various areas are provided

by hyper-heuristics. Using instances of various instances of different domains from HyFlex, this study

examined three separate hyper-heuristics that incorporate three different acceptance mechanisms while

manipulating the mutation rate and depth of search parameters of various low-level heuristics. Two distinct

hyper-heuristic combinations were examined. Thirty distinct cases originating from six distinct domains were

employed. A multi-meme memetic strategy was employed to regulate the attributes of each individual,

including the depth of search, mutation rate, and hyper-heuristic selection procedure. A mutation with a

probability of 0.2 is applied to every meme in order to boost diversification. These two algorithms' outputs

were carefully examined and contrasted with the outcomes of previous CHeSC2011 participants.

The results have shown that, second algorithm outperformed not only the first implemented algorithm, but also

lots of competitors of CHeSC2011.

6. Further Studies

It was not possible to evaluate various combinations of heuristic selection techniques and acceptance

mechanisms because the testing of the suggested algorithms required over 200 hours. Memes were employed

in this study to choose hyper-heuristic selection techniques, with the parameters being restricted to search

depth and mutation rate.

Different memes can be used to regulate the acceptance mechanisms and heuristic selection techniques in

future research. This will broaden the range of mechanisms that can be used to various problem scenarios. Put

differently, this will enable the hyper-heuristic to combine the Simple Random heuristic selection approach

with several acceptance methods, such as All Moves, Only and Equally Improvement, Great Deluge, Simulated

Özçağdavul AYBU Business Journal, 4(1), 1-23

19

Annealing, and so on. As a result, several acceptance mechanisms may be quickly implemented for every

heuristic selection technique.

References

A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithm,” IEEE Trans.

Evol. Comput., vol. 3, pp. 124–141, Jul. 1999.

Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2007). A novel fuzzy approach to evaluate the

quality of examination timetabling. In Proceedings of the 6th International Conference on the Practice and

Theory of Automated Timetabling (PATAT'06), LNCS, 3867, (pp. 327-346), Springer.

Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E and Woodward J (2009), Exploring hyper-heuristic

methodologies with genetic programming. In: Mumford C and Jain L (eds). Computational Intelligence:

Collaboration, Fusion and Emergence, Intelligent Systems Reference Library. Springer: New York, pp 177–

201.

Burke, E., Kendall, G., & Soubeiga, E. (2003b), A tabu-search hyper-heuristic for timetabling and rostering.

Journal of Heuristics, 9, 451-470, Kluwer Academic Publishers

Cowling, P., Kendall, G., & Soubeiga, E. (2001a). A hyperheuristic approach to scheduling a sales summit. In

Proceedings of the 3rd International Conference on Practice and Theory of Automated Timetabling

(PATAT’00), (pp. 176-190), Springer-Verlag.

E. Burke and G. Kendall, Search methodologies: introductory tutorials in optimization and decision support

techniques. Springer Science+ Business Media, 2005.

E. Burke and G. Kendall, Search methodologies: introductory tutorials in optimization and decision support

techniques. Springer Science+ Business Media, 2005.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. ¨Ozcan, and R. Qu, “Hyper-heuristics: A survey

of the state of the art,” Journal of the Operational Research Society, 2013.

E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R. ¨ Woodward, “A classification of hyper-

heuristic approaches,” in Handbook of Metaheuristics, ser. International Series in Operations Research &

Management Science, M. Gendreau and J.-Y. Potvin, Eds. Springer US, 2010, vol. 146, pp. 449–468.

E. Özcan, M. Misir , G. Ochoa, E. K. Burke, A Reinforcement Learning - Great-Deluge Hyper-heuristic for

Examination Timetabling, International Journal of Applied Metaheuristic Computing, 1(1), pp. 39-59, 2010.

Özçağdavul AYBU Business Journal, 4(1), 1-23

20

E. Ozcan, S. Asta, and C. Altıntas, “Memetic algorithms for cross domain heuristic search,” in Proceedings of

the 13th Annual Workshop on Computational Intelligence (UKCI 2013), Y. Jin and S. A. Thomas, Eds. Surrey,

UK: IEEE Press, 2013, pp. 175–182.

F. Neri and C. Cotta, “Memetic algorithms and memeting computing optimization: A literature review,”

Swarm and Evolutionary Computation, vol. 2, pp. 1–14, 2012.

Fisher H, Thompson GL (1963) Probabilistic learning combination of local job-shop scheduling rules. In:

Muth JF, Thompson GL (eds) Industrial Scheduling, Prentice-Hall, Inc, New Jersey, pp 225-251.

J. E. Smith et al., “Co-evolution of memetic algorithms: Initial investigations,” in Parallel Problem Solving

From Nature—PPSN VII, G. Guervos et al., Eds. Berlin, Germany: Springer, 2002, vol. 2439, Lecture Notes

in Computer Science, pp. 537–548.

J. E. Smith, “Co-evolving memetic algorithms: A learning approach to robust scalable optimization,” in IEEE

Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2003, vol. 1, pp. 498–505.

John H. Drake, Ender Özcan and Edmund K. Burke An Improved Choice Function Heuristic Selection for

Cross Domain Heuristic Search The 12th International Conference on Parallel Problem Solving From Nature

(PPSN 2012), Lecture Notes in Computer Science, Volume 7492, pp. 307-316, 2012.

Kaelbling, L. P., Littman, M., & Moore, A. (1996), Reinforcement learning: a survey. Journal of Artificial

Intelligence Research, 4, (pp. 237-285).

Kendall G and Mohamad M (2004a), Channel assignment in cellular communication using a great deluge

hyper-heuristic. In: Proceedings of the 2004 IEEE International Conference on Network (ICON2004). IEEE:

Singapore, pp 769–773.

M. Gendreau and J.-Y. Potvin, “Metaheuristics in combinatorial optimization,” Annals of Operations

Research, vol. 140, no. 1, pp. 189–213, 2005.

M. Gendreau and J.-Y. Potvin, “Metaheuristics in combinatorial optimization,” Annals of Operations

Research, vol. 140, no. 1, pp. 189–213, 2005.

N. Krasnogor, “Studies on the Theory and Design Space of Memetic Algorithms,” Ph.D., Faculty of Comput.,

Math., and Eng., Univ. of the West of England, Bristol, U.K., 2002.

N. Krasnogor, B. Blackburne, J. D. Hirst, and E. K. N. Burke, “Multimeme algorithms for the structure

prediction and structure comparison of proteins,” in Parallel Problem Solving From Nature, 2002, Lecture

Notes in Computer Science.

Ozcan, E., Bilgin, B., Korkmaz, E.: Hill Climbers and Mutational Heuristics in Hyperheuristics. In: PPSN IX.

pp. 202–211, 2010.

Özçağdavul AYBU Business Journal, 4(1), 1-23

21

P. Moscato, “On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic

algorithms,” Caltech concurrent computation program, C3P Report, vol. 826, p. 1989, 1989.

Qu, R., Burke, E. K., & McCollum, B. (2008a). Adaptive automated construction of hybrid heuristics for exam

timetabling and graph colouring problems. European Journal of Operational Research, 198(2), 392-404.

R. Dawkins, The Selfish Gene. New York City: Oxford University Press, 1976.

R. Hinterding, Z. Michalewicz, and A. E. Eiben, “Adaptation in Evolutionary Computation: A Survey,” in

IEEE International Conference on Evolutionary Computation. Piscataway, NJ: IEEE Press, Apr. 1997, pp. 65–

69.

Ross P (2005). Hyper-heuristics. In: Burke EK and Kendall G, Search Methodologies: Introductory Tutorials

in Optimization and Decision Support Techniques. chap 17, Springer: Berlin, pp 529–556.

Ross, P., Hart, E., Marin-Blazquez, J., & Schulenberg, S. (2003). Learning a procedure that can solve hard

bin-packing problems: a new GA-based approach to hyperheuristics. Proceedings of Genetic and Evolutionary

Computation Conference (GECCO'2003), (pp. 1295-1306).

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. The MIT Press.

Terashima-Marin, H., Moran-Saavedra, A., & Ross, P. (2005). Forming hyper-heuristics with GAs when

solving 2D-regular cutting stock problems. In Proceedings of the 2005 IEEE Congress on Evolutionary

Computation, 2, (pp. 1104-1110), IEEE Press.

Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999). Evolution of constraint satisfaction

strategies in examination timetabling. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO'99), (pp 635-642).

The University of Nottingham CHeSC2011 website. Retrieved April ,21, 2021 from:

http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_description.html

Vazquez-Rodriguez, J.A., Petrovic, S. & Salhi, A. (2007). A combined meta-heuristic with hyper-heuristic

approach to the scheduling of the hybrid flow shop with sequence dependent setup times and uniform

machines. In P. Baptiste, G. Kendall, A. Munier-Kordon & F. Sourd (Ed.), the 3rd Multi-disciplinary

International Scheduling Conference: Theory and Applications (MISTA’07), (pp. 506-513), Paris, France.

Yew-Soon Ong, Meng-Hiot Lim, Ning Zhu, and Kok-Wai Wong, “Classification of Adaptive Memetic

Algorithms: A Comparative Study” IEEE Transactions on Systems, Man, and Cybernetics—Part B:

Cybernetics, vol. 36, pp. 141-152 No. 1, February 2006

Yilmaz, A. A., Guzel, M. S., Bostanci, E., & Askerzade, I. (2020). A novel action recognition framework based

on deep-learning and genetic algorithms. IEEE Access, 8, 100631-100644.

http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_description.html

