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Abstract: For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change 
in thickness (SF) in the literature. In the present paper, the thermal analysis and optimization of convective straight 
fins with a step change in thickness and temperature-dependent thermal conductivity have been addressed. 
Temperature distribution within the fin has been evaluated using homotopy perturbation method (HPM) which 
provides an analytical solution in the form of an infinite power series. The optimum geometry which maximizes the 
heat transfer rate for a given fin volume has been found by using the data from the solution. It has been observed that 
a SF is the better choice for transferring rate of heat in comparison with the flat fins for the same fin volume and 
identical thermal conditions. The derived condition of optimality gives an open choice to the designer. 
Keywords: Fin, Homotopy perturbation method, Optimization, Variable conductivity. 
 

ISIL İLETKENLİĞİ SICAKLIKLA DEĞİŞEN KADEMELİ KANATLARIN HOMOTOPİ 
PERTÜRBASYON YÖNTEMİ İLE OPTİMİZASYONU 

 
Özet: Kanat malzemesinin verimli kullanılabilmesi için kademeli kanat olarak isimlendirilen yeni bir kanat 
geometrisi önerilmiştir.  Bu çalışmada, ısıl iletkenliği sıcaklıkla değişen dikdörtgen kesitli kademeli kanatların ısıl 
analizi ve optimizasyonu yapılmıştır. Kanat içindeki sıcaklık dağılımı, sonsuz kuvvet serisi şeklinde analitik bir 
çözüm sağlayan Homotopi Pertürbasyon Metodu (HPM) ile elde edilmiştir. Bu çözüm, verilen sabit bir kanat hacmi 
için ısı geçişini maksimum yapan kanat geometrisinin bulunması için kullanılmıştır. Elde edilen sonuçlar, aynı ısıl 
koşullar ve aynı kanat hacmi için kademeli kanadın düz kanada göre daha fazla ısı geçişi sağladığını göstermiştir. 
Optimizasyondan elde edilen sonuçlar, bu tip kanatların tasarımı için kullanılabilir.      
Anahtar Kelimeler: Kanat, Homotopi pertürbasyon yöntemi, Optimizasyon, Değişken ısı iletim katsayısı. 
 
 
NOMENCLATURE 
 
a dimensionless cross-sectional area (=Ac/2L2)  
A general differential operator 
Ac cross-sectional area of the fin (m2) 
B boundary operator 
Bi Biot number (=hL/k∞) 
C1,2,3  integral constants 
h heat transfer coefficient [W/(m2K)] 
k thermal conductivity [W/(mK)] 
ℓ length of the thin section of the fin (m) 
L linear operator or length of the entire fin (m) 
N nonlinear operator 

 
p homotopy parameter 
q dimensionless heat transfer rate [=Q/2k∞(Tb- 

T∞)]  
Q heat transfer rate per unit fin depth (W/m) 
t unreduced semi-thickness of the fin (m) 
T1 temperature within the thin section (K) 
T2 temperature within the thick section (K) 
Tb base temperature, (K) 
T ambient fluid temperature, (K) 
x axial coordinate for entire fin, (m) 
x1 axial coordinate for the thin section (m) 
x2 axial coordinate for the thick section (m) 
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Greek symbols 
α thickness parameter 
β thermal conductivity parameter [=κ( Tb-T∞)] 
δ dimensionless fin semi thickness 
κ the slope of the thermal conductivity-

temperature curve (1/K) 
λ length ratio (=ℓ /L) 
 dimensionless temperature within the thin 

section of the fin [=(T1-T∞)/( Tb-T∞)] 
 dimensionless temperature within the thick 

section of the fin [=(T2-T∞)/( Tb-T∞)] 
 dimensionless axial coordinate of the thin section 

of the fin (=x1/L) 
 dimensionless axial coordinate of the thick 

section of the fin (=x2/L)  
 dimensionless axial coordinate for the entire fin 

(=x/L) 
 
INTRODUCTION 

 
Fins or extended surfaces are frequently used in heat 
transfer equipments to increase the surface area, and, 
consequently, to augment the rate of heat transfer 
between the primary surface and surrounding fluid. The 
selection of any particular type of fin depends mainly 
on the geometry of the primary surface (Kundu and 
Das, 2007). An accurate analysis of heat transfer in fins 
has become crucial with the growing demand of high 
performance of heat transfer surfaces with progressively 
smaller weights, volumes, initial and running cost of the 
system. Over the years different fin shapes have been 
evolved depending upon the application and the 
geometry of the primary surface. Kern and Kraus 
(1972) have identified three main fin geometries. These 
are longitudinal fins, radial or circumferential fins and 
pin fins or spines. For any of the above geometry, fins 
with straight profile or constant thickness are a common 
choice as they can be manufactured easily. The thermal 
design of a constant thickness fin is also relatively 
simple. However, in any fin the temperature difference 
reduces from the fin base to fin tip. Accordingly, a 
saving of fin material can be obtained by progressively 
narrowing down the fin section. This has initiated a lot 
of exercises for the determination of optimum fin 
shapes so that the fin volume is minimum for a given 
rate of heat dissipation or the rate of heat dissipation is 
maximum for a given fin volume (Kundu and Das, 
2002). Hollands and Stedman (1992) proposed a design 
of absorber plate fin with a step reduction in thickness 
towards the fin tip for saving in fin material. The results 
from this study indicate that roughly a 20 % reduction 
in fin material is possible. Aziz (1994) investigated the 
optimum dimensions of convective rectangular fins with 
a step change in cross-sectional area. A similar profile 
has also been adopted for radial fins by Kundu and Das 
(Kundu and Das, 2001). Malekzadeh et al. (2006) used 
the differential quadrature method for optimization of 
convective-radiative flat and step fins . Recently, Kundu 

(2009) analyzed an annular fin with a step change in 
thickness under fully and partially wet surface 
conditions. The optimization study demonstrated that an 
annular fin with a step change in thickness is the better 
choice for transferring rate of heat in comparison with 
the concentric-annular disc fin for the same fin volume 
and identical surface conditions (Kundu, 2009). 
 
In the present work, the convective straight fins with a 
step change in thickness and temperature-dependent 
thermal conductivity have been considered for the better 
utilization of fin material. Since the fin has a step 
change in thickness, the fin problem has been divided 
into two parts as thin and thick sections. Resulting two 
nonlinear heat transfer equations with nonlinear 
boundary conditions have been solved by HPM, which 
is used for solving various nonlinear fin problems, to 
obtain the fin temperature distribution. Employing the 
temperature distribution, the heat transfer rate has been 
evaluated. The main problem is to maximize the heat 
transfer rate for a given fin volume, thermal 
conductivity parameter, β, and Biot number, Bi. The 
optimization variables are of thickness parameter, α, 
and fin length ratio, λ. Optimum geometrical parameters 
and maximum heat transfer rates for various 
combinations of thermal and geometrical parameters are 
presented to provide an open choice to the designer. 
 
PROBLEM DESCRIPTION 

 
Fig. 1 schematically depicts a straight step fin. The fin 
has a constant thickness 2αt (0<α<1) from the fin tip up 
to x1=ℓ, beyond that the fin thickness is 2t up to fin 
base.  

 
Figure 1. Schematic of a convective fin with a step change in 

thickness. 
 

The mathematical model in the problem is based on 
some assumptions:  

 
1. The temperature distribution and heat transfer are 

steady.  
2. The fin material is homogeneous and isotropic.   
3. Only the convection effects between the fin surfaces 

and surroundings are considered.  
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4. The fin conductivity varies with temperature linearly.  
5. The heat coefficient overall the fin surfaces are the 

same.  
6. The surrounding temperature, T, is uniform.  
7. The temperature of the fin base, Tb, is uniform.  
8. The fin thickness is far smaller than its length that the 

temperature gradient normal to its surface can be 
neglected.  

9. The heat transfer from the fin tip is negligible.  
 
For each part of the fin, energy balance equations are 
given as: 
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Invoking the continuity of temperature and heat current 
at the junction, boundary conditions of the governing 
equations can be expressed as:  
 

0
dx
dT

0x1

1

1




 (1c) 

)0(T)(T 21    (1d) 

 

 


























1

2

2

x1

1

0x2
0x2

2

dx
dT

k

TTh)1(
xd
Td

k

 (1e)  

b2 T)L(T    (1f) 

 
The thermal conductivity of the fin material is assumed 
to be a linear function of temperature according 
to )]TT(1[k)T(k   . 

  
Where, k is the thermal conductivity at the ambient 
fluid temperature of the fin, κ is the parameter 
describing the variation of thermal conductivity. In 
order to simplify the parameter studies, the following 
non-dimensional variables are defined: 
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By using the aforementioned non-dimensional 
variables, the governing equations and their associated 
boundary conditions become as follows: 
 





















 0,0Bi

d
d

d
d

d
d

2

22

2

2

         (3a) 





















 10,0Bi

d
d

d
d

d
d

2

22

2

2

 (3b) 

0
d
d

0







 (3c) 

)0()(   (3d) 

 






























d
d)1(

Bi)1(
d
d)1( 0

0  (3e) 

1)1(   (3f) 

 
HOMOTOPY PERTURBATION METHOD 
 
The homotopy perturbation method was first proposed 
by the Chinese mathematician J. Huan He (He, 1999; 
He, 2000, He, 2003). This technique has been employed 
to solve a large variety of linear and nonlinear problems 
(Saadatmandi et al., 2009; Öziş and Ağırseven, 2008; 
Cowdhury and Hashim, 2008; Cowdhury and Hashim, 
2009). The solution of a delay differential equation is 
presented by means of a homotopy perturbation method 
(Saadatmandi, 2009). A nonlinear convective–radiative 
cooling equation, a nonlinear heat equation (porous 
media equation) and a nonlinear heat equation with 
cubic nonlinearity are solved via this procedure ( Öziş 
and Ağırseven, 2008).  Analytical solutions by 
homotopy-perturbation method are implemented for 
solving the nonlinear heat transfer equations (Cowdhury 
and Hashim, 2008). This method is also adopted for 
solving pure strongly nonlinear second-order 
differential equations (Cowdhury and Hashim, 2009). 
 
To illustrate the basic ideas of this method, we consider 
the following general nonlinear differential equation 
[9],  

 r0)r(f)u(A   (4) 

with boundary conditions 
 

 r0)n/u,u(B , (5) 

where A is a general differential operator, B is a 
boundary operator, f(r) is a known analytic function, 
and Г is the boundary of the domain Ω. 
 



 12

The operator A can be generally divided into linear and 
nonlinear parts say L and N. Therefore Equation (4) can 
be written as 
 

0)r(f)u(N)u(L   (6) 

We construct a homotopy  ]1,0[:)p,r(  which 
satisfies 
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where p is called homotopy parameter. 
 
According to the HPM, the approximation solution of 
Equation (7) can be expressed as a series of the powers 
of p, i.e. 
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THE FIN TEMPERATURE DISTRIBUTION 
 
Following homotopy perturbation method to Equation 
(3a), linear and non-linear parts are defined as:  
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Substituting Eq. (8) into Eq. (9) and then into Eq. (7) 
and rearranging based on power of p-terms we have: 
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By increasing the number of the terms in the solution, 
higher accuracy will be obtained. Solving Eqs. (12a), 
(13a), (14a), (15a), (16a), we have θ0, θ1, θ2, θ3, and θ4. 
When p→1,we have the solution for taking first five 
terms in the series as follows. 
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Solving Eqs. (17a),(18a), (19a),(20a), (21a), we have 
we have 0, 1, 2, 3, and 4.  When p→1,we have the 
solution for taking first five terms in the series as 
follows. 
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Integration constant C1 represents the temperature at the 
fin tip. C2, and C3 are temperature and temperature 
gradient at the cross-section where the step change in 
thickness occurs, respectively. The constants can be 
evaluated from the boundary conditions given in 
Equations (3d)-(3f) using classical Newton-Raphson 
method. 
 
CONVERGENCE AND ACCURACY OF THE 
SERIES SOLUTION 
 
Table 1 shows the dimensionless tip temperature as a 
function of the number of terms in the series for 
different thermal conductivity parameters, β.  The 
impact of the number of terms in the series solution, and 
the series truncation process, are assessed by evaluating 
the homotopy perturbation results for the case of the 
strongest nonlinearity with 1–10 terms in the series. The 
table states that the convergence of the solution for the 
higher absolute value of the thermal conductivity 
parameter is faster than the solution with lower value of 
conductivity parameter. It can be observed from the 
figure that the difference between adjacent terms 
remains quite small as the number of terms, n, 
increases. As n > 9, the maximum difference never 
exceeds 0.2 %. Theoretically we should calculate a 
great number of terms to match the analytical solution 
but as a matter of fact, when we obtain ten terms of 
approximate solution is reached, the outcomes attain to 
a very good accuracy.      
 
If β=0, Eqs. (3a) and (3b) will become a set of linear 
differential equations and it has an analytic solution:  

j
1

1

)cosh(
)mcosh(

)( 



  (23a) 

 
)msinh(

)sinh(
1)cosh(

)mcosh()( 2
2

2j
2j 




  (23b) 

where, 
2/1

1
Bim 









  (23c) 
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2/1

2
Bim 









  (23d)       

 11 m    (23e)   

)1(m22     (23f)    

)sinh()sinh(z 211   (23g) 

   

)cosh()cosh(z 212   (23h) 

)sinh()cosh(z 213   (23i) 

32211

12
j Biz)1(zmzm

)cosh(m



  (23j) 

 

 
 

Table 1. The dimensionless tip temperature as a function of the number of terms in the series for =0.5, Bi=0.1, =0.05 and =0.5 

Number 
of terms 

in the 
series  = -0.5 = -0.3 = -0.1 = 0.0 = 0.1 = 0.3 = 0.5 

1 0.954364 0.965996 0.973051 0.975610 0.977734 0.981051 0.983517 

2 0.399166 0.402534 0.405542 0.406952 0.408314 0.410926 0.413429 

3 0.326187 0.346194 0.369117 0.381951 0.395905 0.428069 0.468286 

4 0.302191 0.330720 0.363248 0.380992 0.399636 0.439031 0.479345 

5 0.292559 0.325638 0.362055 0.380971 0.399939 0.436500 0.468683 

6 0.288043 0.323730 0.361797 0.380971 0.399847 0.435895 0.469361 

7 0.285744 0.322970 0.361738 0.380971 0.399836 0.436143 0.470689 

8 0.284499 0.322653 0.361724 0.380971 0.399839 0.436197 0.470474 

9 0.283793 0.322517 0.361720 0.380971 0.399839 0.436160 0.470095 

10 0.283376 0.322457 0.361720 0.380971 0.399839 0.436157 0.470292 

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

di
m

en
sio

nl
es

s  
te

m
pe

ra
tu

re
,  

an
d 


dimensionless coordinate, 

o     HPM
exact

Bi= 0.01, 0.02, 0.05, 0.07,0.10 

 
Figure 2.. The comparison of HPM and exact solution for the case of constant conductivity ,i.e, β=0.0  ( λ=0.5, δ=0.05, α=0.5). 
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We take ten terms of approximate solution as our 
solution and compare it with the analytic solution which 
is the special case of β=0, and then we can realize that 
the results of both approximate and analytic solutions 
almost match (see Fig. 2).  
 
In order to investigate the accuracy of the HPM solution 
with a finite number of terms, the problem is also 

solved numerically by using MAPLE which uses a 
finite difference method with Richardson extrapolation 
(Ascher and Petzold, 1998) and the corresponding 
results are compared with the HPM solution and 
presented in Table 2. The results of the comparison 
show that the maximum difference between HPM and 
numerical results for the strongest nonlinearity 
condition, i.e., Bi=0.10 and β=-0.5, is 0.25 %.  

 
 

Table 2. Comparison of HPM and numerical solutions for different Bi and β ( α=0.5, δ=0.05, and λ=0.5). 

  Bi=0.01  Bi=0.10 

  tip temperature  junction temperature  tip temperature  junction temperature 

β  HPM numerical  HPM numerical  HPM numerical  HPM numerical 

-0.5  0.80524 0.80477  0.87556 0.87513  0.28338 0.28266  0.47625 0.47500 

-0.4  0.82743 0.82731  0.89124 0.89113  0.30276 0.30253  0.50120 0.50081 

-0.3  0.84579 0.84573  0.90377 0.90371  0.32246 0.32239  0.52508 0.52497 

-0.2  0.86100 0.86095  0.91387 0.91382  0.34217 0.34216  0.54753 0.54751 

-0.1  0.87370 0.87366  0.92213 0.92209  0.36172 0.36171  0.56845 0.56843 

0.0  0.88441 0.88433  0.92900 0.92892  0.38097 0.38096  0.58787 0.58785 

0.1  0.89354 0.89347  0.93479 0.93472  0.39984 0.39982  0.60588 0.60585 

0.2  0.90139 0.90133  0.93972 0.93966  0.41825 0.41823  0.62258 0.62254 

0.3  0.90821 0.90816  0.94398 0.94392  0.43616 0.43613  0.63808 0.63804 

0.4  0.91418 0.91413  0.94769 0.94763  0.45350 0.45348  0.65247 0.65244 

0.5  0.91946 0.91935  0.95096 0.95085  0.47029 0.47024  0.66589 0.66585 

 
OPTIMIZATION 
 
The heat transfer rate from the fin is found by applying 
the Fourier law at the fin base. 
 




Lx2

2

2
dx
dT

tk2Q  (24) 

The objective here is to maximize the dimensionless 
heat transfer rate q, subject to the constraint that the 
dimensionless fin cross-sectional area is equal to a 
given value. The dimensionless heat transfer rate, i.e., 
the objective function, is written as follows 
 

 






1b d

d)1(
)TT(k2

Qq  (25) 

 
and the dimensionless cross-sectional area, i.e., equality 
constraint, of the step fin which is shown in Fig. 1 is 
 

  )1(1)L2/(Aa 2
c  =constant  (26) 

 
For a given value of the cross-sectional area, the 
dimensionless unreduced semi-thickness of the fin is 
expressed as: 
 

 )1(1
a


  (27) 

Substituting Eq.(27) into Eq(25), the objective function 
can be obtained as a function of fin length ratio λ and 
thickness parameter α, for given Biot number Bi, 
thermal conductivity parameter β and dimensionless 
cross-sectional area of the fin, a. The objective function 
is a very complicated expression and includes three 
unknown integral constants, C1, C2, and C3. Since the 
values of the coefficients depend on the fin geometry, it 
is not convenient to use a classical optimization 
technique. For finding the optimal geometrical 
parameters which maximize the dimensionless heat 
transfer rate for given problem parameters a, β, and Bi, 
following procedure is applied. 
 
Selecting values of α and λ, the temperature distribution 
within the fin is found as a function of integral constants 
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C1, C2, and C3. Substituting fin temperature distribution 
to boundary conditions given Equations (3d), (3e), and 
(3f), the integral constants C1, C2, and C3 are evaluated 
by classical Newton-Raphson method. The value of the 
objective function corresponding selected values of λ 
and α is obtained using Eq. (25). The values of λ and α 
are changed for many times in suitable intervals and 

corresponding dimensionless heat transfer rate, i.e., the 
objective function, is obtained. For every group of 
parameter, the value of the objective function is attained 
of an element of the array.  The element with maximum 
value of the array is found by using a classical search 
method. 

 
 



qx103



      
Figure 3. Dimensionless heat transfer rate as a function of fin length ratio and thickness parameter (a=0.005, Bi=0.01, β=0.2). 
 
RESULTS AND DISCUSSION 
 

 

The series solution for temperature distribution is 
evaluated by using homotopy perturbation method. This 
method gives a nearly analytical solution which is in the 
form of infinite series by computing the infinite terms. 
After getting the temperature distribution, 
dimensionless heat transfer rate for convective straight 
step fins is determined for a wide range of problem 
parameters from the present analysis. Fig. 3 is utilized 
for the presentation dimensionless heat transfer rate 
from convective step fin as a function of thickness 
parameter, α and fin length ratio, λ for β=0.2, a=0.005, 
and Bi=0.01. The figure states that the heat transfer rate 
has a maximum value for given thermal and geometrical 
parameters.  
 
Fig. 4a shows the optimal values of length ratio and 
thickness parameter which maximize dimensionless 
heat transfer rate as a function of Biot number for a 
given constant cross-sectional area of the fin. From the 

figure, it is clear that an increase in Bi increases the 
optimal fin length ratio λ*, and decreases the optimal 
thickness parameter α*. The variation of thermal 
conductivity parameter on optimal fin geometry can 
also be seen from Fig. 4a. With the increase in β, the 
optimal fin length ratio λ* increases and the optimal 
thickness parameter α*decreases. Fig. 4b shows 
maximum values of the dimensionless heat transfer rate 
corresponding to the optimum geometrical parameters 
given in Fig. 4a.  
 
Fig. 5 shows that for a given cross-sectional area, a 
higher rate of heat transfer is possible from a step fin 
compared to a constant thickness fin. Optimum 
geometrical parameters and maximum heat transfer 
rates for various combinations of thermal conductivity 
parameters are given in Table 3 to provide an open 
choice to the designer. 
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Figure 4. (a) Optimal fin length ratio and thickness parameter which maximize the dimensionless heat transfer rate.  

          (b) Maximum dimensionless heat transfer rate as a function of conduction-radiation parameter (a=0.005). 
 

Table 3. The optimum dimensions and maximum heat transfer rates of convective step fins for different thermal conductivity 
parameter. 

 Bi=0.05  Bi=0.10 

 a=0.003  a=0.006  a=0.006  a=0.009 

β λ* α* q*  λ* α* q*  λ* α* q*  λ* α* q* 

-0.3 0.650 0.087 0.01474  0.614 0.150 0.01905  0.660 0.086 0.02967  0.642 0.118 0.03449 

-0.2 0.640 0.086 0.01529  0.603 0.151 0.01974  0.651 0.086 0.03076  0.632 0.119 0.03573 

-0.1 0.634 0.088 0.01578  0.597 0.157 0.02035  0.645 0.087 0.03174  0.627 0.123 0.03685 

0.0 0.628 0.089 0.01623  0.590 0.162 0.02093  0.639 0.088 0.03264  0.620 0.127 0.03788 

0.1 0.620 0.089 0.01665  0.584 0.168 0.02148  0.631 0.089 0.03348  0.613 0.132 0.03886 

0.2 0.611 0.090 0.01704  0.579 0.174 0.02201  0.620 0.089 0.03426  0.607 0.139 0.03979 

0.3 0.599 0.092 0.01741  0.576 0.179 0.02252  0.608 0.090 0.03499  0.605 0.147 0.04069 
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Figure 5. Variation of the maximum heat transfer rate with dimensionless cross-sectional area for Bi=0.01. 

 
CONCLUSION 
 
The present work is concentrated optimization analysis 
of convective straight step fins with temperature-
dependent thermal conductivity. Since the fins have a 
step change in thickness, the fin problem has been 
divided into two parts as thin and thick sections. 
Resulting two nonlinear heat transfer equations with 
nonlinear boundary conditions have been solved by 
homotopy perturbation method to obtain the fin 
temperature distribution. The temperature profile has an 
abrupt change in the temperature gradient where the 
step change in thickness occurs and thermal 
conductivity parameter describing the variation of 
thermal conductivity has an important role on the 
temperature profile and the heat transfer rate. The 
optimum geometry which maximizes the heat transfer 
rate for a given fin cross-sectional area has been found. 
The results demonstrated that the maximum heat 
transfer rate is always higher for a step fin than that of a 
constant thickness fin for the identical design condition. 
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