

Effect of Domestic Sewage Sludge on the Botanical Composition of Eroded Pastures

Ramazan Acar^{1,*}, OSman Mücevher², Mehtap Öztekin³, Sukru Dursun⁴, Ayşen Akay⁵, Salih Bitgi², Serap Ulutaş⁶, Serdar Koyuncu⁷

¹ Selcuk University, Agriculture Faculty, Field Crops Department, Konya, Türkiye,²Directorate of Soil, Water and Combating Desertification Research Institute, Konya, Türkiye, ³Directorateof National Botanical Garden of Türkiye, Ankara, Türkiye,⁴Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Environmental Engineering, Konya, Türkiye,⁵Selcuk University, Faculty of Agriculture Department of Soil and Plant Nutrition, Konya, Türkiye, ⁶State Hydraulic Works 4th Regional Directorate, Konya, Türkiye,⁷Metropolitan Municipality KOSKİ General Directorate Konya, Türkiye

Received June 02, 2024; Accepted June 26, 2024

Abstract: This research to evaluate the use possibilities of sewage sludge in eroded pasture areas, the effects of stabilized treatment sludge (biosolid) from the Konya domestic wastewater treatment plant on soil and plants were monitored in marginal and eroded pasture areas in field trials for 3 years period. In this study, analysis processes of soil fertility parameters, micro and macro elements, and toxic heavy metals were examined. The enrichment factors of heavy metals in soil and plants, their effects on heavy metal accumulation and leaching in the soil profile, and their effects on erosion parameters were examined. In addition, biomass yield, protein ratio, botanical composition parameters, heavy metal contents and heavy metal risks in terms of animal health in pasture plants were investigated. In this article, the effects of sewage sludge on the development parameters of plant species that grow predominantly under natural conditions were evaluated. In the experiment, an increase in plant coverage area, height and especially the number and diversity of species were observed in the plots. Provided the necessary precautions are taken, it turns out that the D application has a feasible result of 1 ton da⁻¹ (dry matter) in the method of mixing into the soil to a depth of 0-5 cm, once every 3 years. This recommended dose is valid for the ecological conditions in this region where the research was conducted, and similar studies are needed to recommend it in different ecological regions of Turkey.

Keywords: Sewage sludge, biosolid, erosion, degraded pasture, botanical composition, heavy metal.

Introduction

Development of urbanization and the growth of the population, significant increases are observed in the amount of stabilized treatment sludge generated from domestic wastewater treatment plants. The most economical method of disposal of sewage sludge for cost is land disposal. Serious problems may arise in the disposal of sewage sludge on land due to the salinity and heavy metals contains. However, if sewage sludge is used in a controlled and conscious manner in accordance with national standards, its useful part can be used as biosolids (fertilizer) for soil improvement (Mücevher *et al.*, 2020).

Pastures are important for animal husbandry, and they provide great benefits to the country's economy by preventing wind and water erosion and soil loss. For this purpose, legal regulations must be made to implement the necessary plans, including pasture improvement (Çepel, 2008). Compared to forests and other ecosystems, relatively little is known about the ecological status of grasslands. The crisis in global soil health is also closely related to the management of natural and semi-natural grasslands have been greatly affected by human management (Johnson *et al.*, 2017). One of the measures to be taken against wind erosion in dry places with sparse vegetation is to protect the vegetation, and another is to enrich the soil in terms of organic matter. Organic matter is useful in resisting erosion because it has a high-water retention power (Eyce, 1995). Although rangelands are an important carbon sink with great potential to achieve environmental and development goals, they are often neglected in the land restoration agenda (Johnson *et al.*, 2017).

^{*}Corresponding: E-Mail: racar@selcuk.edu.tr; Tel: +90 5363403637, +90 3322410008

The Central Anatolia Region is a region with the least productive pastures, annual rainfall is between 250-500 mm, pastures dry quickly, and grazing pressure is very high (Sutie et al., 2005). In the south of this region, the altitude generally varies between 700-1050 mm in the places including Cumra, Cihanbeyli, Karapınar and Konya Ereğli. In these places, natural steppe areas have been destroyed in the last 15-20 years (66-80% has disappeared) and a radical change has occurred (Akman et al., 2014). In these pastures, where vegetation has been degraded on a large scale, production is attempted at the expense of erosion. In some cases, although improvements are tried to be made through controlled grazing, additional measures (furrowing, shaping, fertilizing, seeding, etc.) are needed (Akyürek, 1986). It is known that sewage sludge (biosolid) is also used with good control in special areas with different methods to fertilize or increase organic matter in the soil. However, it should not be forgotten that it must be dried and processed, and this is important for health and the environment. It has been stated that the main values in the use of biosolids as fertilizer are due to the slowly absorbable nitrogen and phosphorus from the nutrients therein (Ignatieff & Page, 1965). It has been stated that treatment sludge is used in Spain and that productivity increases and soil properties improve with the application (Altın et al., 2005). It has a positive effect on the establishment of vegetation and the productivity of pasture vegetation, especially in pastures degraded by erosion. However, it has also been stated that it should be used in a way and to an extent that does not harm the environment (Altın et al., 2005).

In arid and semi-arid regions, the inadequacy of crop production negatively affects animal husbandry. In addition to the lack of precipitation in arid (25-200 mm precipitation) and semi-arid (200-800 mm precipitation) places, evaporation caused by high temperatures is an important problem. All of these create harsh environmental conditions for humans, animals and plants. Water deficiency is very evident in arid areas and rainfall is irregular. It is typical for these regions to have low precipitation, low air humidity and high evapotranspiration. In addition, the organic matter content of the soil is low. Even if the soil depth is high, the amount of usable water stored in the soil is low because rainfall is insufficient. In arid areas, there are flora and fauna that have adapted to the ecological conditions described. As a result of this information, this research was conducted to see the effects of the application of sewage sludge in a pasture that is eroded, marginal and fragile, and classified as weak.

Material and Method

Climate Condition

The climate of the region is defined as semi-arid continental, with dry and hot summers and cold and rainy winters. Most of the snowfall falls in January and February. The average precipitation is 275 mm, and 40% of it falls during the winter months. The average rainfall from July to September is 15 mm (Şimşekli, 2012). In the project area, high temperatures in summer and low humidity in the soil profile throughout the year negatively affect the amount of organic matter in the soil and ultimately the physical and chemical quality of the soil (Bot & Benites, 2005). These decreases in vegetation due to temperature differences play a role in increasing degradation, desertification and ultimately wind erosion due to the decrease in the organic matter cycle to the soil. The distribution and amount of precipitation throughout the year is of great importance in terms of soil moisture, plant productivity and the amount of soil organic matter. The values of the 10-year average rainfall data of the research area are given below (Table 1; MGM, 2018). When Karapınar precipitation data is examined, excluding snowfall in December in 2016, there is 132.6 mm of precipitation, especially in terms of water year. 2016 was a very dry year has happened.

Location and Soil Condition

In this research, as a trial site was established by surrounding the Karapınar Desertification and Erosion Research Center land with wire fences in the eroded, weak, fragile and degraded Yenice Pastureland right next to it. The area where the project will be implemented was surrounded by a concrete wire fence and parcelization work was carried out. As a result of the preliminary survey land determination of the area where the trial site will be established, Yenice Pasture with its soil structure, degraded pasture, flat and sandy loam soil was chosen as the most suitable place (Table 2). Especially in our country, a sandy loam soil structure was chosen in accordance with the regulation on the use of sewage sludge in soil.

Year	January	February	March	April	May	June	July	August	September	October	November	December	Total (mm)
2008	17,9	9,7	29,2	26,5	20,4	5,7	0	0	20,2	30,8	22,5	49,2	232,1
2009	63,8	47,8	26,1	43,8	25,8	5,9	59	0	10,9	14,7	44,8	52,3	394,9
2010	37,4	18,9	7,5	28,4	10	46,8	0	3,4	1,2	52,8	1,2	69,8	277,4
2011	34,9	52,6	35,3	28,8	73,3	26,4	0	0	7	16,5	13,3	25,7	313,8
2012	51	25	24	6,6	12	18,4	2,8	7,8	1	32,6	26,6	70,7	278,5
2013	21,2	43,4	9,4	57,4	33,4	24,4	2,4	0,6	12,8	15,2	12	7,6	239,8
2014	40,4	18,4	47,2	3,2	18,4	26	0	9,8	17,2	48,2	33,8	29,8	292,4
2015	13,2	24,9	45,4	16,6	28	46,4	0	5,2	0,8	3,6	1,6	0,6	186,3
2016	25,8	0,4	28	4,6	27,6	19,2	0,4	0,2	20,6	0,2	13	100	240,0
2017	12,2	2,2	11,8	39,8	33	15,6	0	29,4	0	26	63,8	15,8	249,6
Mean	31,8	24,3	26,4	25,5	28,1	23,4	6,4	5,64	9,17	24,0	23,2	42,15	270,5

Table 1. Karapınar rainfall data -last 10 years mm

Table 2. Constitution	classification	of soil sat	mples taken	from pastures
-----------------------	----------------	-------------	-------------	---------------

Region	Coordinates	% Sand	% Clay	% Silt	Class
Yenice Pasture	N 37.6512304, E 33.4628130	68,45	13,55	18,00	Sandy loam (SL)

Table 3. Konya KOSKİ Wastewater Treatment Plant, 1 and 2 treatment sludge samples analysis results, limit values and analysis methods

Daramatar / Exampla	Sewage	Sludge	Limita	Analysis Methods
Farameter / Example	1 no.	2 no.	Linits	Analysis Methods
Lead (Pb mg/kg furnace dry matter)	56,2	47,06	750	
Cadmium (Cd mg/kg)	8,13	8,52	10	
Chromium (Cr mg/kg)	500	598	1000	
Cupper (Cu mg/kg)	298	261	1000	EPA 6020 A (ICP-MS)
Nikel (Ni mg/kg)	175	165	300	
Zink (Zn mg/kg)	1735	1534	2500	
Mercury (Hg mg/kg) Nitrogen (TKN mg/kg) Phosphorus (P mg/kg)	0,617 27669 10297	0,596 25483 9834	10	TS 2537 EN 1483 SM-4500-N _{org.} B Method ofburning(Olsen et al.)
PCB (mg/kg)	<0,1	<0,1	0,8	EN 12766
PCDD/F (ng TE/kg furnace dry matter)	0,183	0,44	100	TS EN 1948/2-3
рН	6,71	6,73		TS 8332 ISO 10390
C/N (%)	7,12	7,23		D.13.Y.04.24 (İnternal method)
Moisture (%)	72,57	38,29		TS 0546 EN 12280
dry matter (DM) (%)	27,43	61,71		13 9340 EN 12280
Loss on Combustion (glow), Organic Matter (at770 °C) (%)	51,1	43,27	> 40	TS EN 12879
Conductivity (dS/m)	2,63	3,8		ISO 11265
E. coli (EMS/g)	1,8E+05 kob/g	1,9E+06 kob/g	least 2 Log10 (%99)	ISO 16649-2

Properties of Sewage Sludge

The sewage sludge from the dewatered domestic wastewater treatment plant unit used as material in the project was sent to the TÜBİTAK MAM Environment Institute Laboratory in accordance with the protocol with Konya KOSKİ General Directorate, one of the project partners, for the analysis of the sewage sludge. The analysis results of these samples were found to comply with Türkiye Regulation on the Use of Sewage Sludge in Soil (Table 3).

Method

The stabilized treatment sludge (biosolid) coming out of the sludge dewatering unit at the Konya Domestic Wastewater Treatment Plant was laid in a thin layer on the surrounded U-shaped concrete lagoons. Samples were taken from different points of the pile and sent to TÜBİTAK MAM Environmental Research Institute for analysis. As a result of the analysis processes, the stabilized domestic sewage sludge pile, which was following the regulation, was periodically turned upside down with a mixer scoop machine, crushed with a cylinder, and dried in an open pile in the sun, continued for 2 months. With this drying method, the dry matter ratio of sewage sludge was increased from 25% DM to 80% DM. The sewage sludge material was transported from Konya Center to the project area in Karapınar, Konya.

Ready-to-use biosolid material piles were created by grinding / shredding the sewage sludge with a rotary machine and sifting through a 10 mm sieve range. On 03-07 November 2014, the dose application in each parcel was carried out on 100% dry matter (DM) according to the moisture content of the sewage sludge, as stated in the project's pasture trial pattern plan. Protective gloves, masks and boots were used during the application of sewage sludge in the field experiment on eroded pasture soil.

A trial design plan was applied in a total of 40 plots in 2 main subjects, with 4 replications and 5 doses. The doses of treatment sludge are 0 (Control), 1, 2, 4 and 8 tons/da (DM) (Arvas et al., 2007). The trial parcel dimensions were set in an area of 8m in the parcels with the surface scattering process (subject S), the biosolid was distributed homogeneously. In the parcels with the mixing process (subject D), after it was distributed homogeneously with a rake, the soil was mixed to a depth of 0-5 cm.

1) Mixing process with a rake into the 0-5 cm layer of the soil (main topic D),

2) Sprinkling on the soil surface, (Main subject S),

The experiment was carried out according to the "Random blocks divided plots trial design" with 4 replications and gravel. In the project, before the application of sewage sludge (biosolid) to the pasture, natural plant survey study was carried out in the plots in June 2014, and physical and chemical analysis and soil sampling were carried out from the raw soil in October. 2014 (control year) is the natural data of the eroded and degraded pasture.

Sewage sludge (biosolid) application was applied once in November 2014. Subsequently, the effects of the sewage sludge were observed for 3 years (in June 2015, 2016 and 2017) after its application. In the project implemented in natural pasture, pasture plant vegetation survey studies were carried out in the parcels according to the Quatrat method in June 2014-2015-2016-2017.

The following procedures were followed in making measurements regarding pasture vegetation. Determination of botanical composition; a- Based on weight, samples are taken from the vegetation, divided into species, and species are weighed separately (Avcioğlu, 1983). b- It is done in two ways, according to the coverage area. These are expressed as %. These measurements were made before and after treatment sludge application every year in June.

Result and Discussion

Before the treatment sludge application, a natural plant vegetation study was carried out in the eroded pasture in June 2014, and after the treatment sludge application was made in November 2014, the observations and sampling of the plants continued every year for 3 years, in June 2015, 2016 and 2017. (Özyazıcı & Özyazıcı, 2012).

Botanical composition of the pasture

The botanical composition of the pasture was determined in the plots before the application of sewage sludge, and then it was followed at the same time for three years (in June of 2015, 2016 and 2017) and the changes after the application of sewage sludge were determined. Data obtained before and after treatment sludge application; It is stated in Tables 4 -11.

The plant distribution in the natural pasture that was eroded before the application of sewage sludge (biosolid) in 2014 (control year) in the project is shown in Tables 4 and 5 below. The dominant plant species are generally *Salvia absconditiflora*, *Acantho limonulicinum* var. *ulicinum*, *Astragalus onobrychis*, *Noaea mucronate* and other species. The average plant coverage area of the parcels is 42.5%; The average plant height was found to be 7 cm. The plant distribution in the pasture in the parcels in the 1st year (2015) after the application of sewage sludge in the project is shown in Tables 6

and 7 below. The dominant plant species are Salvia absconditiflora, Acantho limonulicinum var. ulicinum, Astragalus onobrychis, Noaea mucronata, Alyssum linifolium var. teheranicum, Alopecurus arundinaceus, Bromus tectorum, Stipa ehrenbergiana, Panicum sp., have also emerged. The average plant coverage area of the parcels is 73%; The average plant height was found to be 15 cm. An increase in the plant coverage area, height, and number and diversity of species was observed in the parcels. The plant distribution in the pasture in the parcels in the second year (2016) after the application of sewage sludge in the project is shown in Tables 8 and 9 below. The dominant plant species are Salvia absconditiflora, Acantho limonulicinum var. ulicinum, Astragalus onobrychis, Noaea mucronata, Alyssum linifolium var teheranicum, Bromus tectorum, Stipa ehrenbergianahave also emerged. Since 2016 was a dry year, decreases in the plant population with rainfall are noteworthy. The average plant coverage area of the parcels is 48%; The average plant height was found to be 7 cm. There were decreases in plant coverage area, height, and number and diversity of species in the parcels compared to 2015. On the other hand, the number of plant diversity is higher compared to Control 2014. The plant distribution in the pasture in the parcels in the 3rd year (2017) after the application of sewage sludge in the project is shown in Tables 10, 11 below. The dominant plant species are Salvia absconditiflora, Acantho limonulicinum var. ulicinum, Astragalus onobrychis, Noaea mucronata, Alyssum linifolium var. teheranicum, Alopecurus arundinaceus, Bromus tectorum, Eremopyrum bonaepartis var. sinaicum, Stipa ehrenbergianaother species of the grass family that sheep like for grazing have also emerged. The average plant coverage area of the parcels is 52%; The average plant height was found to be 18 cm. There was an increase in the plant coverage area, height and especially the number and diversity of species in the plots.

Table 4. Botanical composition of 2014 (before application of sewage sludge)

	Natural botanical composition-quatrate method in the parcels before the application of sewage sludge (biosolid) in the eroded pasture in June 2014															
Application	method of the	parcel	Ve	egetated a	rea of the	parcel -%		Ave	age plant	height in t	the plot -c	m	P	lant species	in the plots	***
Subject	Dose	Block	1.Block	2.Block	3.Block	4.Block	Avg.	1.Block	2.Block	3.Block	4.Block	Avg.	1.Block	2.Block	3.Block	4.Block
9 0 V #	D0-Control	D0	40	40	45	40	41	7	7	7	7	7	1,3,4	1,3,4	1,2,3,4	1,2,3,4,5
for int	D1-1 tonda ⁻¹	D1	50	45	50	50	49	7	7	7	7	7	1,2,4	1,2,5,9	1,2,3,4,6	1,2,4,5,10
Be	D2-2 tonda-1	D2	40	50	40	35	41	7	7	7	7	7	1,2,3,4,7	1,2,4,5	1,2,4	1,2,4,10
S.S. Dixi	D4-4 tonda ⁻¹	D4	35	50	40	45	43	6	7	7	7	6	1,2,4,5,6	1,2,3,4,9	1,2,4	1,3,4
0, 5 4 0	D8-8 tonda ⁻¹	D8	50	50	40	40	45	7	7	7	7	7	1,2,3	1,2,3,4,8	1,2,3,4	1,2,4,6
on	S0-Control	S0	30	40	45	50	41	7	7	7	7	7	1,2,4	1,2,3,9	1,2,3,4,5	1,2,3,4,10
for oil ce	S1-1 tonda ⁻¹	S1	45	35	50	40	43	7	7	7	9	7	1,2,3,4	1,2,3,4	1,3,4,5,6	1,2,3,5
be be be be	S2-2 tonda ⁻¹	S2	30	35	40	50	39	7	7	7	7	7	1,3,4,5,8	1,3,4,5	1,2,3,4,9	1,2,3,4
S.s. brea th su	S4-4 tonda ⁻¹	S4	30	50	55	40	44	7	7	6	7	6	1,2,5,6	1,2,4,6	1,2,3,4,5	1,3,4
sp	S8-8 tonda ⁻¹	S8	30	40	40	50	40	7	6	7	7	7	1,2,3,4	1,2,4	1,2,3,4	1,2,3,4
Cum	ulativa	Averag	a vagatata	d area of	he narcel	0/	12.5	Average	plant heig	ht of the p	arcels-	7				
Cuin	ulative	Averag	c vegetate	u alca Ul	ine pareers	5 - 70	42,5	cm				/				
***The plant	t species in the	table are	listed belo	w in num	bers.											
1	Salvia abscon	ditiflora						(5	Thymus l	eucostom	us, end	emic			
2	Acantho limor	ıulicinun	ı var. ulici	num					7	cereals (:	50 %agroj	oyronci	ristatum,50	%stipa)		
3	Astragalus on	obrychis					8	3	cereals (%one hune	dred <i>cyn</i>	iodondacty	lon)			
4	Noaea mucror	nata						ç)	cereals (% one hun	dredsti	ipa)			
5	Alhagi mauro	rum subs	p. mauror	ит				1	0	Onopord	u macanth	hium				

Table 5. Areal distribution of plants in 2014

Types of plants	Cumulative number	%
Salvia absconditiflora	2220,5	55,51
Acantho limonulicinum var. ulicinum	627,5	15,69
Astragalus onobrychis	320	8,00
Noaea mucronata	426	10,65
Alhagi maurorumsubsp. maurorum	152	3,80
Thymus leucostomus, endemic	144	3,60
Onopordu macanthium	15	0,38
Cereals (other)	67	1,68
%one hundred Cynodon dactylon	5	0,13
Stipa	15	0,38
50 % Agropyron cristatum,50 % Stipa	8	0,20
Cumulative % one hundred	4000	100

 Table 6. Botanical composition of 2015

Bota	inical com	positic	on-quat	rate m	ethod 1	n the p	arcels	during erode	the 1s ed past	t year o ure in .	observa June 20	ation af)15.	tter the applic	ation of sewa	ge sludge (bi	osolid) in the
Appl	ication me	ethod	Vege	tated a	rea of	the par	cel -	Aver	age pla	int heig	ght in t	he]	Plant species	in the parcel	***
0	f the parce	el	%					plot -	·cm					1	1	
Subj ect	Dose	Bl	1.Bl	2.Bl	3.Bl	4.Bl	Avg	1.Bl	2.Bl	3.Bl	4.Bl	Avg	1.Bl	2.Bl	3.Bl	4.Bl
into	D0- Control	D0	55	50	70	60	59	9	8	8	14	10	1,3,4,5,9,13	1,2,3,4,8	1,2,3,4,8,16	1,2,3,4,5,6,8,9
)-5 cm a rake	D1-1 tonda ⁻¹	D1	65	70	75	70	70	16	11	13	17	14	1,2,4,5,9,16	1,2,3,4,6,7,1 4	1,2,4,5,8,9,1 4,18	1,2,3,4,5,6,8,1 4
iixing (Il with	D2- 2tonda ⁻¹	D2	90	80	80	75	81	13	11	18	19	15	1,2,3,5,9	1,2,4,5,8,9	1,2,3,4,5,8,9 ,14,15	1,2,3,4,5,8,14
After m the soi	D4-4 ton da ⁻¹	D4	70	80	75	85	78	18	13	20	21	18	1,2,4,5,6,9,1 7	1,2,3,4,7,9,1 2,15,20	1,2,3,4,7,9,1 4,16	1,2,3,4,5,6,8,9, 12
S.s./	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												1,2,3,4,5,9,14, 15,17			
the	S0- Control	S0	55	70	60	65	63	11	9	9	9	10	1,2,4,9,13	1,2,3,4,8,9	1,2,3,6,8,12, 14	1,2,3,4,7,8,9,1 3,17
ng on	S1-1 ton da ⁻¹	S1	70	85	70	90	79	13	13 9 17 19				1,2,3,4,5,9,1 4	1,2,3,4,5,7,8 ,9,14	1,4,6,7,8,9,1 7	1,2,3,4,5,6,8,9, 14
orinkli	S2-2 ton da ⁻¹	S2	85	85	70	80	80	13	13	13	19	14	1,3,4,5,6,10, 13,14	1,3,4,5,6,8,9 ,19	1,2,3,4,5,8,9 ,14	1,2,3,4,5,14,21
fter sp urface	S4-4 tonda ⁻¹	S4	90	80	70	75	79	13	13	18	19	16	1,2,3,4,5,7,8 ,9	1,2,4,5,7,9,1 3,14,17	1,2,3,4,5,9,1 4,15	1,3,4,5,8,9
S.s.A soil si	S8-8 tonda ⁻¹	S 8	90	70	65	70	74	17	18	20	20	19	1,2,3,4,5,9,1 3,15,18	1,2,4,9,13,1 4,15,16	1,2,3,4,9,10, 14	1,3,4,5,9,14,15 ,21
Cun	nulative	Aver parce	age ve els -%	getated	l area c	of the	73	Avera the pa	age pla arcels ·	int heig -cm	ght of	15				
***Tł	ie plant sp	ecies i	n the ta	able are	e listed	below	in nur	nbers.								
1	Salvia al	bscond	itiflora							1	2	Erem	opyrum bona	<i>epartis</i> var. <i>si</i>	naicum	
2	Acantho	limonu	licinur	n var. i	ulicinu	т				1	3	Stipa	ehrenbergia	na		
3	Astragal	us onoi	brychis	7						1	4	Panie	cum sp.			
4	Noaea m	ucrond	ita	. 1						1	5	Polyg	zonum arenas	strum		
5	Alyssum	linijoli	umvar.	tenera	пісит					1	0	Unop	orau macant	hium		
07	Alnagi m	aurori	ım suos ndinaa	sp. mai	urorun	l				1	0	Duon	ius ieucosiom	us, endennic		
8	Androsa	co mar	ima	eus						1	0	Onok	ius erecius	lam		
9	Bromus	tectoru	т							2	20	Lenio	hychis suuvu him sn	lalli		
10	Cynodon	dactvi	 lonvar:	villosu	s					2	21	Scah	iosa argentea	L		
11	Chenopo	dium a	lbum I		-									-		

It has been stated that the effects of fertilizers on the botanical composition of pastures can be explained by the fact that the nutrient needs of pasture plants are different from each other and the ability or ease of plant species to absorb nutrients from the soil, and that it gives the opportunity to change the botanical composition due to their effects on plant species (Bakır, 1985). Cetik (1985) stated that there are many plants that are resistant to drought and salinity around Karapınar, and that there are differences depending on whether the soil is barren or sandy. While these plants include the species, we detected in the pasture we worked on (Noaeamucronata, Bromus tectorum, etc.), the existence of many perennial and annual plants of the same genus but different species has also been reported. In another study conducted in Karapınar (Akköz and Bayram, 2012), 82 families and their 378 genera and 616 species were identified, and 102 of the taxa were stated to be endemic. Among the species detected: Noaea mucronata, Alopecurus arundinaceus, Bromus tectorum, Cynodon dactylon, Chenopodium album, Thymus leucostomus, Bromus erectus. It has been stated that plants such as Stipa ebrenbergiana and Polygonum arenastrum, which are the same in terms of genus but different in terms of species, were also detected in the pastures we researched (6 pastures) in Konya's problematic pastures (6 pastures) (salty, alkaline, stony, etc.). In the study (Yılmaz, 1977), it was stated that while species such as Cynodon dactylon, Bromus erectus, Androsace maxima were encountered in these places, there were also many other species. In this research, it was also stated that the most species in the botanical composition were from other families (except the Wheat and Legume families).

Table 7. Areal distribution of plants in 2015

Average % of areal distribut	ion of plant	species in	u cumulativ	ve parcel do	ses in 2013	5 Quatrat	method.			
	Applica	tion of mix	king sewag	ge sludge in	to 0-5 cm	Applica	ation of s	cattering	sewage	sludge
Plant Types in Different Dosing Applications		soil	D dosage	issues		on tl	ne soil su	rface S d	losage is:	sues
	D0	D1	D2 -	D4	D8	S0	S1	S2	S4	S8
Salvia absconditiflora	52,5	35	32,5	22,5	30	45	36,25	32,5	27,5	33,75
Acantho limonulicinumvar.ulicinum	7,5	12,5	15	6,25	6,25	18,75	6,25	2,5	10	8,75
Astragalus onobrychis	12,5	2,5	8,75	7,5	7,5	8,75	10	8,75	8,75	5,5
Noaea mucronata	15	13,75	8,75	11,25	8,75	8,75	10	12,5	13,75	8,75
Alyssum linifolium var. teheranicum	1,25	7,5	8,25	4	11,25		5	7,5	8,75	3,75
Alhagi maurorumsubsp. maurorum	1,25	4		4	1,25	2,5	2,5	6,25		
Alopecurus arundinaceus		1,25		3,75	1,25		1,75		2,5	
Androsace maxima	4	6,25	8,25	1,25		3,75	8,75	6,25	6,25	
Bromus tectorum	2,5	6,25	10,75	14	17,5	4,5	7,5	3,75	8,75	19,5
Cynodon dactylon var.villosus								1,25		2,5
Eremopyrum bonaepartis var. sinaicum				4		1,25				
Stipa ehrenbergiana	1,25					2,5		2,5	2,5	3,75
Panicum sp.		5,75	4,5	3,75	7,5	1,25	3,25	6,25	2,5	3,75
Polygonum arenastrum				0,75	5				1,25	5
Onopordu macanthium	1,25	1,25		0,75	1,25					1,25
Thymus leucostomus, endemic				7,5	1,25	2,5	8,75		3,75	
Bromus erectus		1,25								1,25
Scabiosa argentea L.								3,75		2,5
Chenopodium album L.					1,25					
Other	1	2,75	3,25	8,75		0,5		6,25	3,75	
Cumulative-% one hundred	100	100	100	100	100	100	100	100	100	100

Table 8. Botanical composition of 2016

Botanical composition-quatrate method in the parcels during the 2nd year observation after the application of sewage sludge (biosolid) in the eroded pasture in June 2016.

Appl o	ication meth f the parcel	nod	Vege	tated a	rea of t	he parc	el-%	Average plant height in the plot-cm				the	Plant species in the parcel***				
Subj.	Dose	Bl	1.Bl	2.Bl	3.Bl	4.Bl	Avg	1.Bl	2.Bl	3.Bl	4.Bl	Avg	1.Bl	2.Bl	3.Bl	4.Bl	
n into	D0- Control	D0	40	40	40	40	40	5	6	7	6	6	1,3,4,9	1,3,4,5,9	1,2,3,4,22	1,2,3,4,5,6,9,13	
0-5 cı ƙe	D1-1 tonda ⁻¹	D1	40	40	60	60	50	5	6	6	7	6	1,2,4,5,9	1,2,4,5,6,9,13	1,2,3,4,9,17	1,2,4,9,22	
ixing h a ral	D2-2 tonda ⁻¹	D2	50	50	50	55	51	9	9	9	9	9	1,2,3,4,9,13	1,2,4,5,6,9,12,13	1,2,3,4,5,9	1,2,4,5,6,9,10,22	
fter m il witl	D4-4 tonda ⁻¹	D4	50	60	60	55	56	9	9	9	9	9	1,4,5,6,7,9,12, 17	1,2,3,4,5,9,13	1,2,3,4,5,9	1,3,4,5,6,9	
S.s.Af the so	D8-8 tonda ⁻¹	D8	40	50	50	55	49	8	9	8	9	8	1,2,3,9,13	1,2,3,5,6,9,10,13	1,2,3,4,5,9	1,2,3,4,5,9	
the	S0- Control	S0	40	40	40	50	43	6	6	7	6	6	1,2,4,5,9	1,2,3,5,9,16,22	1,2,3,4,5,6,9	1,2,3,4,9,13,17	
no gu	S1- 1tonda ⁻¹	S 1	50	40	50	40	45	6	6	7	7	6	1,2,3,4,5,9,13	1,2,3,4,9	1,4,5,6,10,17	1,2,3,4,6,9	
rinkli	S2-2 tonda ⁻¹	S2	50	50	40	50	48	9	6	9	9	8	1,2,3,4,5,9	1,3,4,5,6,9	1,2,4,5,9,13	1,2,3,4,9,17,23	
fter sp ırface	S4-4 tonda ⁻¹	S4	40	60	50	60	53	6	6	6	9	7	1,2,4,5,6,9	1,2,4,9,17	1,2,3,4,9	1,3,4,9	
S.s.Al soil su	S8-8 tonda ⁻¹	S 8	30	40	60	60	48	7	7	9	9	8	1,2,3,4,9	1,2,4,9	1,2,3,4,5,9,10	1,2,3,4,9	
Cu	mulative	Ave pare	erage ve cels-%	getated	l area o	of the	48	Aver the p	age pla arcels-	int heig cm	ght of	7					
***Th	e plant spec	ies in	the tab	le are l	isted b	elow ir	ı numb	ers.									
1	Salvia abs	condi	tiflora							1	2	Erem	opyrum bonaep	oartis var.sinaicun	п		
2	Acantho li	топи	licinum	var. <i>uli</i>	icinum					1	3	Stipa	ehrenbergiana				
3	Astragalus	s onol	prychis							1	4	Pani	cum sp.				
4	Noaea mu	crona	ta							1	5	Poly	zonum arenastr	ит			
5	Alyssum li	nifoli	umvar.t	eheran	icum					1	6	Onop	ordumacanthii	ım			
6	Alhagi ma	uroru	m subsp	э. таин	rorum					1	7	Thyn	us leucostomus	s, endemic			
7	Alopecuru	s aru	ndinace	us						1	8	Bron	us erectus				
8	Androsace	e maxi	ima							1	9	Onol	orychis sativa la	am an an an an an an an an an an an an an			
9	Bromus te	ctoru	m							2	20	Lepic	lum sp.				
10	Cynodon a	lactyl	onvar.v	illosus						2	21	Scab	iosa argentea L	<i>.</i>			
11	Chenopod	ium a	lbum L.							2	22	Xera	nthemum annuı	ım			
	*									2	23	Phlo	mis armeniaca				

In another study covering different parts of Konya (pastures of Sağlık, Yapalı, Alibeyhüyüğü, İnli, Karadona villages), the Lup-Transect method was applied, and in the findings, the areas covered with vegetation were found to be between 13.75-38.56%, and 67.72% of this vegetation was covered by other plants. It has been reported that 28.21% consists of plants from the family of wheat and 4.17% consists of plants from the legume family (Özmen, 1983). While some of the species detected

in the study conducted in Polatlı Acıkır natural pastures on the border of Konya, which are the continuation of steppe pastures (such as *Tyhmus leucostomus* var. *gypsaceus, Alyssum linifolium, Bromus tectorum, Noaea mucronata*), were the same as the species we found, some of them were found to have the same genus and different species. (Akman et al., 1990). In another study conducted in the pasture in Haymana-Yuvacık village, with fertilization at the end of 6 years of use, the rate of wild thyme (*Thymus squarrosus Fisch.*) in the vegetation decreased to less than 1% at the end of six years, while the rate of grasses increased from 20.5% to 73%. Here, the effect of fertilization was seen in terms of the ratios in the botanical composition (Tan, 1989). Since these results are under the same step conditions, they support the results determined in our research.

Average % of areal distribution	tion of pl	ant specie	es in cum	ulative pa	rcel doses	in the Quat	rat metho	d in 2016		
Plant Types in Different Dosing	Applica	tion of m	ixing sew	age sludg	e into 0-	Application	on of scatt	ering sew	age sludg	e on the
Applications		5 cm so	il D dosag	ge issues			soil surfac	e S dosag	ge issues	
ripplications	D0	D1	D2	D4	D8	S0	S1	S2	S4	S8
Salvia absconditiflora	55	53,25	35	28,75	18,25	45	47	33,75	22,5	20
Acantho limonulicinumvar.ulicinum	10	15	12,5	3,75	13	18,75	8,75	6,25	9,25	8,75
Astragalus onobrychis	10,75	1,75	5,5	3,75	7,5	8,75	8	10	5,5	3,75
Noaea mucronata	15	13,75	12	12,5	3,75	11,75	10,75	17,5	10,75	13,75
Alyssum linifolium var. teheranicum	1,25	1,75	8	12,5	7,5	2,75	2,5	8,75	2,5	1,25
Alhagi maurorumsubsp. Maurorum	1,25	1,25	3,75	2,5	1,25	2,5	3	2,5	2,5	
Alopecurus arundinaceus				1,25						
Androsace maxima										
Bromus tectorum	3,75	6,25	13	23,75	39,25	4,75	8,75	16,25	43,25	50
Cynodon dactylon var. Villosus			3,25		0,75		1,25			2,5
Chenopodium album L.										
Eremopyrum bonaepartis var.sinaicum			1,25	5						
Stipa ehrenbergiana	2,5	2,5	5	2,5	8,75	1,25	2,5	1,25		
Panicum sp.										
Polygonum arenastrum										
Onopordu macanthium						0,75				
Thymus leucostomus, endemic		3,75		3,75		2,5	7,5	1,25	3,75	
Bromus erectus,										
Onobrychis sativa lam										
Lepidum sp.										
Scabiosa argentea L.										
Xeranthemum annuum		0,75	0,75			1,25				
Phlomis armeniaca						,		2,5		
other	0,5							<i>.</i>		
Cumulative-% one hundred	100	100	100	100	100	100	100	100	100	100

Table 9. Areal distribution of plants in 2016

Table 10. Botanical composition of 2017

Botanical composition-quatrate method in the parcels during the 3rd year observation after the application of sewage sludge (biosolid) in the eroded pasture in June 2017

Appl	ication me f the parce	thod l	Vege	etated a	irea of	the par	cel -%	Av	erage p pa	olant he arcel - c	eight in em	the	he Plant species in the parcel ***			
Subj.	Dose	Bl	1.Bl	2.Bl	3.Bl	4.Bl	Avg	1.Bl	2.Bl	3.Bl	4.Bl	Avg	1.Bl	2.Bl	3.Bl	4.Bl
n intc	D0- Control	D0	50	45	50	45	48	15	15	15	15	15	1,2,3,4,17	1,2,3,4,5,9,13	1,3,4,12,18	1,2,3,4,6,9,12,13
0-5 cr ce	D1-1 tonda ⁻¹	D1	50	50	45	50	49	15	17	17	20	17	1,2,3,4,5,20	1,2,3,4,5,6,12, 13	1,2,3,4,5,9,12,13,17	1,2,4,5,6,8,9,13
xing (1 a rak	D2-2 tonda ⁻¹	D2	50	45	60	50	51	17	17	20	18	18	1,2,3,4,5,7,9,10, 12	1,2,4,5,6,12,20	1,2,3,4,5,9,12,14,15,2 0	1,2,4,5,6,9
ter mi il with	D4-4 tonda ⁻¹	D4	60	55	55	60	58	20	20	20	20	20	1,2,4,5,9,12,13, 17,20	1,2,3,4,5,7,9,1 2	1,2,3,4,5,7,11,12,15	1,3,4,5,9,12,20
S.s.Af the soi	D8-8 tonda ⁻¹	D8	60	55	60	60	59	20	20	22	22	21	1,2,4,5,9,12,13, 20	1,2,3,4,5,6,9,1 2,13	1,3,4,5,9,11,12,16	1,2,3,4,5,9,12,13,14
the soil	S0- Control	S0	45	45	45	40	44	13	15	15	15	15	1,2,4,21	1,2,3,4,12,13,1 8,20	1,2,3,4,6,14,18,19	1,2,3,4,17
no gu	S1-1 tonda ⁻¹	S 1	50	50	45	45	48	17	17	15	20	17	1,2,3,4,5,9,12,1 3,20	1,2,3,4,5,14,22	1,2,3,4,5,6,9,12,17	1,2,3,4,5,6,9,12
rinklii	S2-2 tonda ⁻¹	S2	50	55	45	50	50	17	18	17	18	18	1,3,4,5,6,10,11, 13	1,2,3,4,5,6,9,1 2	1,2,3,4,5,20	1,2,3,4,5,7,9,11,12,20
fter sp æ	S4-4 tonda ⁻¹	S4	55	60	55	55	56	20	22	20	20	21	1,2,4,5,12,13,17 ,20	1,2,4,5,7,9,11, 12,14,17	1,2,3,4,5,6,12,16	1,3,4,5,9,12,15
S.s.Af surfac	S8-8 tonda ⁻¹	S8	60	70	55	60	61	20	24	20	26	23	1,2,3,4,6,9,11,1 2,13,16,18,20	1,2,3,4,5,7,9,1 1,20	1,2,3,4,5,9,12,13,15	1,2,3,4,5,9,11,13,14,20
Cum	ulative	Aver parce	age ve els -%	getated	l area o	of the	52	Aver the pa	age pla arcels -	int heig - cm	ght of	18				
***Th	e plant sp	ecies in	n the ta	ble are	e listed	below	in num	bers.								
1	Salvia al	bscond	litiflord	ı						1	2	Erem	opvrum honaepa	rtis var. sinaici	um	

2	Acantho limonulicinum var. ulicinum	13	Stipa ehrenbergiana
3	Astragalus onobrychis	14	Nigella arvensis var. glauca
4	Noaeamucronata	15	Papaver hybridum
5	Alyssum linifolium var.teheranicum	16	Onopor dumacanthium
6	Alhagi maurorum subsp. Maurorum	17	Thymus leucostomus, endemic
7	Alopecurus arundinaceus	18	Bromus erectus
8	Agropyron elongatum	19	Centaurea carduiformis subsp. var.
9	Bromus tectorum	20	Scabiosa argentea L.
10	Cynodon dactylon var. Villosus	21	Xeranthemum annuum
11	Descurainia sophia subsp. sophia	22	Phlomis armeniaca

Table 11. Areal distribution of plants in 2017

Table 11, Alcal distribution of plants in 2017										
Average % of areal distribution of plant species in cumulative parcel doses in the Quatrat method in 2017.										
	Application of mixing sewage sludge into 0-5 cm					Application of scattering sewage sludge on the				
Plant Types in Different Dosing Applications	soil D dosage issues					soil surface S dosage issues				
	D0	D1	D2	D4	D8	S0	S1	S2	S4	S8
Salvia absconditiflora	49,25	29,25	21,25	13,75	6,25	43	27,5	32,5	17,5	9,38
Acantho limonulicinumvar. ulicinum	6,25	12,5	7,5	10	5	11,25	12,5	8,75	6,25	8,75
Astragalus onobrychis	12	6,25	3,75	10	5	7,5	10	10	5,5	6,25
Noaea mucronata	16,25	22	21,75	14,5	16,25	16,25	15	13,75	18,75	14,38
Alyssum linifolium var. teheranicum	1,75	5,5	16,25	18,75	16,25		7,25	12,5	13,75	9,5
Alhagi maurorumsubsp. Maurorum	2,5	4,25	3,75		1,25	1,25	5	3,75	2,5	1,25
Alopecurus arundinaceus			0,75	1				0,75	2,5	0,75
Agropyron elongatum		3								
Bromus tectorum	1,75	2	9,25	6,25	21,25		6,25	6,25	11,25	16,13
Cynodon dactylon var.Villosus			2,5					1,25		
Descurainia sophia subsp. sophia				1,25	8,25			3,75	1,25	6,88
Eremopyrum bonaepartis var. sinaicum	1,5	1,25	6,25	11,25	8,75	1,25	2,75	2,5	7	6,38
Stipa ehrenbergiana	5	9		5	7,5	3,75	2,5	1,25	2,5	8,75
Nigella arvensis var. glauca			1,25		1,25	1,75	2,5		1,25	1,75
Papaver hybridum			0,75	0,75					1,25	0,5
Onopordu macanthium					0,5				1,25	1,25
Thymus leucostomus, endemic	1,25	3,75		1,25		7,5	5		5	
Bromus erectus	2,5			1,25		2				1,25
Centaurea carduiformis subsp. var.						1,25				
Scabiosa argentea L.		1,25	5	5	2,5	2,5	1,25	3	2,5	6,88
Xeranthemum annuum						0,75				
Phlomis armeniaca							2,5			
Cumulative-% one hundred	100	100	100	100	100	100	100	100	100	100,00

Conclusion

Unlike soil texture, soil structure can be changed by appropriate agricultural regulations. Stable forms of soil organic carbon, such as humus, within the soil aggregate can retain up to seven times its own weight in water. Efficient management of water and nutrients is achieved by adding organic matter to sandy soils (Corsi, 2018). Benefits of organic matter to the soil and plants in the pasture; It helps retain moisture, provides a good environment for young plants, space and food for microorganisms, and helps loosen and enrich the soil. Organic fertilizer also plays an important role in the establishment of new pastures in poor, erosion-prone areas (Thompson, 1950). Degradation of pastures is a faster process in arid and semi-arid regions. Here, it is not possible to rehabilitate the vegetation without first stabilizing the soil, that is, keeping the soil in place and correcting the deteriorated physical and chemical properties of the soil (Bakır, 1987).

Considering the evaluations in the final report of this project, in regions with a rainfall regime where rainfall is at least 250-300 mm, in marginal, eroded, weak pasture lands, human health can be used in our country, if it complies with all the criteria of the "Regulation on the Use of Sewage Sludge in Soil". Provided that the necessary precautions are taken, it turns out that the D application has a feasible result of 1 ton/da (DM) in the method of mixing into the soil to a depth of 0-5 cm, once every 3 years. This recommended dose is valid for the ecological conditions in this region where the research was conducted, and similar studies are needed to recommend it in different ecological regions of Turkey (Mücevher *et al.*, 2020). As stated by different researchers and the results of this research show, Sustainable Pasture in Our Country In management (SPM), it is expected to improve the eroded, degraded and weak pasture areas with the optimum dose of stabilized, suitable domestic treatment sludge specified in this study, in accordance with the criteria specified in the regulation on the use of sewage sludge in soil, and the data obtained will contribute to the relevant institutions and organizations at the point of implementation is considered.

Acknowledgments: Author O. Mücevher thanks for supporting "Evaluation of the use possibilities of sewage sludge in eroded pasture areas", numbered TAGEM/TSKAD/14/A13/P05/04, supported by TAGEM (Republic of Türkiye Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies). to Republic of Türkiye Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Turkey" study was compiled from the scope of the project.

Funding: Republic of Türkiye Ministry of Agriculture and Forestry, funding was received by the authors.

Conflict of Interest: The authors declare that they do not have any conflict of interest.

Change of Authorship: The author has read, understood, and complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors and is aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

References

- Akköz C, Bayram AF, (2012) Meke Gölü tabii varlıklarının korunumunun planlanması (TR52-11-TD01168). T.C. Mevlana Kalkınma Ajansı yayını. Konya. <u>https://www.mevka.org.tr/assets/upload/dosyalar/</u> DsybicgnY1028201994730AM.pdf
- Akman Y, Ketenoğlu O, Kurt L, Vural M, (2014) İç Anadolu Step Vejetasyonu. Palme Yayıcılık. Ankara https://www.surelikitap.com/tr/kitap/ic-anadolu-step-vejetasyonu-9786053552475
- Akman Y, Ekim T, Büyükburç U, Ketenoğlu O, Karagüllü N, (1990) Polatlı Acıkır alanındaki doğal meraların bitki sosyolojisi yönünden araştırılması. Tarla Bitkileri Merkez Araştırma Enstitüsü, Yayın no: 3. <u>Ankarahttps://dspace.ankara.edu.tr/xmlui/bitstream/handle/20.500.12575/4875/</u> <u>Ankara%20%C3%9Cniversitesi%27nde%20%C3%87evre%20Konusunda%20Kim%20Kimdir.pdf?sequ</u> <u>ence=1&isAllowed=y</u>
- Akyürek İ, (1986) Türkiye'de aşınım sorunları ve çözüm seçenekleri. TMMOB Ziraat Mühendisleri Odası Yayını, Çağlar Matbaası. Ankara. <u>https://kutuphane.tarimorman.gov.tr/vufind/Record/15427/Description</u>
- Altın M, Gökkuş A, Koç A, (2005) Çayır Mera Islahı. T.C. Tarım ve Köyişleri Bakanlığı Yayını. Ankara
- Arvas Ö, Keskin B, Yılmaz İH, (2007) Effect of sewage sludge on metal content of grassland soil and herbage in semi-arid lans, TÜBİTAK projesi. <u>https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=1652&context=agriculture</u>
- Avcıoğlu R, (1983) Çayır-Mera Bitki Topluluklarının Özellikleri ve İncelenmesi. Ege Üniversitesi Ziraat Fakültesi Yayınları No: 466, İzmir <u>https://www.nadirkitap.com/cayir-mera-bitki-topluluklarinin-ozellikleri-ve-incelenmesi-riza-avcioglu-kitap10558404.html</u>
- Bakır Ö, (1985) ÇayırMeraIslahıPrensipveUygulamaları. Ankara Ünv. Ziraat Fak. Yayınno: 947. Ankara. http://bilgipaketi.uludag.edu.tr/Ders/Index/816303
- Bakır Ö, (1987) Çayır Mera Amenajmanı. Ankara Ünv. Ziraat Fak. Yayınno: 992. Ankara. https://kutuphane.tarimorman.gov.tr/vufind/Record/11297
- Bot A, Bentes J, (2005) The importance of soil organic matter. Key to drought-resistant soil and sustained food and production. In: FAO Soils Bulletin (FAO), no. 80 / FAO, Rome (Italy). Land and Water Development Div. 78 p. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2134978
- Corsi S, (2018) Koruyucu Tarım Klavuzu. FAO Türkiye pub. Ankara. <u>https://www.fao.org/3/i7154tr/I7154TR.pdf</u>
- Çepel N, (2008) Ekolojik Sorunlar ve Çözümleri. TÜBİTAK Popüler Bilim Kitapları yayın no: 180. https://www.nadirkitap.com/ekolojik-sorunlar-ve-cozumleri-necmettin-cepel-kitap11608701.html
- Çetik, AR. 1985. Türkiye Vejetasyonu: 1, İçAnadolu'nunVejetasyonu ve Ekolojisi. Selçuk Ünv. Fen Edebiyat Fak. Yayın no:1. Konya <u>http://web.harran.edu.tr/assets/uploads/sites/67/files/vejetasyon-31072018.pdf</u>
- Eyce B, (1995) Bitki Ekolojisi.Selçuk Ünv. Fen-Edebiyat Fak. Biyoloji Bölümü Yayını. Konya.
- Ignatieff V, Page HJ, (1965) Gübrelerin Tesirli Bir Şekilde Kullanılmaları (Çev. N. Özbek). Ankara Ünv. Ziraat Fak. Yayın no: 238. Ankara. <u>http://www.agri.ankara.edu.tr/</u>
- Johnson I, Alexander S, Dudley N, (2017) Global Land Outlook(First Edition). UNCCD. Bonn, Germany. https://portals.iucn.org/library/node/47008
- MGM, 2018. T.C. Orman ve Su İşleri Bakanlığı, Meteroloji Genel Müdürlüğü iklim verileri, Ankara. https://www.mgm.gov.tr/FILES/iklim/yayinlar/2017/Klimatolojik-Makaleler-2017.pdf
- Mücevher O, Bitgi S, Ulutaş S, Acar R, Akay A, Dursun Ş, Koyuncu S, Öztekin M, (2020) . Erozyona uğramış alanlarında çamurlarının değerlendirilmesi, mera arıtma kullanım olanaklarının TAGEM/TSKAD/14/A13/P05/04 no'lu proje sonuc raporu, Ekim, 2020, Konya. https://www.tarimorman.gov.tr/TAGEM/Belgeler/pdgt/tskad/tutanak.pdf
- Özmen AT, (1983) Konya İli Meralarının Bitki Örtüsü Üzerinde Araştırmalar. Çayır Mera Yem Bitkileri Zootekni Araştırmaları. T.C. Tarım ve Orman Bakanlığı yayın no:78. <u>https://kutuphane.tarimorman.gov.tr/vufind/Record/7381</u>

- Özyazıcı MA, Özyazıcı G, (2012) Arıtma Çamurlarının Toprağın Bazı Temel Verimlilik Parametreleri Üzerine Etkileri, Anadolu Tarım Bilim Dergisi, 2012, 27 (2): 101-109. <u>https://dergipark.org.tr/tr/pub/omuanajas/</u>issue/20212/214163
- Sutie JM., Reynolds, SG., Batello C, (2005) Grassland of The World. FAO Plant Production and Protection Series no: 34. Rome. <u>https://www.fao.org/4/i1880e/i1880e.pdf</u>
- Şimşekli N, (2012) Karapınar rüzgâr erozyonunu önleme alanının sürdürülebilir arazi/toprak yönetimi planının geleneksel yapının perspektifinde geliştirilmesi, ÇukurovaÜniversitesi, Fen Bilimleri Enstitüsü Arkeometri Anabilim Dalı, Yüksek Lisans Tezi. Adana. <u>https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=D53Qa_TSzV1p_U0n8wud6A&no=OGjSLEZs3h win8q2yVwQww</u>
- Tan A, (1989) Meraların Gübrelenmesi. Hayvancılık Çayır MeraYemBitkileri, EğiticiYayınlar no:1. Tarla Bitkileri Merkez Araştırma Enstitüsü. Ankara. <u>https://arastirma.tarimorman.gov.tr/tarlabitkileri/</u> Belgeler/cesit katalogu.pdf

Thompson WR, (1950) The Pasture Book. Printer in Decatur, G.A. Alabama Engraving Company

Yılmaz T, (1977) Konya İli Sorunlu Alanlarında Oluşan Meraların Bitki Örtüsü Üzerine Araştırmalar. Köyişleri ve Kooperatifler Bakanlığı Toprak Su Genel Müdürlüğü yayın no: 46. <u>https://kutuphane.tarimorman.gov.tr/vufind/Record/5789</u>