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ABSTRACT: Monitoring the adhesion force between a railway wheel and a rail surface is very essential
in maintaining high acceleration and braking performance of railway vehicles. Due to the difficulties
encountered in direct measurement of friction coefficient, creepage and adhesion force; state observers
are used as indirect estimation methods. This paper proposes an effective estimation method, which
exploits railway traction motor behaviour to give an assistance for realizing wheel slip and adhesion
control in order to be used in railway applications. This method plays an active role in optimizing the
use of the existing adhesion and reducing wheel wear by decreasing high creep values. With this
method, adhesion force can be indirectly estimated by measuring stator currents, and angular speed of
the AC traction motor and using dynamic relationships based on the extended Kalman filter (EKF)
simulation model. The re-adhesion controller can be designed to regulate the motor torque command
according to the maximum available adhesion depending on the estimated results. To test the proposed
method, simulations were performed under different friction coefficients.
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Demiryolu Cer Motorlar1 i¢cin Genisletilmis Kalman Filtresi Tasarim1

OZ: Bir demiryolu tekerlegi ile ray1 arasinda meydana gelen tutunma kuvvetinin izlenmesi, demiryolu
araclariin yiiksek hizlanma ve frenleme performansinin korunmasinda oldukca 6nemlidir. Siirtiinme
katsayisi, kayma ve tutunma kuvvetinin dogrudan o6lciilmesinde karsilasilan zorluklardan dolays,
durum gozetleyicilerine dayali dolayli tahmin yontemleri kullanulir. Bu makale, demiryolu
uygulamalarinda kullamilmak {izere tekerlek kayma ve yeniden tutunma kontroliinii gerceklestirmek
igin demiryolu cer motor davranisini kullanan etkili bir tahmin yontemi dnermektedir. Bu yontem,
mevcut tutunmanin kullanimini iyilestirmede ve yiiksek kayma degerlerini diisiirerek tekerlek
asinmasinin azaltilmasinda etkin bir rol oynamaktadir. Bu yontemle, stator akimlari ve asenkron cer
motorun agisal hizi Olgiilerek, genisletilmis Kalman filtresi (GKF) simiilasyon modeline dayanan
dinamik iligkiler kullanilarak tutunma kuvveti dolayli olarak tahmin edilebilir. Yeniden tutunma
kontrolorii, tahmin sonuglarina bagli olan maksimum erisilebilir tutunma o6zelliklerine gore motor
moment komutu diizenlenerek tasarlanabilir. Onerilen ydntemi test etmek igin, farkli tekerlek-ray
stirtlinme katsayilar: altinda simiilasyonlar gergeklestirilmisgtir.

Anahtar Kelimeler: Demiryolu Cer sistemi, Genisletilmis Kalman filtresi, Tam durum kestirimi, Tutunma
modeli.
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INTRODUCTION

In railway vehicles, estimating the maximum adhesion force between the wheel and rail, which is a
non-linear function of friction coefficient and mass of the rail vehicle, is very important in terms of
providing effective acceleration and braking performance. In traction systems, excessive creepage at the
wheel-rail must be limited to reduce traction, poor ride comfort, wheel wear and noise. A large creepage
usually occurs when the traction force applied during acceleration and deceleration exceeds the
maximum admissible adhesion. When investigating the slip&slide phenomenon in railway traction, a
procedure based on the second order Luenberger observer that indirectly define the frictional force is
proposed and the results obtained are verified on the test rig (Rizzo and lannuzzi, 2002). The load is
evaluated by means of the interaction between the torsional oscillations of the friction forces, mechanical
transmission forces, and the motion components to optimize the vector control algorithm, which
prevents slip&slide oscillations. An adaptive observer algorithm has been developed to approximate the
true wheel-rail friction coefficient by using the measured values of the angular velocity of the wheel, the
moment generated by the brake force and the torque generated by the wheel load. Friction coefficient
values estimated under suddenly changing wheel-rail contact conditions are used to improve anti-slip
brake control performance (Gaspar et al., 2006). However, in this method, it is necessary to know the slip
ratio and vehicle speed so that the friction coefficient can be estimated. This method does not seem to
have enough accuracy because of the difficulty of measuring slip ratio and vehicle speed. Lateral
dynamics of the train have also been analyzed to estimate the low adhesion at the wheel-rail contact by
using Kalman filter algorithm (Charles and Goodall, 2006). The shortcoming of this method is that it
only detects significant changes in friction coefficient. Subsequent studies have involved searching for
the least residuals operated at saturation points under the influence of different friction coefficients,
using the series of state observers in the estimation of the vehicle lateral dynamics and friction
coefficients (Mei and Hussain, 2010). The creep force between the wheel and roller is estimated using
Kalman filter based on stator voltage, current and motor speed measurement focusing on the torsional
dynamics of a simplified drive system. The estimated creep force-creepage relationship is compared
with those under different friction coefficients, and the friction coefficient is estimated by calculating the
root mean square value of residuals (Zhao et al., 2012). A multiple-induction motor system driven by a
single inverter, which utilize the estimated adhesion force to adjust the torque command and suppress
the slip&slide, has been investigated. The ability of the traction system to be adjusted to work at the
peak of the adhesion force curve depends on accurately estimating the friction coefficient and vehicle
speed (Kawamura et al., 2003; Matsumoto et al., 2001). The creep forces occurred at the contact patch
have been investigated by using the roller test rig and a model to calculate the wheel-rail creep force has
been proposed (Iwnicki, 2003). Among the alternative methods, there is an indirectly detection and
estimation process of the slip-slide conditions based on measuring the voltage, current, and speed of the
AC traction motor with using an EKF (Zhao and Liang, 2013). There is also another method were used to
detect slip velocity based on the multi-rate EKF state identification by combining the multi-rate method
and the EKF method to identify traction motor load torque. This method provides a faster detection of
slip and improves reliability and traction performance (Wang et al., 2016). The EKF algorithm has been
developed for direct vector control of induction motors. This algorithm includes the estimation of the
currents, rotor fluxes, and motor speed (Barut et al., 2002). In the sixth-order discrete-time model,
mechanical equations are taken into consideration by adding the load torque to the state variables
(Alonge and D'ippolito, 2010). The important problem associated with the use of EKF’s is the proper
selection of covariance matrices and measurement noises for the system to operate at the optimal state.
However, both matrices are not known, especially the system noise is very hard to define. For this
reason, these matrices are often used as parameters for tuning. Adjustment can be accomplished using a
trial and error approach or using evolutionary algorithms (Cai, et al., 2003). A Kalman-Bucy filter
estimation method based on a half vehicle non-linear contact mechanics model was developed in (Ward
et al, 2011) and best estimates were achieved for the front bogie rear wheelset creep forces. The
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efficiency of this technique was tested with more representative data produced by multi-bodied physics
simulation package Vampire (Ward et al, 2012). Multiple model estimation approach for the
identification of the adhesion limit to handle the wheel slip/slide phenomenon was presented by using a
bank of Kalman filters, which are designed at selected operation points for adhesion estimation (Hussain
etal., 2013)

An unscented Kalman filter was also used to estimate the creep force, creepage and the friction
coefficient from traction motor behaviors (Zhao, et al., 2014). This estimator provided accurate friction
estimation under different contact conditions, but the estimated friction coefficient was not reliable when
the traction load is very small, and was also influenced by the traction load. These problems are
originated from the inaccuracy of the measurements and system dynamic model. An adhesion moment
estimation in contact point was constructed in order to perform a high precision adaptive control system
for locomotive electrical drives (Radionov and Mushenko, 2015). By using this method, it is also possible
to estimate the rotor flux vector components.

In this paper, a new approach to estimate the adhesion force between wheel-rail contact surfaces
over an EKF using the measured values of the stator currents of the traction AC motor has been
examined. The optimum operating point of the system is determined by the estimated adhesion force-
creepage curve. To test the observer, a dynamic model consisting of a wheel set, gear box and traction
motor is designed. The Polach model is used to express the wheel-rail contact behavior. For sensorless
control of induction motors, an EKF is proposed that estimates rotor flux and current components,
motor speed and load torque. The traction motor is designed by first order decomposition of the sixth
order nonlinear model (Euler method). The mechanical equation is formed by including the load torque
in the state variables that the account participates in. Then, based on this model, the EKF design was
completed by selecting the covariance matrices of the system and the measurement noise using a trial
and error method. The main contribution of this paper is to design and implement the sixth-order EKF,
which takes into account the railway traction dynamics and predicts the existing adhesion to establish an
effective sensorless re-adhesion control system on rail vehicles.

MATERIAL AND METHOD
Traction system model

The traction system used in this paper is represented in Figure 1.

Traction Motor

Gearbox

Right Wheel

Driveshaft J

Left Wheel

Figure 1. Schematic representation of the traction system.

In this system, a wheel set with two wheels is driven by an AC induction motor coupled with a
gearbox. The movement of the railway vehicle takes place thanks to the creep forces between the wheels
and the rail. The dynamic equations for the motion of the system are given below.

dwm Tm—TL
— = 1
de Jeqv 1)
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w, =n @)
13
where w,, is the motor angular velocity, w,, is the wheel angular velocity, T;, is the motor torque, n;

2rofa here F, is the longitudinal

is the gear reduction ratio, T}, is the load torque and represented as T}, =

creep force, which is also called as adhesion force of a single wheel.
Jeqv is the equivalent moment of inertia as shown in below

i+ Jur S
Jeay = I + 9 LS

n

where /g, ]y, Jwr, Jwi is the moment of inertia of the gearbox, wheelset axle, right wheel, left wheel,
respectively.

Extended mathematical model of the traction motor

In this paper, the type of the traction motor is an induction motor, which is controlled by an indirect
flux oriented scheme, which is commonly used in railway traction. Induction motors are described by a
set of fifth-order differential equations with two input and three state variables suitable for
measurement. The model for speed sensorless control includes differential equations based on stator
and/or rotor electric circuits, taking into account stator current and/or voltage measurement. The
extended induction motor model derived is different from previous EKF-based estimators that estimate
the rotor speed. The equation of motion to be used for estimating the rotor speed is also included in the
model. Stator current and rotor flux are the state variables and the equations are listed as (Barut, et al.,
2007; Shi et al., 2002 )

% - UR_LSS + Uszf;iz)lsa + (rZ?fj)z Yra + (ri:ll,;, Tlp(t)mlpr[g + GLLS Usa (3)
d;_StB == UR_; Ullfr(ll}z)z)lsﬁ + (,LL:(IZgz Yrp — ai:z;, Ny WmWPrq + JLLS Usp 4)
mﬁ% = Rill;m Lsq _}z_i ra — NpWmWPrp 5)
dlﬁ:b’ = RiZm ISB - Iz_iwrﬁ + npwmlpra (6)
dj;—tm = _zj:;;l;: ¢rﬁlsa + 23]1:1:—?:22 ra[s[f - %wm - ]:;; (7)

The extended model of the induction motor based on the rotor flux is represented in matrix form as
(Barut et al., 2005)
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where n, is the number of the pole pairs, ¢ is the leakage or coupling factor, L; and R, are stator
inductance and resistance, respectively, L, and R; is the rotor inductance and resistance, referred to the
stator side, respectively. Uy, and Ugg stator stationary axis components of stator voltages, ¥, and ¥,
are rotor stationary axis components of stator flux, L,, is the mutual inductance, B,, is the viscous
friction, w(t) and v(t) are process and measurement noise, respectively.

The longitudinal creep force F; at the wheel-rail contact is modeled based on Polach's method as
(Polach, 1999)

T 1+(kpe)?

E, = 2FNW< ka4 arctan(kse)> (10)

For the case of the domination of the “longitudinal creepage” "§; =&, §, ~ 0"

GmabCqq

¢ = Gmabus a1

4FNpg

where g, b are the semi-axes of the contact ellipse, C;; ise the longitudinal Kalker's coefficients, Fy is
the normal force acting on the wheel. k,, ks are reduction factors regarding to the different conditions
between wheel and rail surface. k, is related to the area of the adhesion, Kg is related to the area of slip,
and the condition is defined as
kg <ky <1
In this model, the traction coefficient relies on the slip velocity and friction coefficient, which is
defined by the following equation.

tr = uo((1— Qe ™V + Q) (12)
P, Q are reduction factors under different friction coefficient. The values of the P, Q, k,, kg, y are
given in Table 1.

Table 1. Parameters of Polach model under various friction conditions (Zhao and Liang, 2013).

Parameter Dry Wet Low Very Low
k, 1 1 1 1
ks 0,4 0,4 0,4 0,4
Ho 0,55 0,3 0,06 0,03
P 0,4 0,4 0,4 0,4
Q 0,6 0,2 0,2 01

Since the lateral dynamics of the system are neglected in this work, the creepage terms contain only
the longitudinal component. Creepage is calculated by the following equation (Kalker, 1968).



Extended Kalman Filter Design for Railway Traction Motor 437

g =2 (13)

where V is the longitudinal velocity of the railway vehicle.
Extended Kalman filter design

An EKF algorithm with the aim of estimating the states of the extended induction motor model
given in Equations (8-9) , which will be used in the sensorless control of the induction motor, has been
developed. The Kalman filter (KF) method used for this purpose is a recursive algorithm in which a
statistical state space model is added to the system together with the measured outputs to optimally
estimate states in multiple input & multiple output systems. System and measurement noises are
considered as white noise and the optimality of the state estimation can be obtained by minimizing of
the covariance of the estimation error. Since KF cannot express an optimal filter performance for non-
linear problems, this difficulty is solved by the EKF method, which implements a linearization approach
on the current state estimation. This method demands the discretization of the extended induction motor
model (Alsofyani et al., 2012; Barut et al., 2003).

x5 (ke + 1) = Ags () + w(k) = (e (), ue () + wi) (14)
z(k) = Hx, (k) + v(k) (15)

where 4, is the state matrix, H is the measurement matrix, w(k), and v(k) are process and
measurement noise, respectively, z is the measurement vector.

The state and measurement vectors are defined as

Xe = [Iso( ISB 1proc wrﬁ W TLI]T
Z= [Iso( ISB Wm ]T

EKF estimates the state variables by using model inputs and measurements. EKF method has the
same "prediction-correction” algorithm as the Kalman filter, but linearizes the state and observation
matrix at every step of estimation and correction by evaluating the Jacobian matrices and their partial
derivatives (Singh and Singh , 2013). The procedure of the EKF algorithm is depicted in Figure 2.

Measurement Update (Correction)
Time Update (Prediction) :

)Compute the Kalman gain
1)Project the state ahead

xp(k+1)=

K (k) = P~(k + 1)(VH)T ((VH)P~ (k + 1)(VH)T + R (k))~

fe(xe(k) ue (k) ) +w (k) 2)Update estimate with measurement 7z (k)

2)Project the error covariance ahead -:'p(’\' +1)= ;"'('\.P(k)‘ u,(k)) +K (k)(z (k) - (VII),\?,,—(I\'))
P=(k + 1) = F (k)P (Fe(k))" + Q (k)

3)Update the error covariance

P(k+1)=(—-K K)VH)P~(k +1)

Initial Estimates for
Xe(k), P (k)

Figure 2. EKF algorithm.

The linearized approximation of the nonlinear model can be implemented by using the current
estimation of the states and inputs as
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Ofe(xe(k)ue(k))
Fo(k) = ——————==|, . 16
+(0 %oy (et 1o
0fe(xe(k)ue(k))
E, (k) = —=——=—=|. . 17
w oue) ety W
The EKF algorithm can be defined in a recursive form as
P~(k +1) = E(K)P(k)(F.(K)" + F(k) Dy (k) (Fu (k)" + Q k) (18)
K(k) = P~(k + 1)HT (HP~(k + 1)HT + R(k))™* (19)
Xe(ke +1) = fe(xe(k), ue(k)) + K(k) (2(k) — Hx(k)) (20)
P(k+1)=(1-KKHP (k+1) 1)

where [ is the symbol of unit matrix.

The values of the covariance matrix of the system noise Q and output noise R, can have a very large
impact on the performance of the EKF. Both of these matrices should be determined by focusing the
stochastic properties of the corresponding noises. Since the system and measurement noise Q and R
have uncertainty, the their valus can be usually obtained by using the trial-and-error process (Bogosyan
et al., 2007).

Q and R can be given for this simulation as:

Q = diag{2x10™* 2x10™* 2x107% 2x107° 10™* 1073}
R = diag{0.1 0.1 0.1}

A A A

State variables ¥, ,1,g, are hence T, are estimated from the EKF as:

Ty =

p

L A A
L;m (Isﬁlpra - Isalprﬁ) (22)

The electric torque, which has a remarkable error during the transition of the speed command,

A

shares the same pattern as the adhesion force (F,).
RESULT AND DISCUSSION

The presented model is simulated to validate the accuracy. Parameters of the traction system used in
the simulation are listed in Table 2.

Table 2. Rated values and parameters of the traction system.

Py (kW) fsn(Hz) N (rpm) Un(V) R,(2) L.(H) ro(m)
250 50 2900 750 0,2890 2,39.1073 0,34
]eqv(kg- mZ) B (Nm) np R;'(-Q) Ls(”) Lm(H) n;
™rad. s

0,2463 0,0023 2 0,217 1,9.1073 1,95.1073 6,92
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The contact ellipse semi-axes, longitudinal Kalker’s coefficient, normal force at the wheel-rail
contact, shear modulus are calculated as a =15%X10"3m,b=75x10"3m,C;; = 4.12, Fy = 50 kN,
G =84x 1010m—1\]2 . The creep curves with respect to the various wheel-rail contact conditions are
depicted in Figure 3 and the optimum creepages &*, which corresponds to maximum adhesion forces.

2.5

— Dry Condition

Ho = 0.55,£ =0.0537 —— Wet Condition

&)

Low Condition

—Very Low Condition

4y =0.3,& =0.0684

3
g
£1.5
=
s
7z 1 :
= S
= g, =0.06,& =0.0301" 1
=

0.5 . =0.03,£ = 0.0298

0 i 1 1 i L 1
0 0.1 0.2 0.3 0.4 0.5

Creepage

Figure 3. Creepage-adhesion force curves with different contact conditions.

The pattern of the reference motor speed (wy”) is represented in Figure 4.

100 . :

Motor Speed (rad/s)
& \o
=] (97

oL
n
T
I

80 ' ‘ ‘
0 5 10 15 20 25 30 35

Time (seconds)
Figure 4. Reference motor speed.

The friction coefficients are designed according to the following equation to simulate dry, wet, low
and very low contact conditions between the wheel and the rail.

_{0.55 t <10 0.06 20<t<30
Ho=103 10<t=<20 003 30<t<35

The trajectory of the estimated, actual motor speed (w,, ®n,) and speed error (e,,,) were given in
Figure 5, respectively.
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= sl | -0.8 |
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Figure 5. a)Trajectory of the estimated and actual motor speed b)The trajectory of the speed error.

It has been shown that the estimator tracks the speed trajectory with a lower bound of error and

converges fast. In Figure 6, the trajectory of the estimated load torque and load torque error (T}, er, ) is

rep

Estimated Load Torque (kN)

resented, respectively.
-4
0.3 : : : : <10 . . ‘
_eTa
0.25¢ 1 2 |
1
=]
0.2 ] =
. s 1 1
H
0.15 &
‘—Estimated Load Torque ‘ g
0.1f . =
<
=}
=
0.05 1
0 ‘ : ‘ ‘ ‘ ‘ 3 | | | |
0 s 1 T 15 zod 530 35 0 5 10 15 20 25 30 35
ime (seconds) Time (seconds)
(a) (b)

Figure 6. a) The trajectory of the estimated load torque b) The trajectory of the load torque error.

The trajectory of the estimated motor currents ([, fsB) and current errors (e, elsp) are represented

in Figure 7 and Figure 8, respectively.

Amplitude (A)

600

600 T : : : . :
‘*Estimated motor current in alpha axis

—Estimated motor current in beta axis

400

400

200

Amplitude (A)
=}

-200
400 -400
-600 L L L L L L -600 L L 1 I L L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (seconds) Time (seconds)
(a) (b)

Figure 7. The trajectories of the estimated motor currents a) in & axis b) in f§ axis.



Extended Kalman Filter Design for Railway Traction Motor

:
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10 15 20 25 30
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35
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T T T T

——Current error in beta axis
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(b)

25

Figure 8. The trajectories of the motor current errors a) in @ axis b) in [ axis.

A

A

The trajectory of the estimated rotor fluxes (Yrq, Prp) and flux errors (ey,. ., ely, B) are represented in

Figure 9 and Figure 10, respectively.

3 T i i T i i 3 T T i i i i
‘fEstimated rotor flux in alpha axis ——Estimated rotor flux in beta axis
2 1 2t 1
=21 =21 1
2 z
T 30
= =
=-1 =1 1
= =
£ E
<« -2 < 2+ 4
-3 3l ]
4 ! | | | | ; » | ! ‘ | ‘ ‘
0 5 10 ) 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (seconds) Time (seconds)
(a) (b)
Figure 9. The trajectories of the estimated rotor fluxes a) in & axis b) in 8 axis.
-3 -3
3 X107 . : : : : 510 : : : : :
‘71:1“,‘ error in alpha axis‘ [—Flux error in beta axis|
27 ] o
El
3 1 ] = 0 F—. AR
<= £
o <
£ |
< -5t .
22 .
3t i
10 ; | ; ‘ ! ‘
-4 . . L L L L [1} 5 10 15 20 25 30 35
0 5 10 15 20 25 30 35 Time (seconds)
Time (seconds)
(a) (b)

Figure 10. The trajectories of the motor flux errors a) in & axis b)in f§ axis.

The estimation and actual dynamics of the motor torque (T, T,,) are given in Figure 11.
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10 . \ r
—— Actual Motor Torque
Estimated Motor Torque
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=
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Figure 11. Actual and estimated pattern of the motor torque.

It can be seen that, when the speed command suddenly changes, the error usually changes in a
narrow band interval. It can be concluded that the estimator tracks the trajectories of the states with
higher precision and converges fast. In Figure 12., the trajectory of the estimated adhesion force (£,) can
be derived from the part of the Equation (1) by using estimated load torque data as 7, = %’F‘a.

25 , : .

[
(=]
T

I

[
[9)]
T

|

‘ —Estimated Adhesion Force

o
=
|

Amplitude (kN)

0 L L L 1 L L
0 5 10 15 20 25 30 35

Time (seconds)
Figure 12. The trajectory of the estimated adhesion force.

With the help of the estimated longitudinal creep force, it is possible to determine the level of the
adhesion present, and the effect of the railway vehicle upon the track infrastructure. The performances

has been checked into thoroughly at various dynamic operation conditions both simulated and
estimated results.

CONCLUSION

The real-time information about the wheel-rail contact has become essential to satisfy the consistent
traction and braking performance. A novel method to detect the wheel-rail contact conditions, which
are very hard to be known in practical applications, has been investigated in this paper. An extended
Kalman filter (EKF) based condition monitoring is proposed to make it an effective re-adhesion
controller. The EKF performance was evaluated by comparing the actual and estimated values of load
current, motor speed, stator current and rotor currents. Then the electric motor torque and adhesion
force were calculated by moving from the estimated data. It was observed that the EKF responded
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quickly and estimated with low error value, as the adhesion conditions of the wheel-rail contact varied.
Different creep curves, which correspond to different contact conditions are utilized in simulations and
the estimation results are found robust and accurate. The primary aim of this kind of estimation of these
variables is to design a real-time system, which detects local adhesion conditions, and predicts wear
generated. With the help of such an estimator, the performance of the re-adhesion controller can be
improved, the creepage is reduced, and maximum traction is achieved. It has been proved that proposed
EKF estimatior has a superiority in estimation while changing the contact conditions. These predictions
can be translated into a useful condition monitoring phase, which seeks to reveal the creep
characteristics at low creep values using a scale roller rig, and validation of the techniques generated by
a multi-bodied dynamic simulation package such as SIMPACK and data obtained from a full scale
railway vehicle. These applications shall be carried out in future works. The lateral dynamics of the
vehicle can also be included in the estimator. The estimator performance under varying traction load can
also be studied, and several adaptive tuning algorithms should be applied to improve the estimation
accuracy and stability with the help of sensors,which perform better resolution, and high sampling rate
of the data acquisition system.
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