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Research Article 

Abstract − Acquiring a sufficient amount of diverse and accurate real-world data poses a significant 

challenge in advancing autonomous systems, which are becoming increasingly popular. Despite the 

aerospace industry's keen practical and economic interest in autonomous landing systems, readily 

available open-source datasets containing aerial photographs are scarce. To address this issue, we 

present a dataset named AeroRunway, comprising high-quality aerial photos designed to aid in 

runway recognition during the approach and landing stages. The dataset is composed of images using 

X-Plane, a flight simulator software developed by Laminar Research. It is a highly realistic and 

detailed flight simulation program that allows users to experience the sensation of piloting various 

aircraft in a virtual environment. These synthetic images were collected mostly in variable weather 

conditions above 5000 feet to supplement existing satellite imagery that can be used for extreme 

situations. This dataset was created from 28 different airports in different weather conditions, such 

as foggy and rainy, at various times of the day, such as day and night, and consists of 3880 images 

and is approximately 13.3 GB in size. 

Keywords − Aerodrome detection, spatial awareness, artificial intelligence, deep learning, machine learning 

1. Introduction 

Maintaining situational awareness is paramount for pilots, especially during critical phases of flight such as 

approach and landing. Visual cues aid pilots' orientation and decision-making processes, providing essential 

information about their surroundings and facilitating safe navigation. However, visually identifying 

aerodromes amidst diverse and often rapidly changing environments presents significant challenges. Spatial 

disorientation, a phenomenon where pilots may misinterpret their spatial position and orientation relative to 

the ground, poses a considerable risk during flight. This can be exacerbated by poor visibility, inclement 

weather conditions, or complex terrain features. Additionally, aerodromes exhibit varying characteristics and 

visual appearances, ranging from large international airports with distinctive runway layouts to smaller 

regional airfields nestled amidst rural landscapes. 

In response to these challenges, the study introduces a dataset designed to leverage the power of Deep Learning 

(DL) algorithms for real-time aerodrome detection from aircraft. By harnessing the capabilities of machine 

learning and computer vision, this dataset offers a revolutionary solution to enhance pilots' situational 

awareness and improve flight safety. The dataset comprises a comprehensive collection of high-resolution 

aerial images capturing diverse aerodrome environments worldwide. These images are meticulously annotated 

with precise aerodrome boundaries, runway configurations, taxiway markings, and other distinctive features, 
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facilitating robust training and validation of DL models. 

By training DL algorithms on this dataset, pilots can benefit from advanced onboard systems capable of 

autonomously detecting and identifying aerodromes in real time, even under challenging conditions. This 

technology promises to revolutionize cockpit instrumentation, providing pilots with invaluable assistance in 

navigating complex airspace environments and mitigating the risks associated with visual navigation errors. 

Incorporating DL-based aerodrome detection systems into aircraft avionics represents a significant leap 

forward in enhancing flight safety and efficiency. By empowering pilots with cutting-edge technology, this 

initiative aims to redefine the standards of situational awareness in aviation, ensuring safer skies for passengers 

and crew alike. These methods employ neural networks to extract pertinent features and have demonstrated 

effectiveness in computer vision applications [1]. 

Northwestern Polytechnical University (NWPU) created the NWPU-RESISC45 dataset [2], a standard for 

Remote Sensing Image Scene Classification (RESISC). There are 700 photos in each of the 45 scene 

classifications in this dataset's 31,500 photographs. The NWPU-RESISC45 proposal includes a large number 

of scene classes and total images. It has significant changes in translation, spatial resolution, perspective, object 

posture, lighting, background, and occlusion and has a high level of both within-class and between-class 

variability. 

10 classes of openly accessible geographic object identification NWPU VHR-10 dataset [3-5] is another 

resource we can reach in this field. An aircraft, ship, storage tank, baseball diamond, tennis court, basketball 

court, running track on the ground, harbor, bridge, and vehicle are among the ten categories. This collection 

consists of 800 Very High-resolution (VHR) remote sensing photos that specialists carefully annotated after 

being clipped from the Vaihingen and Google Earth datasets. This 10-class dataset for geographic object 

recognition may be used to find both single-class and multi-class items. A total of 800 VHR optical Remote 

Sensing Images (RSIs) were used to create this dataset, from which 477 vehicles, 757 airplanes, 302 ships, 655 

storage tanks, 390 baseball diamonds, 524 tennis courts, 159 basketball courts, 163 ground track fields, 224 

harbors, and 124 bridges were manually annotated with axis-aligned bounding boxes. 715 color images from 

Google Earth were acquired with spatial resolutions ranging from 0.5 to 2 meters, and 85 pan-sharpened Color 

Infrared (CIR) images from Vaihingen data [6] were acquired with a spatial resolution of 0.08 meters. 

A diverse dataset [7] is constructed by collecting RGB imagery using Google Earth technology. This collection 

consists of a total of 3092 images measuring approximately 4800 x 2703 pixels each. This was achieved by 

sourcing photographs from renowned international airports such as Paris-Charles de Gaulle, John F. Kennedy 

International Airport, and Frankfurt Airport, among others, and aircraft boneyards such as Davis-Monthan Air 

Force Base. To properly label each photograph's aircraft, they used the help of HyperLabel software where 

they manually created individual bounding boxes surrounding them, which included quality control measures 

using external independent visual inspectors who maintained accuracy during this process. This led them to 

label a staggering amount of about eighteen thousand four hundred seventy-seven airplanes overall. Once 

labeled, their dataset was portioned into three smaller sets with different usage criteria. These subsets were 

separated accordingly into training (70%, 2166 images), validation (20%, 615 images), and testing (10%, 311 

images) to cover all bases respectfully. The DIOR dataset [8] for object detection in optical remote sensing 

images consists of 20 object classes, 23463 images, and 192518 object instances annotated with horizontal 

bounding boxes. DIOR-R is an expanded version of DIOR that uses the same images as DIOR but is annotated 

with orientated bounding boxes. Images in the collection are 800 by 800 pixels in size, with spatial resolutions 

varying from 0.5 to 30 meters. Similar to most current datasets, this one was gathered from Google Earth 

(Google Inc.) by specialists in interpreting earth observation data. As opposed to dataset NWPU VHR-10, 

which has only 800 images, the 23463 remote sensing images in the proposed DIOR collection span over 

eighty countries. These images are carefully gathered in various weather situations, seasons, imaging settings, 

and image quality. As a result, for each object class in the DIOR dataset, there are richer variations in 

perspective, translation, lighting, backdrop, object position and appearance, occlusion, etc. 
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Military Aircraft Recognition dataset (MAR20) [9] is a publicly accessible remote sensing image collection 

intended solely for research. This collection consists of 22341 instances, 20 categories, and 3842 images with 

orientated and horizontal bounding boxes annotated. 

A large-scale Dataset for Object Detection in Aerial images (DOTA) [10] collects 2806 aerial images from 

different sensors and platforms. Each image is around 4000 by 4000 pixels and includes items with a broad 

range of sizes, orientations, and forms. Experts in aerial image interpretation then annotate these DOTA images 

using 15 common item categories. There are 188,282 occurrences in the completely annotated DOTA images, 

and each one is given a random (8 d.o.f.) quadrilateral label. 

Scene semantic categories are used to identify the 10 million scene images in the Places Database [11], which 

provides a comprehensive catalog of the many sorts of surroundings seen across the globe. The Place 

Database's data-collecting procedure is comparable to the picture collection in other widely used datasets, such 

as ImageNet [12] and COCO [13]. Based on the synset of WordNet [14], the categories for the ImageNet 

dataset have been defined. Using the collection of WordNet synonyms, potential images are retrieved from 

several image search engines. Contrarily, the COCO dataset focuses on adding additional scene information 

to the object instances inside the images. Places database as a benchmark has four subsets: Places205, Places88, 

Places365-Standard, and Places365-Challenge. 

FAIR1M [15] is another benchmark dataset for recognizing fine-grained objects in high-resolution remote 

sensing images. It contains more than 1 million instances and more than 15,000 images. From several stations 

dispersed throughout numerous nations and regions, remote sensing images with resolutions ranging from 0.3 

to 0.8 meters are gathered. All items in the FAIR1M dataset have oriented bounding boxes that annotate them 

about 5 categories and 37 subcategories. 

Comparing the FAIR1M dataset to other datasets, it has several unique traits. The first thing that makes it 

unique is its vastly increased number of samples and pictures, which offers more thorough, fine-grained 

category information. The collection includes items from remote sensing photographs, which offer useful 

geographic data like latitude and longitude. Another important aspect is the dataset's high resolution, attained 

through a careful data-cleaning process that guarantees superior image quality. 

Another method uses an open-source virtual globe to replicate the surroundings around airport runways. 

Virtual globes have been employed in many research projects over the past ten years as common instruments 

for data collecting, exploration, and modeling [16]. Google Earth Studio [17, 18], a sophisticated animation 

tool for obtaining and creating Google satellite pictures, is considered in this work. Landings of civil aircraft 

are represented by the Landing Approach Runway Detection (LARD) dataset [19]. So, based on the 

information supplied by aviation standards, we first define a general landing approach cone. It next designs a 

method to create a dataset of images with appropriate labels from this description. It consists of 14.433 images 

with a resolution of 2448x2648 that were collected from a total of 32 runways at 16 distinct airports. 

Approximately 451 images are taken for each approach (or runway). Although most of the dataset is made up 

of artificial pictures, they include hand-tagged photos from actual landing footage to provide the detection job 

with a more realistic context. They provide a generator to create these artificial front-view images and 

automatically annotate the runway corners using geometric transformations. 

This paper is structured to comprehensively address developing and utilizing a synthetic dataset for runway 

recognition, which is crucial for enhancing autonomous landing systems in aviation. It begins with an 

introduction that highlights the significance of the problem and the motivation behind the research. The 

methodology section details the X-Plane simulator's data collection process, including the specific conditions 

and parameters considered, such as weather variations and different altitudes. Following this, the results and 

discussion section presents the findings from the dataset, emphasizing the impact of weather conditions, 

day/night operations, and altitude on runway recognition. High-resolution images and their standardized 

dimensions are also discussed to underline the dataset's precision and applicability. The conclusion synthesizes 

the key insights and underscores the potential of machine learning in improving autonomous landing systems, 
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advocating for the value of large datasets in facilitating advanced algorithms. Finally, the paper includes author 

contributions, conflict of interest statements, and a references section to ensure comprehensive attribution and 

context for further research. 

2. Data Description 

Today, object detection studies are integrated into our lives in many areas. It has an important place in aviation 

as pilot assist systems. To contribute to these studies, many dataset studies are presented. In our study, a dataset 

study was conducted to contribute to this literature. The images were systematically created for 16 airports. 

These airports included Adana Incirlik Airport (LTAG), Adıyaman Airport (LTCP), Alanya Gazipasa Airport 

(LTFG), Ankara Esenboga Airport (LTAC), Antalya Airport (LTAI), Balıkesir Koca Seyit Airport (LTFD), 

Çanakkale Airport (LTBH), Chios Island Airport (LGHI), Diyarbakır Airport (LTCC), Elazıg Airport (LTCA), 

Erzincan Airport (LTCD), Erzurum Airport (LTCE), Hatay Airport (LTDA), Istanbul Airport (LTFM), 

Istanbul Ataturk Airport (LTBA), Izmir Adnan Menderes Airport (LTBJ), Kayseri Erkilet Airport (LTAU), 

Kocaeli Cengiz Topel Airport (LTBQ), Konya Airport (LTAN), Malatya Airport (LTAT), Nevsehir 

Kapadokya Airport (LTAZ), Rhodes Diagoras Airport (LGRP), Şanlıurfa Airport (LTCS), ¸Sırnak Airport 

(LTCV), Tekirdag Airport (LTBU), Trabzon Airport (LTCG), Van Airport (LTCI), Zonguldak Çaycuma 

Airport (LTAS). When we examined the studies in the literature in which artificial intelligence was used in 

this field, we saw that most of the datasets used were on clear images regardless of weather conditions. That's 

why we wanted to make a different contribution and add difficult weather conditions to our dataset for the 

development of algorithms. It was seen that the same situation was valid for the altitude parameter. Thus the 

lower altitude status was preferred to the higher altitude status. The images were taken for different weather 

conditions, such as clear, cirrus, scattered, broken, foggy, and stormy at different altitudes. Hereafter,' altitude' 

refers to the height above an aerodrome. High-altitude images were taken above 10000 feet. Lower-altitude 

images were taken between 5000 and 10000 feet. Images were not included for altitudes below 5000 feet 

because other public datasets, like the Places dataset, contained most such low-altitude images. The altitudes 

were combined with different distances from the aerodrome to the aircraft approximately between 2 and 70 

nautical miles, such that the aerodrome was visible from the aircraft. The weather conditions included 

precipitation variations, cumulus cloud varieties, cirrus clouds, and stratus clouds. The images were taken from 

different camera angles to create diversity. Figure 1 shows images taken at different times, such as day and 

night. In contrast, Figure 2 shows examples of images in different weather conditions, such as foggy and rainy, 

respectively. In Figure 3, low and high-altitude images of the same airport are shown, respectively. 

  

Figure 1. The left side of the figure represents a daytime image, and the right side represents a nighttime 

image 

In addition to helping the algorithms acquire better features, adjusting the camera angle also makes the 

detection independent of the location of the mounted camera. Images were captured from the sides and as the 

aircraft approached an airfield in the direction of each runway. Images are captured with the entire airport 

visible in each view, and partial views of the airport and rotations of views are included. Because bad weather 

conditions, such as foggy weather are also considered. To use it for aerodrome detection even in closed weather 



JARNAS / 2024, Vol. 10, Issue 3, Pages: 735-746 / AeroRunway: Diverse Weather and Time of Day Aerial Dataset for ⋯ 

 

 

739 

conditions such as foggy rain, attention was paid to the fact that a part of the runway, if not the whole, was 

visible while creating the dataset. 

  

Figure 2. The left side of the figure represents a foggy image, and the right side represents a rainy image 

 

  

Figure 3. The left side of the figure represents a low-altitude image, and the right side represents a high-

altitude image 

3. Image Acquisition 

This dataset was collected using X-Plane 11, a sophisticated flight simulation software developed by Laminar 

Research, renowned for its realistic flight physics based on "blade element theory". Widely used by aviation 

enthusiasts and professionals, it offers detailed global scenery, customizable environments, and a wide range 

of aircraft models. The simulator supports multiple platforms, including Windows, macOS, and Linux, and 

even offers Virtual Reality (VR) capabilities for an immersive experience. Additionally, X-Plane 11 is 

recognized by the Federal Aviation Administration (FAA) for its high level of realism, making it suitable for 

professional flight training and certification purposes. Simulations were run on equipment featuring an 

NVIDIA GeForce RTX 3060 GPU and an AMD Ryzen 7 6800H with Radeon Graphics CPU. Ortho4XP v1.15 

was combined with X-Plane to create overlays and custom scenery. It is a tool widely used by flight simulation 

enthusiasts to enhance the realism of X-Plane by creating custom, photo-realistic ground textures. It allows 

users to generate detailed scenery by downloading satellite imagery and integrating it with elevation data, 

producing high-resolution orthophotos that accurately represent real-world landscapes. Designed specifically 

for X-Plane, Ortho4XP replaces the default terrain textures with these realistic images, significantly improving 

the visual experience of the simulator. Supported by an active community, the tool enables users to customize 

and enhance specific regions, making flights in X-Plane more immersive and visually accurate. The images 

were exported by taking screenshots at multiple angles and heights, ensuring the frame rate was above 50. In 

each image, values such as height, camera angle, frame rate, etc., are displayed in the upper left corner by the 

sensor opened in the image. 

When the literature was reviewed, it was observed that there was a lack of image dataset studies in extreme 

weather conditions, particularly in Türkiye, in datasets created with X-Plane, as stated in this article. This 
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dataset offers several key advantages compared to existing ones, particularly regarding its diversity and 

relevance to autonomous landing systems. One of the primary benefits is the inclusion of images captured 

under challenging weather conditions such as fog, rain, and storms. This is significant because many existing 

datasets predominantly feature clear weather scenarios, which restricts the performance of trained models in 

adverse conditions. The trained models' robustness is enhanced by including these challenging scenarios, 

enabling better performance in real-world situations with varying visibility and weather conditions. 

Additionally, a wide range of altitudes, from 5,000 to 70,000 feet, is covered by this dataset, which is crucial 

for simulating different phases of approach and landing. This variation allows models to be trained on images 

representing both low and high-altitude approaches, improving their ability to recognize runways from various 

distances and perspectives. 

The superiority of this method is underscored by these enhancements, which provide a more representative 

and challenging dataset for training deep learning models. These benefits are believed to significantly advance 

the field of autonomous landing systems and offer a valuable resource for improving model performance in 

real-world conditions. 

The effectiveness of the dataset is further contributed to by the high-resolution images and diverse aircraft 

types used in the simulations. By capturing images from multiple aircraft and camera angles, various 

perspectives and viewpoints are ensured, enhancing the generalization capabilities of the models. 

In this dataset, 3880 images of 28 different airports around Türkiye are taken with different angles, weather 

conditions, and aircraft. The total size of this dataset is approximately 13.3 GB. Lighting is important in airport 

and runway determinations, as it becomes difficult to detect the landforms from the air after dark, that is, at 

night. In addition, for the sake of diversity and being closer to reality, multiple aircraft were used to obtain the 

images. This distribution can be seen in the pie chart in Figure 4. The largest part of the data set, which is 

approximately a quarter slice, was obtained with the CirrusSF50 type aircraft model, and the other large slices 

consist of Cessna_172SP, Cessna_172SP_G1, and L5_Sentinel type model aircraft. There is not much 

difference between the number of images obtained from the remaining aircraft models and they are 

proportionally close to each other. 

 
Figure 4. Distribution of aircraft types 

To be close to real scenarios and to cover extreme conditions, images containing these weather conditions were 

also obtained, apart from clear images. The detailed table showing the number distributions of these parameters 

is included in Table 1. When the distribution of the number of images taken from 28 different airports is 

examined, it is seen that the airport with the most images is Adıyaman Airport, with 202 images, and the airport 

with the least images is Ankara Esenboga Airport, with 37 images. 
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In addition to the weather conditions, the number distribution of the feet where the flights are made and the 

day/night conditions during the flights according to the airports are shown in Table 2 in more detail. When the 

distribution is made by considering the feet parameter, the observability of the airport generally increases at 

low feet, and the observability decreases with higher feet as one moves away from the airport. Considering the 

literature, since there are not many sources at high altitudes, adding high-altitude images to the dataset is 

important. 

While obtaining images of existing airports, it was imperative to ensure a minimum actual frame rate (f-act) 

of 50 frames per second (FPS) on the video card, guaranteeing smooth and accurate rendering of the dynamic 

airport environments. This requirement is crucial for various applications, including real-time air traffic 

monitoring, surveillance, and security measures, where even minor delays or lags can have significant 

implications for operational efficiency and safety. 

The images' diversity spans from ground level to an impressive altitude of 70,000 feet. It extends up to 70 

nautical miles in range, providing a comprehensive aerial perspective of the airport surroundings. This 

extensive coverage enables comprehensive monitoring and analysis of airport infrastructure, surrounding 

terrain, and airspace dynamics, offering valuable insights for airspace management, flight planning, and 

emergency response procedures. 

Table 1. Image counts in each airport folder 

Airports Image Count   

Adana İncirlik Airport (LTAG) 173 

Adıyaman Airport (LTCP) 202 

Alanya Gazipaşa Airport (LTFG) 148 

Ankara Esenboğa Airport (LTAC) 

 

 

 
 

37 
 Antalya Airport (LTAI) 184 

Balikesir Koca Seyit Airport (LTFD) 155 

Canakkale Airport (LTBH) 113 

Chios Island Airport (LGHI) 154 

Diyarbakir Airport (LTCC) 157 

Elazığ Airport (LTCA) 148 

Erzincan Yıldırım Akbulut Airport (LTCD) 150 

Erzurum Airport (LTCE) 126 

Hatay Airport (LTDA) 142 

Istanbul Airport (LTFM) 180 

Istanbul Ataturk Airport (LTBA) 48 

Izmir Adnan Menderes Airport (LTBJ) 136 

Kayseri Erkilet Airport (LTAU) 130 

Kocaeli Cengiz Topel Airport (LTBQ) 117 

Konya Airport (LTAN) 105 

Malatya Airport (LTAT) 165 

Nevşehir Kapadokya Airport (LTAZ) 43 

Rhodes Diagoras Airport (LGRP) 188 

Şanlıurfa GAP Airport (LTCS) 130 

Şırnak Şerafettin Elçi Airport (LTCV) 161 

Tekirdağ Çorlu Airport (LTBU) 152 

Trabzon Airport (LTCG) 160 

Van Ferit Melen Airport (LTCI) 140 

Zonguldak Caycuma Airport (LTAS) 136 

 
Total 3880 

High-resolution imaging techniques were employed to ensure optimal image quality and facilitate the easy 

detection of landforms and infrastructural details. High-resolution images offer enhanced clarity and precision, 

enabling precise identification of runway markings, terminal buildings, navigation aids, and other critical 

elements essential for air traffic management and airport operations. To achieve this, rendering options were 

meticulously configured to operate at the highest settings, maximizing image fidelity and detail resolution. 
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The images in the dataset adhere to standardized dimensions, with pixel values of 1920 in width and 1080 in 

height. Standardizing image dimensions ensures consistency and compatibility across various visualization 

and analysis platforms, facilitating seamless integration into airport planning, simulation, and management 

software systems. This standardized approach streamlines data processing and analysis, enabling efficient 

extraction of relevant insights and actionable information from the vast repository of airport imagery. 

While 803 flights are categorized under 'Not Clear' conditions at 28 airports, indicating adverse weather 

conditions such as fog, rain, or snow, the number of flights marked as' Clear' stands at 394. This discrepancy 

highlights the significant impact that weather conditions can have on flight operations, underscoring the 

importance of robust safety protocols and the expertise of air traffic controllers and pilots in navigating 

challenging weather scenarios to ensure passenger safety. 

In addition to weather conditions, the distinction between Day and Night operations also plays a crucial role 

in aviation. The fact that 730 flights were conducted during the day compared to 467 flights during the night 

emphasizes the preference for daytime operations, which often offer better visibility and favorable weather 

conditions, contributing to smoother and safer flights. However, it's essential to note the vital role of nighttime 

operations, particularly in facilitating cargo transportation and accommodating international flight schedules 

across different time zones. 

Moreover, altitude is another critical factor influencing flight operations. Of the total flights, 817 were operated 

at High Altitude, exceeding 10.000 feet above sea level. High-altitude flights typically involve long-haul routes 

and require specialized equipment and training due to reduced oxygen levels and lower temperatures. 

Conversely, 409 flights were conducted below the 10.000 feet threshold at Low Altitudes. 

Table 2. Table of situations 

Airport Clear Not Clear Day Night High Alt Low Alt Total 

LTAG 106 67 139 34 123 50 173 

LTCP 143 59 170 32 165 37 202 

LTFG 109 39 111 37 49 99 148 

LTAC 20 17 11 26 31 6 37 

LTAI 112 72 112 72 130 54 184 

LTFD 82 73 115 40 64 91 155 

LTBH 68 45 88 25 63 50 113 

LGHI 90 64 116 38 33 121 154 

LTCC 64 93 125 32 106 51 157 

LTCA 89 59 115 33 109 39 148 

LTCD 62 88 117 33 111 39 150 

LTCE 21 105 105 21 112 14 126 

LTDA 38 104 123 19 95 47 142 

LTFM 101 79 135 45 112 68 180 

LTBA 11 37 30 18 26 22 48 

LTBJ 94 42 107 29 56 80 136 

LTAU 81 49 105 25 111 19 130 

LTBQ 65 52 97 20 69 48 117 

LTAN 32 73 76 29 83 22 105 

LTAT 42 123 118 47 142 23 165 

LTAZ 1 42 43 0 42 1 43 

LGRP 110 78 142 46 133 55 188 

LTCS 19 111 121 9 95 35 130 

LTCV 41 120 135 26 102 59 161 

LTBU 40 112 127 25 94 58 152 

LTCG 

 

82 78 117 43 83 77 160 

LTCI 72 68 111 29 128 12 140 

LTAS 69 67 87 49 67 69 136 

TOTAL 394 803 730 467 817 409 3880 



JARNAS / 2024, Vol. 10, Issue 3, Pages: 735-746 / AeroRunway: Diverse Weather and Time of Day Aerial Dataset for ⋯ 

 

 

743 

Low-altitude flights often encompass short-haul journeys, regional routes, and flights approaching or departing 

from airports, necessitating different navigation procedures and considerations for air traffic management and 

terrain clearance. 

The 28 airports and the aircraft type of the obtained images were named in Figure 5 to be read systematically. 

The airport's ICAO code is made up of four letters. These codes are created using divisions made between 

nations and regions. The first letter identifies the geographical area where the airport is located, while the 

second letter identifies the nation. Usually, the other two letters are given in alphabetical sequence. The first 

part of naming the images is to provide an ICAO code of which airports they belong to. For example, naming 

the images of ADANA INCIRLIK Airport, ALANYA GAZIPASA Airport, ANKARA ESENBOGA Airport, 

ANTALYA Airport, BALIKESIR KOCA SEYIT Airport, and CANAKKALE Airport airports start with 

LTAG, LTFG, LTAC, LTAI, LTFD, and LTBH respectively. After the ICAO part, naming is done according 

to aircraft types. Finally, the sample number concat and forms the image name. According to all these rules 

mentioned above, the file name of the first image of the "ADANA INCIRLIK Airport" species and with the 

"CirrusSF50" aircraft will be "LTAG_CirrusSF50_01.png". Figure 6 shows the structure of the dataset. 

 
Figure 5. Renaming files 

 

 
Figure 6. File structure of the dataset 

4. Conclusion 

As autonomous systems gain popularity, a significant hurdle lies in acquiring enough relevant real-world data. 

The aerospace industry, particularly autonomous landing systems, has a strong practical and economic interest. 

However, open-source datasets are scarce, specifically focused on aerial images. To solve this problem, we 

offer a collection of aerial images for runway recognition during the approach and landing phases. The 

collection consists of synthetic images from the X-Plane simulator, which attempted to create a dataset based 

on improving detection under various weather conditions and periods, especially in poor visibility. Few image 

datasets are available, including runways seen from the aerial front view. One way to solve this issue is to use 

synthesized data, which enables the construction of more scenarios at a lesser cost. Using a flight simulator is 

a frequent remedy to this well-known issue in aviation [20]. Pilots, for instance, may practice emergency 
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maneuvers and familiarize themselves with flight controls and protocol owing to simulators. The requirements 

and rules of the relevant authorities, such as the FAA in America and the EASA in Europe [21], determine the 

complexity and realism of such simulators. 

Based on EASA and [22] findings, a significant portion of non-commercial airplane accidents happen during 

the landing phase under favorable weather conditions. These accidents are frequently attributed to human 

errors, with perception being identified as the most critical risk factor. This underscores the importance of 

developing safer landing systems. Implementing autonomy in these systems can serve as an initial measure to 

address this problem, beginning with pilot assistance and gradually progressing toward fully autonomous 

landings in the distant future. The advancement in this direction will inevitably depend on utilizing Artificial 

Intelligence for runway detection, which facilitates the computation of the aircraft's position. In this article, we 

have provided a clear and precise description of this task, emphasizing the significance of large datasets to 

facilitate the application of DL algorithms. Utilizing machine learning can create innovative technology that 

enhances cockpit capabilities and pilots' awareness of their surroundings. This dataset seeks to help with the 

value machine learning can bring to this field by highlighting this potential through the visual detection of 

airports. 

Based on the study results, future research could explore the integration of this dataset with real-world aerial 

imagery to further enhance the robustness of autonomous landing systems. Expanding the dataset to include 

more diverse airport environments and extreme weather conditions could provide deeper insights and improve 

algorithm performance. Leveraging advancements in deep learning and artificial intelligence, it is also 

recommended to develop adaptive models that dynamically adjust to new and unforeseen variables, ensuring 

even greater reliability and safety in autonomous aviation operations. This forward-looking approach will pave 

the way for significant advancements in autonomous flight technologies. 

One key direction for future research is the integration of our synthetic dataset [23] with real-world aerial 

imagery. Combining synthetic data with actual flight data could enhance the robustness and accuracy of 

autonomous landing systems by providing a more comprehensive dataset that includes real-world variability 

not captured by simulations alone. This integration could also help validate the effectiveness of models trained 

on synthetic data in operational environments. 
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