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Abstract 

In this study, forced convection heat transfer about a permeable horizontal plate in the presence of magnetic field and 

thermal radiation effects in the porous medium are investigated. The fluid is assumed to be incompressible and dense. 

The nonlinear parabolic partial differential equations governing the flow are transformed into the non-similar 

boundary layer equations. The Keller box method is used to solve these equations. The governing dimensionless 

parameters arising from dimensionless governing equations are as follows: the porosity ε, the inertia parameter γ, the 

magnetic parameter Mn, the radiation–conduction parameter Rd, the surface temperature parameter θw, and the 

suction/injection parameter fw. The effects of these parameters on the local skin friction and local heat transfer 

parameters as well as the velocity and temperature profiles are analyzed. The validity of the solution methodology 

and the results are questioned by comparing the findings obtained with those available in the literature and, a fairly 

good agreement is reached. 

Keywords: Thermal radiation, MHD flow, Forced convection, Suction/injection effect. 

 

GÖZENEKLİ BİR ORTAMDA TUTULAN GEÇİRGEN BİR YATAY PLAKA 

ÜZERİNDEN ZORLANMIŞ TAŞINIMLA OLAN AKIŞA MHD VE ISIL IŞINIMIN 

ETKİSİ 
 

Özet 

Bu çalışmada, gözenekli bir ortam içerisinde tutulan geçirgen yatay bir plaka üzerinden zorlanmış taşınımla olan 

akışa manyetik alan ve ısıl ışınımın etkileri araştırılmıştır. Akışkanın sıkıştırılamaz ve yoğun olduğu kabul edilmiştir. 

Lineer olmaya parabolik kısmi diferansiyel denklemleri benze olmayan sınır tabaka denklemlerine dönüştürülmüştür. 

Dönüştürülen bu denklemeler Keller-box yöntemi kullanılarak çözülmüştür. Denklemlerin boyutsuzlaştırılmasıyla 

ortaya çıkan boyutsuz parametreler şunlardır:  Gözeneklilik (veya porozite)  ε, boyutsuz atalet γ, Manyetik alan Mn, 

ısıl ışınım Rd, yüzey sıcaklık θw ve emme/üfleme fw parametreleri. Bu parametrelerin yerel sürtünme ve yerel ısı 

transfer parametrelerinin yanında hız ve sıcaklık profilleri üzerine olan etkileri analiz edilmiştir. Çözüm yönteminin 

doğruluğu literatürde mevcut verilerle karşılaştırılarak sınanmış ve çok uyumlu sonuçlara ulaşılmıştır.  

Anahtar Kelimeler: Isıl ışınım, MHD akışı, Zorlanmış taşınım, Emme/üfleme etkisi. 

 

NOMENCLATURE 
cp specific heat of the convective fluid 

f dimensionless stream function 

fw suction/injection parameter 1/22 wK V v   
 

F  inertial coefficient 

K permeability of the porous medium [m2] 

Mn magnetic parameter 2

0B K   
 

Pr Prandtl number 
pc k  

 

qr the component of radiative flux in y direction [w/m2] 

Rd Radiation parameter 34Rk T  
  

 

T temperature 

u, υ velocities in x and y directions, respectively  

x,y coordinates in horizontal and vertical directions, respectively 

Greek symbols 

αR Rosseland mean absorption coefficient 

 pseudo similarity variable 1/2Re /xy x  
 

ε porosity 

 non-similarity variable  vx Ku  


 dimensionless inertia effect 1/2 /F K u v

  
 

σ Stefan–Boltzmann constant [W/m2K4] 

ρ  fluid density  

μ dynamic viscosity  

 kinematic viscosity  

θ dimensionless temperature profile in Eq. (6) 

θW temperature ratio  wT T   

Subscripts  

W wall 

∞ free stream 
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INTRODUCTION 
 

Studying transport phenomena in porous media has 

received a great deal of research interest due to its wide 

and important applications in environmental, 

geophysical and energy related engineering problems. 

Prominent applications are the utilization of geothermal 

energy, the migration of moisture in fibrous insulation, 

drying of porous solid, food processing, casting and 

welding in manufacturing processes, the dispersion of 

chemical contaminants in different industrial processes, 

the design of nuclear reactors, chemical catalytic 

reactors, compact heat exchangers, solar power, etc. 

Forced convection over a horizontal plate in a fluid-

saturated porous medium is a good representative 

geometry for many of the areas mentioned above. For 

an extensive survey of the literature, the reader is 

referred to the excellent reviews by Kaviany (1995), 

Pop and Ingham (2001), Ingham and Pop (1998, 2002) 

and Nield and Bejan (1999).  

 

The study of magnetohydrodynamic flow for an 

electrically conducting fluid past a heated surface has 

attracted the interest of many researchers in view of its 

important applications in many engineering problems 

such as plasma studies, petroleum industries, MHD 

power generators, cooling of nuclear reactors, the 

boundary layer control in aerodynamics, and crystal 

growth (Damseh et al. 2006; Chen 2004). The thermal 

radiation effect becomes very important when high 

temperatures are encountered in these application areas.  

 

There are a few studies investigating combined effects 

of magnetic field and thermal radiation in external 

convection studies. For some specific external 

convection geometries under some other additional 

effects, Damseh et al. (2006), Chamkha et al. (2003), 

Duwairi (2005), and Aydın and Kaya (2008a) 

investigated these two effects together for a clear fluid 

while Abbas and Tasawar (2008), Alam et al. (2008), 

Yih (2001), Al-Odat et al. (2005) and Murthy et al. 

(2004) investigated for a porous medium.  

 

The aim of the present study is focused at studying 

combined effects of gas radiation and magnetic field on 

the forced convection flow from a permeable horizontal 

plate embedded in a porous medium. 

 

ANALYSIS 

 

Consider steady, incompressible, laminar, two-

dimensional, electrically conducting and radiative heat 

transfer from a semi-infinite horizontal plate embedded 

in a Newtonian fluid-saturated porous medium at a 

uniform temperature Tw.  The porous medium is 

considered to be homogeneous and isotropic (i.e. 

uniform with a constant porosity and permeability) and 

is saturated with a fluid which is in local 

thermodynamic equilibrium with the solid matrix.  Far 

above the plate, the velocity and the temperature of the 

uniform main stream are u∞ and T∞. A uniform 

magnetic field is assumed to apply in the y-direction 

causing a flow resistive force in the x-direction. It is 

assumed that the induced magnetic field, the external or 

imposed electric field and the electric field due to the 

polarization of charges (i.e. Hall effect) are negligible. 

The properties of the fluid and the porous media, such 

as viscosity, thermal conductivity, specific heat and 

permeability, are assumed to be constant. In order to 

study transport through non-Darcian media, the original 

Darcy model is improved by including the convective 

and inertia effects. Also, the fluid is assumed to be a 

grey, emitting and absorbing, but non-scattering 

medium. The following assumptions are made in the 

analysis: (i) viscous dissipation effects are negligible, 

and (ii) the radiative heat flux in the x-direction is 

considered negligible in comparison with that in the y-

direction, where the physical coordinates (x, y) are 

chosen such that x is measured from the leading edge in 

the streamwise direction and y is measured normal to 

the surface of the plate. The coordinate system and the 

flow configuration are shown in Figure 1. 

 

Under the usual Boussinesq approximation, the 

conservation equations for the steady, laminar, two-

dimensional boundary-layer flow problem under 

consideration can be written as (Chamkha 1997; Takhar 

and Beg 1997; Mahmud and Fraser 2003): 

 
Figure 1. The schematic of the problem. 
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The above equations are called Brinkman–Forchheimer-

extended-Darcy equations (Lauriat and Ghafir 2000). 

Here u and υ are the velocity components in the x and y 

direction, respectively, T is the temperature of the fluid, 

v is the kinematic viscosity, ρ is the fluid density,  is 

the electrical conductivity of the fluid, B0 is the 

x, u 

Porous Medium 

u∞, T∞ 

y, υ 

    υ=Vw(x) 

B0 
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magnetic flux density, ε is the porosity, K is the 

permeability and F is the inertial coefficient which 

depend on permeability and microstructure of the 

porous matrix. 

 

The quantity qr on the right-hand side of equation (3) 

represents the radiative heat flux in the y-direction. For 

simplicity and comparison, the radiative heat flux term 

in the energy equation is analyzed by utilizing the 

Rosseland diffusion approximation (Sparrow and Cess 

1961) for an optically thick boundary layer as follows: 

 
44
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a T
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
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
 and  316

3
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R

q T
T

y y y





   
   

   
 (4) 

 

where σ is the Stefan–Boltzmann constant, 
R  is the 

Rosseland mean absorption coefficient. This 

approximation is valid at points optically far from the 

bounding surface, and is good only for intensive 

absorption, that is, for an optically thick boundary layer 

(Hossain et al. 2001). 

 

The appropriate boundary conditions for the velocity 

and temperature of this problem are: 

 

 

 

x=0 y>0 T=T∞ u=u∞ 

x>0 y=0 T=Tw u=0 υ =±Vw(x) (5) 

y→∞  T→T∞ u→ u∞ 

 

The minus sign for the conductive gray fluid vertical 

velocity means the suction from the porous wall, where 

the plus sign means the gray fluid injection. To seek a 

solution, the following dimensionless variables are 

introduced: 
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1/2

, ( , )x y vu x f   ,  
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u
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 

 
  

 
,

w

T T

T T
 







   (6) 

 

where ( , )x y is the free stream function that satisfies 

Eq. (1) with /u y    and / x   . 

 

In terms of these new variables, the velocity 

components can be expressed as 

 

u u f
 ,     (7) 
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  (8) 

 

The transformed momentum and energy equations 

together with the boundary conditions, Eqs. (2), (3) and 

(5), can be written as  
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with the boundary conditions; 

 

  1/2,0 2 w

f
f f  




 


,   ,0 0f   ,  ,0 1   , 

 , 1f    ,   , 0                   (11) 

 

where 
1/22 w

w

K V
f

v
  , the case 0wf   designates 

suction while 0wf  indicates injection or blowing, 

f
f


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 is the derivation of f and 





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
 is the 

derivation of θ. 

 

 

The corresponding dimensionless numbers that 

appeared in the governing equations defined as: 
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where Mn is the magnetic parameter, γ is the 

dimensionless inertia effect, Pr is the Prandtl number, 

Rd is the Planck number (radiation-conduction 

parameter), θW is the surface temperature ratio to the 

ambient fluid. 

 

In the above system of equations, the radiation 

conduction parameter is absent from the MHD-forced 

convection heat transfer problem when Rd→∞, ε=1.0 

and γ=0.0. It should be mentioned that the optically 

thick approximation should be valid for relatively low 

values of the radiation-conduction parameter, Rd. 

According to Ali et al. (1984), some values of Rd for 

different gases are: (1) Rd=10-30: carbon dioxide (100-

650
o
F) with corresponding Prandtl number range 0.76-

0.6; (2) Rd=30-200: ammonia vapor (120-400
o
F) with 

corresponding Prandtl number range 0.88-0.84; (3) 

Rd=30-200: water vapor (220-900
o
F) with 

corresponding Prandtl number 1. 
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NUMERICAL SOLUTION 

 

The system of transformed equations under the 

boundary conditions, Eqs. (9) and (10), has been solved 

numerically using the Keller box scheme along with the 

Newton’s linearization technique, which is proved to be 

an efficient and accurate finite-difference scheme 

(Cebeci and Bradshaw 1977). In this method, any 

quantity g at point  ,n j   is written as n

jg . Quantities 

and derivatives at the midpoints of grid segments are 

approximated to second order as  
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where g is any dependent variable and n and j are the 

node locations along the   and   directions, 

respectively. First the third-order partial differential 

equation is converted in the first order by substitutions 

f s   and s w  , the difference equations that are to 

approximate the previous equations are obtained by 

averaging about the midpoint  1 2,n j   , and those to 

approximate the resulting equations by averaging about 

 1 2 1 2,n j   . At each line of constant  , a system of 

algebraic equations is obtained. With the nonlinear 

terms evaluated at the previous station, the algebraic 

equations are solved iteratively (Duwairi 2005). The 

same process is repeated for the next value of   and the 

problem is solved line by line until the desired   (  is 

taken 0.01 for this study) value is reached. The effect of 

the grid size   and   and the edge of the boundary 

layer 
 (

is taken 16 for this study) on the solution 

had been examined. The results presented here are 

independent of the grid size.  

 

In the calculations, a uniform grid of the step size 0.01 

in the  -direction and a non-uniform grid in the  -

direction with a starting step size 0.1 and an increase of 

0.01 times the previous step size were found to be 

satisfactory in obtaining sufficient accuracy. For a given 

value of  , the iterative procedure is stopped when the 

difference in computing the velocity and the 

temperature in the next iteration is less than 10
-6

, i.e. 

when 610if  , where the superscript denotes the 

iteration number. The details of the computational 

procedure have been discussed further in the book by 

Cebeci and Bradshow (1977) and Takhar et al. (1997). 

In order to verify the accuracy of the numerical results, 

the validity of the numerical code developed has been 

checked for a limiting case. We compare our  ,0   

results with those given by Lloyd and Sparrow (1970) 

and Chang (2006) for ε=1, Mn=0.0, Pr=10, γ=0, Rd→∞ 

and θW=0.0 (Table 1).  

 

Table 1. Comparison of the values  ,0   for various 

values ξ with ε=1, Pr=10, γ=0, fw=0, Rd→∞, and θW=0.0 

  
Lloyd and 

Sparrow 

(1970) 

Chang 

(2006) 
Present Study 

0.00000 0.7281 0.7280 0.7278 

0.00125 0.7313 0.7291 0.7291 

0.00500 0.7404 0.7373 0.7328 

0.01250 0.7574 0.7566 0.7556 

0.05000 0.8259 0.8351 0.8351 

0.12500 0.9212 0.9412 0.9432 

0.25000 1.0290 1.0603 1.0603 

 

Also, we compare our  ,0  results with those given 

by Aydın and Kaya (2008) for various values ξ and ε 

with Pr=1, γ =0.5, fw=0, Rd→∞, and θW=0.0 (Table 2). 

As it is seen from Tables 1 and 2, our results correspond 

very well with theirs. 

 

 

 

 

 

Table 2. Comparison of the values  ,0   for various values ξ and ε with Pr=1, γ =0.5, fw=0, Rd→∞, and θW=0.0 

 ε=0.5 ε=0.75 ε=1.0 

  Aydın and 

Kaya (2008b) 
Present Study 

Aydın and 

Kaya (2008b) 
Present Study 

Aydın and 

Kaya (2008b) 
Present Study 

0.0 0.3665 0.3665 0.3463 0.3463 0.3320 0.3320 

0.01 0.3680 0.3680 0.3495 0.3495 0.3377 0.3377 

0.02 0.3694 0.3694 0.3526 0.3526 0.3429 0.3429 

0.03 0.3708 0.3708 0.3556 0.3556 0.3477 0.3477 

0.04 0.3722 0.3722 0.3584 0.3584 0.3522 0.3522 

0.05 0.3735 0.3735 0.3612 0.3612 0.3564 0.3564 

0.06 0.3749 0.3749 0.3638 0.3638 0.3604 0.3604 

0.07 0.3761 0.3761 0.3663 0.3663 0.3642 0.3642 

0.08 0.3774 0.3774 0.3687 0.3687 0.3677 0.3677 
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RESULTS AND DISCUSSION 

 

In this article, the forced convection effects of ionized 

gas adjacent to radiate porous wall embedded in a 

porous media are investigated including the magnetic 

field. The temperature of the plate is assumed to be 

constant (Figure 1). The following ranges of the main 

parameters are considered: Pr=1.0; porosity ε=0.5, 0.75, 

1.0; magnetic parameter Mn=0.0, 0.25, 0.5, 0.75, 1.0; 

inertia parameter γ=0.0, 0.5, 1.0, 1.5, 2.0; radiation 

parameter Rd=1, 3, 5, and 10; surface temperature 

parameter θW=1.7, 2.0, and 2.3 and suction/injection 

parameter fw=-0.1, 0.0, 0.1. The porosity ε, the magnetic 

parameter Mn, the inertia parameter γ, the radiation 

parameter Rd, the surface temperature parameter θW and 

the suction/injection effects fw on the momentum and 

heat transfer are analyzed and discussed.  

 

Figure 2 shows the dimensionless velocity and 

temperature profiles inside the boundary layers for 

different values of the porosity ε. The increasing of the 

porosity decreases momentum and thermal boundary 

layer thickness and increases velocity and temperature 

profiles. Increasing the velocity and temperature 

profiles increases local skin friction (Figure 3a) and 

local heat transfer (Figure 3b) parameters.  
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Figure 2. Dimensionless velocity (a) and temperature (b) 

profiles for different ε while Mn=1, γ=0.5, ξ=1, Rd=1, Pr=1.0, 

θW =1.7, and fw=0.0. 
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Figure 3. Numerical values of local skin friction (a) and local 

heat transfer (b) against non-similar parameter for different ε 

while Mn=1, γ=0.5, Rd=1, Pr=1.0, θW =1.7, and fw=0.0. 

 

Figure 4 shows the effect of the Forcheimmer parameter 

γ on the dimensionless velocity and temperature 

profiles. With an increase in γ, the velocity and 

temperature gradients decrease (Figures 4a and b), while 

both the local skin friction and the local heat transfer 

parameters increase (Figures 5a and b). 
 

The dimensionless velocity and temperature profiles 

inside the boundary layer for different values of the 

magnetic parameter Mn are shown in Figures 6 and 7. 

The increasing of the magnetic parameter Mn decreases 

the momentum and the temperature boundary layer 

thicknesses while it increases both the local skin friction 

and the local heat transfer parameters (Figure 8). Since 

the magnetic parameter Mn is multiplied by ξ [see Eq. 

(9)], the effect of Mn intensifies with the streamwise 

distance ξ. In order to understand the effect of the 

magnetic parameter Mn, we should examine Eq. (2). 

The sign of the last term in the right hand side of Eq. 

(2),   2

0B u u    is directly related with the sign 

of  u u . For the forced convection regime this term 

will always be negative since  u u  . Therefore, it 

will generate a force in the main flow direction, which 

will aid the main flow. In fact, this term has two  
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Figure 4. Dimensionless velocity (a) and temperature (b) 

profiles for different γ while Mn=1, ε =0.75, ξ=1, Rd=1, 

Pr=1.0, θW =1.7, and fw=0.0. 
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(b) 

Figure 5. Numerical values of local skin friction (a) and local 

heat transfer (b) against non-similar parameter for different γ 

while Mn=1, ε =0.75, Rd=1, Pr=1.0, θW =1.7, and fw=0.0. 

components: the first one,   2

0B u  , represents the 

imposed pressure force in the inviscid region of the 

conducting fluid, while the second one,   2

0B u  
, 

represents the Lorentz force imposed by a transverse 

magnetic field to an electrically conducting, which 

slows down the fluid motion in the boundary layer 

region. When the imposed pressure force overcomes the 

Lorentz force, i.e.  u u  , the effect of the magnetic 

interaction parameter is to increase velocity. Similarly, 

when the Lorentz force dominates over the imposed 

pressure force, i.e.  u u  , the effect of the magnetic 

interaction parameter will decrease velocity (Aydın and 

Kaya, 2009). 
 

For the forced convection case, as seen in Eqs. (2) and 

(3), the radiation parameter Rd and the surface 

temperature parameter θw does not have any influence 

on velocity profile since the momentum and energy 

equations are not coupled, however, it does on the 

temperature profile. Figure 8a shows the dimensionless 

temperature profiles inside the boundary layer for 

different values of the radiation parameter Rd. The 

increasing of the radiation parameter Rd increases 

temperature gradients near the porous wall, which 

increases heat transfer rates (Figure 8b), this is due to 

the fact that radiation effects increase temperatures of 

ionized gases and the absence of radiation defines small 

temperatures (Duwairi, 2005). 

 

The effect of surface temperature parameter θw on 

temperature profiles is shown in Figure 9a. The 

increasing of this parameter heats the conductive gray 

fluid and broadens the temperature inside the boundary 

layer, and consequently the increasing of this parameter 

reduces the temperature gradient at the wall (Figure 9b). 

 

Figure 10 shows the velocity (a) and temperature (b) 

profiles for different values of the suction/injection 

parameter, fw. Remember that fw > 0 corresponds to 

suction, fw < 0 corresponds to injection and fw = 0 

represents the flow over an impermeable surface. 

Injecting fluid into the boundary layer broadens the 

velocity distribution and increases the hydrodynamic 

boundary layer thicknesses as shown in Figure 10, while 

the suction reverses this trend. Figure 10 also shows that 

injection broadens the temperature distribution, decrease 

the wall temperature gradient, and hence reduce the heat 

transfer rate. On the other hand, the thermal boundary 

layer becomes thinner and the wall temperature gradient 

becomes larger when suction is applied. Figure 11 

shows the local skin friction parameter (a) and local 

heat transfer parameter (b) for different values of fw at 

Mn=1, γ = 0.5, ε = 0.75, Rd = 10.0, Pr = 1.0, and θW 

=1.7. It is seen that increasing fw increases local skin 

friction and local heat transfer parameter. 
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(b) 

Figure 6. Dimensionless velocity (a) and temperature (b) 

profiles for different Mn while ε =0.75, γ=0.5, ξ=1, Rd=1, 

Pr=1.0, θW =1.7, and fw=0.0. 
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(b) 

Figure 7. Numerical values of local skin friction (a) and local 

heat transfer (b) against non-similar parameter for different 

Mn while ε =0.75, γ=0.5, Rd=1, Pr=1.0, θW =1.7, and fw=0.0. 
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(b) 

Figure 8. Dimensionless temperature profile (a) and local heat 

transfer for different Rd while ε =0.75, Mn=1, γ=0.5, Pr=1.0, 

θW =1.7, and fw=0.0. 
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(b) 

Figure 9. Dimensionless temperature profile (a) and 

numerical values of local heat transfer (b) for different θw 

while ε =0.75, Mn=1, γ=0.5, ξ=1, Rd=1, Pr=1.0, and fw=0.0. 
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(b) 

Figure 10. Dimensionless velocity (a) and temperature (b) 

profiles for different fw while Mn=1, ε =0.75, γ=0.5, ξ=1, Rd=1, 

Pr=1.0, and θW =1.7. 
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Figure 11. Numerical values of local skin friction (a) and local 

heat transfer (b) against non-similar parameter for different fw 

while Mn=1, ε =0.75, γ=0.5, Rd=1, Pr=1.0, and θW =1.7. 

 

CONCLUSIONS 

 

In this article, we have studied numerically the effects 

of suction/injection and thermal radiation on a steady 

MHD forced convective flows about a permeable 

horizontal plate embedded in a porous medium. A 

transformed set of non-similar equations have been 

solved using the Keller box scheme. From the present 

numerical investigation, the following conclusions can 

be drawn: 

 

1. An increase in the porosity, the Forcheimmer 

and the magnetic parameters increases the local 

skin friction and the local heat transfer 

parameters. 

 

2. An increase in the radiation parameter 

increases the local heat transfer parameter. 

 

3. An increase in the surface temperature 

parameter decreases the local heat transfer 

parameter. 

 

Suction makes the thermal boundary layer thinner and 

therefore enhances the heat transfer, while the injection 

results in an opposite effect. 
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