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Abstract: An implicit numerical integration scheme is proposed in the present paper for the solution of the transient 

flows. The numerical method is based on the spectral Chebyshev collocation technique in the direction normal to the 

disk and forward marching in time. Besides being free of the numerical oscillations caused by the discontinuities 

between the initial and boundary conditions inherent to the classical finite difference techniques, the devised 

technique benefits from the advantages of being robust, unconditionally stable, highly accurate and straightforward to 

implement. Unlike to the finite difference methods, it is also compact in the sense that it resolves the flow field 

without necessitating further transformations. The numerical algorithm developed here is applied to the classical 

time-dependent von Karman swirling flow due to a porous rotating disk impulsively set into motion which progresses 

into the well-known steady state after a long time. The energy equation is also treated by the method and the physical 

parameters of paramount interest as such the radial and tangential skin-friction coefficients, the torque and the rate of 

heat transfer from the disk surface are numerically calculated that are shown to approach their steady state counterparts.  

Keywords: Chebyshev collocation, Implicit method, Unsteady flow, Rotating disk, Shear stresses, Heat transfer.  

 

ZAMANA BAGLI AKIŞKANLARIN SAYISAL ÇÖZÜMLEMELERİ  İÇİN BİR KAPALI 

SPEKTRAL YÖNTEM VE DÖNEN DİSK AKIŞI ISI TRANSFERİ PROBLEMİNE 

UYGULAMASI 
 

Özet: Bu makalede zamana göre geçişken akışkanların çözümü için bir kapalı  sayısal integrasyon yöntemi 

önerilmiştir. Nümerik metod diske dik dogrultuda Chebyshev dügümleme ve zamanda ise ileri adım tekniklerine 

dayanmaktadır. Klasik sonlu fark yöntemlerine haiz başlangıç ve sınır koşullarındaki süreksizliklerinden kaynaklanan 

nümerik salınımlardan uzak olmanın yanında, planlanan metod oldukça dayanıklı, şartsız kararlı, yüksek dogruluga 

sahip ve uygulaması  çok kolay olması  gibi avantajlardan yararlanmaktadır. Sonlu fark metodlarının aksine, şimdiki 

metod farklı  dönüşümlere gerek kalmaksızın akış alanını  kolayca çözümler. Burada geliştirilen nümerik algoritma 

klasik zamana baglı  ve aniden harekete geçirilen, lakin uzun bir süreç sonunda çok iyi bilinen dönen diskten 

kaynaklanan von Karman dönen akış problemine uygulanmıştır. Enerji denklemi de bu metodla çözülerek radyal ve 

tegetsel yüzey sürtünme katsayıları, tork ve diskten ısı  transfer oranı  gibi çok mühim fiziksel parametreler nümerik 

olarak elde edilmiş ve bunların zamandan bagımsız degerlerine yakınsadıgı  gösterilmiştir.  

Anahtar Kelimeler: Chebyshev dügümleme, Kapalı  metod, Zamana baglı  akış, Dönen disk, Yüzey gerilmeleri, Isı  

transferi.  

 
NOMENCLATURE 
 

Roman symbols  

CP specific heat 

(F,G,H) self-similar radial, azimuthal and normal 

velocities 

(L,Uc,re
*
)   characteristic scales [m,m/s,m] 

P               self-similar pressure 

Pr       Prandtl number 

q           heat flux 

R            Reynolds number [Uc.L/μ] 

r         radial direction in cylindrical polar 

coordinates 

s              suction or injection parameter 

T             temperature [K] 

(u,v,w)  velocity components in radial, azimuthal 

and normal directions [m/s] 

t              time [s] 

z          normal direction in cylindrical polar 

coordinates [m] 

Greek symbols  

η            a scaled boundary layer coordinate 

K    thermal conductivity at the free stream 

[W/(m.K)] 

        dynamic viscosity at the free stream 

[N.s/m^2] 

δ          displacement thickness 

ρ           density of the fluid [kg/m^3] 
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θ      azimuthal direction in cylindrical polar 

coordinates 

τr           radial shear stress on the wall 

τθ           azimuthal shear stress on the wall 

υ              kinematic viscosity [m^2/s] 

             angular velocity of the disk [m/s] 

 
INTRODUCTION 
 

A number of numerical solution methods has been 

developed recently to tackle the unsteady flow motion 

relevant to fluid dynamics phenomena. Besides its 

reasonable accuracy, convergence, consistency and 

stability properties, numerical scheme is expected to be 

computationally efficient and user friendly in terms of 

its programming and ease of implementation. A new 

algorithm encompassing all of the aforementioned 

properties has been developed in the present study based 

on the spectral Chebyshev collocation technique. Its 

advantages over the classical finite difference methods 

have been highlighted with a direct application of the 

method to the numerical solution of the three-

dimensional unsteady porous rotating disk von Karman 

fluid flow problem.  

 

A tremendous range of fluid flow phenomena is 

described by the governing time-dependent equations of 

motion (Schlichting, 1979; Ramos, 2007; Laizeta and 

Lamballaisa, 2009). The time evolution of the physical 

phenomenon needs to be conceived by solving 

numerically the fluid equations since these equations 

have no analytical closed-form solutions in most cases. 

The governing equations generally consist of partial 

differential equations of mass, momentum, angular 

momentum and energy conservation depending on the 

property of the phenomenon.  

 

Several numerical formulations based on different 

discretization methods, such as Runge-Kutta, finite 

differences, finite element, and spectral methods, have 

been proposed to compute the fluid dynamics problems 

(Dehghan and Taleei, 2010; Arefmanesh and Alavi, 

2008; Calgaro et al., 2006; Canuto et al., 1988; Wu et 

al., 2009). The most common approach for 

approximating the derivatives is the finite difference 

methods. Different types and orders of finite difference 

methods are available as cited in the book Book (1981). 

Applying conventional first-order finite difference 

methods like the first-order upwind results in monotonic 

and stable solutions, but they are also strongly 

dissipative causing the solution of the strongly 

convective partial differential equations to become 

smeared out and often grossly inaccurate. On the other 

hand higher-order difference methods, e.g. central, Lax-

Wendroff, QUICK, etc. are less dissipative but are 

prone to numerical instabilities, which introduce 

oscillations across regions of large gradients of the 

variables (Wang and Hutter, 2001; John and Knobloch, 

2007). Crank-Nicolson method is a favorably popular 

method for solving parabolic equations because it is 

unconditionally stable and second order accurate (Wade 

et al., 2007; Jeong and Kim, 2010). One drawback of it 

is that it responds severely to jump discontinuities in the 

initial conditions or to the differences between the initial 

and boundary conditions with oscillations which are 

weakly damped and therefore may persist for a long 

time. A selection of methods were later presented to 

reduce the amplitude of these oscillations (Britz et al., 

2003; Huang and Abduwali, 2010).  

 

The same non-physical numerical oscillations were 

encountered while solving the unsteady rotating disk 

fluid flow problems by Attia (1998) and Hossain et al. 

(2001) using a finite difference numerical integration 

procedure in conjunction with the implicit Crank-

Nicolson solver. It appears that the difficulty is inherent 

to the other unsteady flow problems in fluid mechanics 

(Ekaterinaris, 2005; Appadu et al., 2008). A fast 

solution for this numerical problem is generally 

achieved by using a proper coordinate transformation as 

suggested by Ames (1977). However, besides the 

equations to be solved getting complicated, this even 

does not remedy the problem completely, since the 

physical domain is infinite, imposing the asymptotic 

conditions at a finite distance greatly affects the 

accuracy of the numerical solution, as pointed out in the 

research of Attia (1998). Therefore, the existing 

numerical procedures in the literature for the unsteady 

calculations do the computations in the transformed 

region up to a predetermined finite time and switches 

back to the physical domain for the calculation of the 

rest of the solution in the time domain.  

 

The objective of the present work is to develop a 

numerical scheme for the computation of transient flows 

in fluid mechanics. A straightforward approach is the 

prime target of the study which easily overcomes the 

aforementioned difficulties and particularly avoids the 

unwanted numerical oscillations due to the differences 

between the initial and boundary conditions. To serve to 

this purpose, Chebyshev polynomials are employed to 

approximate derivatives in the direction normal to the 

body surface. Having linearized the nonlinear terms in 

the governing equations via the usual Newton 

linearization, the spectral collocation implemented in 

this way is then furnished with an implicit time 

differencing for the unsteady terms in the governing 

equations. The developed compact numerical method is 

later applied to the von Karman swirling flow equations 

governing the motion of the unsteady incompressible 

flow over a porous rotating disk. Numerical oscillations 

and diminishing of the infinite boundary for large times 

inherent to the finite difference techniques are no longer 

present in the method devised. Moreover, the method, 
being implicit and hence unconditionally stable, 

produces the steady state solutions using large time 

steps, i.e., large courant numbers are allowed, with 

small dissipative and dispersion errors. Finally, the time 

evolution of some parameters of physical importance 

has been obtained using the current method.  

 

The following procedure is adopted in the rest of the 

paper. The implicit spectral numerical scheme is 

presented in section 2. Application of the method is 



101 

implemented in section 3 to the special case of unsteady 

von Karman porous rotating disk flow equations. Section 

4 contains results and discussions of the numerical 

presentations including those of physically important 

parameters. Finally, conclusions are drawn in section 5.  

 
THE NUMERICAL METHOD 
 

Consider the system of partial differential equations  
 

  0



uN

t

u
                               (1) 

 

valid inside a domain D, accompanied with the 

following initial and boundary conditions  
 

   ,,0 0 zuztu   ,Dz  

   ,, taztu      ,, DxRzt                   (2) 

 

where  u=(u(t,z),v(t,z),w(t,z)) with Z being a normal 

coordinate in the direction perpendicular to the motion 

and N in equation (1) is a nonlinear partial differential 

operator similar to the Navier-Stokes operator arising in 

many applications of science and engineering.  

 

There are a number of numerical procedures to 

discretize system (1-2). The most frequently used are 

the classical explicit or implicit finite difference 

techniques. But no matter the type of the differencing, 

the resulting numerical algorithm gives rise to 

numerical oscillations due to the reason that the initial 

data and boundary conditions in (2) may possibly 

constitute a discontinuity to be exemplified later in 

section 4. This fact was utterly expressed in the 

numerical studies of the references cited here, in which 

the numerical oscillations were often reported during 

the numerical simulation of the unsteady rotating disk 

flows (Attia, 1998; Hossain, et al. 2001). The cousins of 

numerical methods based on the finite difference 

approximations of derivatives as presented in the book 

by Book (1981) are also susceptible to the same 

difficulty. A solution for this numerical problem is 

generally accomplished by means of a proper coordinate 

transformation, such as  
 

t

z

2
  

 

as also suggested by Ames(1977). However, the 

resulting equations need to be solved in the infinite 

domain  
 

,0  z  .0t  

 

During the numerical computations Z is fixed at a finite 

distance, but due to the suggested coordinate 

transformation, this finite domain is diminished with the 

progression of time and greatly affects the accuracy of 

the numerical solution of the problem at hand. To cope 

with these deficiencies, and obtain the unsteady solution 

at one go, we propose here to use spectral Chebyshev 

method (Canuto, et al. 1988; Khater and Temsah, 2008). 

In compliance with this purpose, the infinity physical 

domain of computation is mapped first onto the interval 

 1,1  with a suitable transformation η=f(z). Next, 

the nonlinear operator in (1) is linearized with the usual 

Newton linearization technique such that a single flow 

velocity u is written as  
 

,)( uuu n                    (3) 

 

where u
(n)

 is to denote the value of  at the iteration 

number n and δu is a small correction term. As a result, 

the nonlinear operator in (1) will be substituted by its 

linearized counterpart. A forward time differencing for 

the derivative of u is appropriate at this stage in the 

form  
 

.
1

t

uu

t

u jj








 
 

 

Taking into account the advantage of implicit schemes, 

the linearized terms are also imposed at the time t+Δt. A 

Chebyshev collocation based on the well-known 

Chebyshev polynomials is later employed in the wall 

normal direction η in such a way that the quantities are 

collocated at the Gauss points  
 

,cos 








N

k  ,,...,1,0 Nk   

 

where N denotes the number of collocation points used. 

The spectral Chebyshev collocation method enables one 

also to represent a derivative of a quantity in terms of 

the values of that quantity in the whole domain of 

interest (Canuto et al. 1988). In view of the above 

remarks, system (1) can be cast into a matrix form  
 

,1 BUA j                    (4) 

 

in which A and B consist of the known values at the nth 

iteration, and  shows the corrections at the instant 

of computation for (u,v,w). The matrix system (4) needs 

to be modified due to the boundary constraints (2). With 

proper initial approximations u
(n)

 to the variables (which 

can be assigned from the previously converged 

solutions) at each time step, the matrix system (4) is 

eventually solved with an LU matrix factorization 

technique. The convergence criterion is to force the 

correction terms δU in (4) to lie within a preassigned 

small tolerance.  

 

As compared with the finite difference methods, the 

method devised here is robust, unconditionally stable 

and easy to programme due to its compact matrix form 

in equation (4). As will be demonstrated later, the 

scheme introduced here converges quickly to the steady 

state solution. The computational efficiency and better 

accuracy of the spectral Chebyshev method over the 

finite difference methods are underlined in the textbook 

by Canuto et al. (1988). More details of the integration 

scheme without the time derivatives (steady state) can 

be found in Turkyilmazoglu (1998). We should 
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emphasize that the initial guesses mentioned above are 

taken as zero initially, which were found to be perfectly 

capable of generating the results of this study for the 

entire family of parameters considered.  
 

APPLICATION TO THE ROTATING DISK FLOW 
 

The interest here is with the three-dimensional, unsteady 

flow of an incompressible, viscous fluid over an infinite 

disk rotating with a constant angular velocity   about 

its axis of rotation z. A uniform suction or blowing is 

also applied thorough the surface in the direction normal 

to the disk. The flow description and geometrical 

coordinates are depicted in Figure 1.   

 

The governing equations of motion are non-

dimensionalized with respect to a length scale L=re
*
, 

velocity scale , LUc
 time scale L/Uc and pressure 

scale ρUc
2
, where ρ is the fluid density. Such a 

dimensionless analysis leads to a global Reynolds 

number ,Re 2R
LUc 


 where the non-dimensional 

cylindrical polar coordinates R is the Reynolds number 

based on the displacement thickness 2

1














 . Thus, 

relative to 

  
Figure 1. Configuration of the flow and geometrical 

coordinates. 

 

(r,θ,z), the full time-dependent, Navier-Stokes and 

energy equations governing the viscous fluid flow are 

given by  

 

,0 u                   (5) 

 

  ,
1 2

2
u

R
puu

t

u





                               (6) 

 

.
Pr

1 2

2
T

R
Tu

t

T





                (7) 

The present analysis assumes that the fluid lies in the 

0z  semi-infinite space. In the above equations (5-7) 
2  is the usual Laplacian operator in cylindrical 

coordinates. The components of the flow velocity u are 

(u,v,w), the pressure is P and T is the fluid temperature 

such that the surface of the rotating disk is maintained at 

a uniform temperature Tw . Far away from the wall, the 

free stream is kept at a constant temperature 
T . As for 

the velocities, no-slip condition is imposed at the wall 

together with the vanishing radial and azimuthal 

velocities far above the disk.  

 

The dimensionless mean flow velocities, pressure and 

temperature distributions are given by von Karman’s 
exact self-similar solution of the Navier-Stokes 

equations for the steady laminar flow. Because the 

boundary layer thickness is of order of magnitude R
-1

, 

the steady incompressible boundary layer flow over a 

rotating disk evolves along a boundary layer coordinate 

of order unity, defined by Z=Rz. Consequently, the 

mean flow quantities take the form  

 

        ,,
1

,,,,,, 







 ZtH

R
ZtrGZtrFwvu  

 

        ,,,,
1

,
2 








  ZtTTTZtP

R
Tp w                  (8) 

 

where the similarity functions F, G, H and θ satisfy the 

following ordinary differential equations  

 

,0'''22 



FHFGF

t

F
 

 

,02 ''' 



GHGFG

t

G
 

 

,0'''' 



HHHP

t

P
                  (9) 

 

,02 ' HF  
 

.0
Pr

1 ''' 






H

t
 

 

Here, a prime denotes derivative with respect to Z,  






K

Cp
Pr  is the Prandtl number, CP is the specific 

heat at constant pressure and the boundary conditions 

appropriate to the flow geometry for all time t are given 

as  

 

,0,011  ZatsHGF               (10) 

 

.,0  ZasGF                (11) 

 

System is also supplemented with the subsequent initial 

conditions valid for all Z  

 

.0,0  tatHGF                (12) 

 

It should be noticed that, as stated before, a 

discontinuity is present between initial values and 

boundary conditions in (10-12).  
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The numerical scheme described in section 2 was made 

use for the resolution of the velocity and temperature 

fields from the system of equations (9-12), after 

mapping the physical domain Z onto  1,1  via the 

linear transformation 
max

2
1

Z

Z
 . Sufficient number of 

Gauss collocation points were taken together with the 

proper choice of a large distance Zmax above the surface 

of the disk in order to make sure that the solutions 

obtained are independent of the parameters involved.  

 

Upon solution of the mean flow quantities from the 

system (9-12), the skin friction coefficients, the torque 

and the rate of heat transfer to the surface, which are of 

principal physical interest, can also be calculated. The 

action of the viscosity in the fluid adjacent to the disk 

sets up a tangential shear stress, which opposes the 

rotation of the disk. As a consequence, it is necessary to 

provide a torque at the shaft to maintain a steady 

rotation. To find the tangential shear stress τθ and radial 

shear stress τr, we apply the Newtonian formulae  
 

1
[ ]( 0) '(0)zv w z RG

r
       

[ ]( 0) '(0)r z ru w z RF     . 

 

The rate of heat transfer from the disk surface to the 

fluid is computed by the application of Fourier’s law as 

given below  
 

( 0) '(0)zq T z R      
 

from which the normalized Nusselt number can be 

obtained. Therefore, in what follows we numerically 

compute '(0)F , '(0)G  and '(0)  to understand the 

underlying physics of the problem.  
 
RESULTS AND DISCUSSION 

 
In order for testing the efficiency and accuracy of the 

numerical scheme developed in section 2, we apply it to 

solve the unsteady flow of incompressible viscous and 

laminar flow of von Karman equations of motion given 

in section 3. Numerical simulations are carried out for 

the motion of a fluid having Prandtl number Pr 1  for 

an ideal flow and Pr 0.72  for air. Time progression of 

the unsteady velocity profiles as well as radial and 

tangential shear stresses, vertical suction velocity and 

the rate of heat transfer at the disk surface are presented 

against the time.  

 

Starting from the zero initial state, the flow over a disk 

evolves impulsively by a sudden action of rotation of 

the disk and as time passes the flow settles down to a 

steady state. This action  of the fluid flow is   shown in 
 

 

                               (a)                                                                                                                                               (b)                      

       
                                                           (c)                                                                                                                                                               (d)

Figure 2. The time progression of basic flow quantities for the rotating disk flow are shown for an impermeable wall case 

respectively in (a) the radial velocity profiles, (b) the circumferential velocity profiles, (c) the wall normal velocity profiles and (d) 

the temperature profiles. The snapshots are given at 0.5 increments in time. The dot-dashed curves correspond to the large time 

limit as well as the steady solution.. 
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Figures 2(a-d) for a nonporous disk. Figures are 

displayed for the time development of the flow 

quantities by a time step 0.05t  , but taken at a 

snapshot of 0.5t  . The sufficiently large time solution 

as well as the steady solution are shown by the dot-

dashed curves. Figures show how the impulsive motion 

ends up with a steady state which were calculated by 

ignoring the time derivative terms in equations (9-12). 

The success of the devised numerical method in 

capturing the steady state solution by assigning larger 

time steps is also possible (though not demonstrated 

here) due to its unconditional stability. It is further 

noticeable from the figure that the circumferential 

velocity attains its steady state  quickest as compared to 

the other physical variables. Figures show how the 

impulsive motion ends up with a steady state which 

were calculated by ignoring the time derivative terms in 

equations (9-12). The success of the devised numerical 

method in capturing the steady state solution by 

assigning larger time steps is also possible (though not 

demonstrated here) due to its unconditional stability. It 

is further noticeable from the figure that the 

circumferential velocity attains its steady state quickest 

as compared to the other physical variables.  

 

 (a)                                                                                   (b) 

                                                                (c)                                                                                    (d) 

Figure 3. The time progression of physically significant parameters are shown respectively in (a) '(0)F ,  (b) '(0)G ,   (c) ( )H   

and (d) '(0) . A dashed line corresponds to the steady state value. 

 

Table 1. Values of  '(0)F , '(0)G , ( )H   and '(0)  

corresponding to the large time limit steady state zero suction 

case. First row is from the present computation and second 

row is from Jasmine and Gajjar (2005). 

          '(0)F        '(0)G      ( )H      '(0)  

00.510232  0.615922  0.884473  0.328574   

0.510232      0.615922  0.884473  0.328573   

 

We finally demonstrate in Figures 3(a-d) the time 

development of '(0)F , '(0)G , ( )H   and '(0)  

which are closely related to the radial skin friction, 

azimuthal skin friction (also torque), axial velocity at 

infinity and the local rate of heat transfer for Pr 0.72  

and all computed with a step size of 0.01t  . The 

steady state values are also shown by the broken lines in 

the figure and Table 1.   

 
It can again be seen that the method successfully 

generates the steady state values of the physically 

important parameters, the fastest for the case of 

tangential skin frictions consistent with Figure 4.  

 
CONCLUSIONS 
 

A new numerical integration scheme has been proposed 

in this paper to compute the time-dependent boundary 

layer flow equations. The method is based on the 

spectral Chebyshev collocation discretization along the 

coordinate normal to the fluid flow motion and Euler 

implicit forward time discretization in time. For the 

specific example, the three-dimensional unsteady 

boundary layer flow due to a porous rotating disk has 

been considered and the mean velocity and temperature 
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fields approaching their steady states have been 

successfully computed with the method.  

 

The devised spectral method in combined with the 

implicit Euler time differencing has been found to be 

robust, unconditionally stable, highly accurate and easy 

to implement. One of the most important advantage of 

the presented technique is also its capability to deal with 

the discontinuities occurring due to the different initial 

and boundary conditions in an unsteady flow motion. It 

is a known fact that a finite difference method involves 

numerical oscillations at such cases and thus requires 

extreme care, directing the researcher to couple the 

algorithm with the new transformations and solve more 

equations than actually needed. However, no such 

numerical drawbacks which deteriorate the numerical 

solution, encountered by the proposed compact spectral 

method.  

 

The developed method has been readily applied to the 

incompressible, viscous, laminar and time-dependent 

three-dimensional swirling fluid flow over a rotating 

disk subject to a wall suction or injection. Starting from 

zero initial solutions and advancing in time, the method 

successfully generates the velocity and temperature 

distributions which evolve into their steady state 

counterparts after a sufficient time past. The torque, 

shear stresses, axial suction velocity and heat transfer 

rate, which are of fundamental importance in view of 

physics, have also been calculated.  

 

Although the classical von Karman swirling flow of fluid 

mechanics has been accounted for the application of the 

method here, the proposed method seems to be highly 

promising for the evaluation of unsteady flow phenomena 

in other branches of science and engineering.  
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