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Abstract: In this study, computational fluid dynamics (CFD) analyses of the two-dimensional, time-dependent lid-

driven cavity flows, for Reynolds numbers ranging from 100 to 10000, are performed by using an in-house developed 

CFD code. The unsteady behavior of the flow is triggered using a sinusoidal lid velocity profile. The flow structure is 

further investigated with the application of a reduced order modeling technique, Proper Orthogonal Decomposition 

(POD), and the structures present in the flow, are separated according to their frequency (energy) content. POD 

results show that when the stream function formation is used as a data ensemble, about 99% of the total energy 

content can be modeled by considering only the most energetic first four POD modes; whereas, this value remains at 

a range between 90 – 95% for the x-direction velocity data ensemble. What is more, an Artificial Neural Network 

(ANN) based approach is developed to predict mode amplitudes for flows with different Reynolds numbers. Once 

enough information is obtained with the help of CFD of few flow cases, the ANN integrated approach presented 

herein helps to predict what is happening in the flow for different flow cases without requiring further CFD 

simulations, which are not practical in real-time flow control applications.  

Keywords: Computational Fluid Dynamics, Time-dependent behavior, Cavity flow, Proper Orthogonal 

Decomposition, Flow control, Artificial Neural Networks. 

 

KAPAK GÜDÜMLÜ KAVİTE AKIŞLARINDA ZAMANA BAĞLI DAVRANIŞIN 

YAPAY SİNİR AĞLARI TABANLI TAHMİNİ 
 

Özet: Bu çalışmada, Reynolds sayısının 100 ile 10000 arasında değiştiği, iki boyutlu ve zamana bağlı kapak güdümlü 

kavite akışlarının Hesaplamalı Akışkanlar Dinamiği (HAD) çalışmaları özgün olarak geliştirilen HAD kodlarının 

uygulanmasıyla incelenmiştir. Akışın zamana bağımlı davranışı sinüssel hız profili uygulanarak tetiklenmiştir. Akış 

alanında gözlemlenen yapılar düşük boyutlu modelleme tekniği olan Dikgen Ayrıştırma Yöntemi (DAY) kullanılarak 

incelenmiş olup, bu yapılar frekans derecelerine (akış alanının bütününü ifade etmeye yönelik olan katkılarına, enerji 

içeriklerine) göre ayrıştırılmıştır. DAY sonuçlarına göre, akım fonksiyonu veri grubu olarak kullanıldığında, toplam 

enerji içeriğinin %99’a yakın kısmı sadece en yüksek enerji içeriğine sahip ilk dört DAY kipi kullanılarak ifade 

edilebilmektedir. Buna karşılık, x-yönündeki hız veri grubu kullanıldığında en yüksek enerji içeriğine sahip ilk dört 

kipin kullanılmasıyla toplam enerji içeriğinin % 90 – 95’lik bir kısmı ifade edilebilmektedir. Ayrıca, çalışmada 

değişik Reynolds sayılarının uygulandığı durumlar için Yapay Sinir Ağı (YSA) uygulaması yapılarak kip genlikleri 

de tahmin edilmiştir. HAD kullanılarak belirli akış durumları için yeterince bilgi toplandıktan sonra, YSA ile 

bütünleştirilen yaklaşım sayesinde farklı akış koşulları için gerçek zamanlı kontrol uygulamaları için pratik olmayan 

HAD analizlerine gerek duyulmadan akış alanında neler olduğuna ilişkin bilgileri tahmin etmek mümkün olmaktadır. 

Anahtar Kelimeler: Hesaplamalı Akışkanlar Dinamiği, Zamana bağlı davranış, Kavite akışı, Dikgen Ayrıştırma 

Yöntemi, Akış kontrolü, Yapay sinir ağları. 

 

NOMENCLATURE 
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  Total number of snapshots 

  Pressure [Pa] 
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   Moving lid velocity [m/s] 
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INTRODUCTION 

 

Driven cavity problem is one of the most popular fluid 

flow problems in Computational Fluid Dynamics 

(CFD). The availability of a simple geometry and 

boundary conditions, and capability of retaining 

relevant properties of several fluid flows such as 

boundary layers, eddies of different sizes and 

characteristics, and various instabilities (Peng et al., 

2003) make this problem eligible as a test case for the 

development of new simulation and solution methods to 

be applied in more complex flow problems.  

 

In the literature, there are numerous studies based on 

driven cavity flows. For instance, Erturk et al. (2005) 

investigated numerical computations of the two-

dimensional (2D) steady incompressible driven cavity 

flow based on Reynolds number (Re) with the range of 

Re ≤ 21000. The authors provide a comparison for the 

different driven cavity studies in the literature. In 

another study performed by Perumal and Dass (2010), 

vortex patterns in a driven cavity is observed by moving 

both upper and lower horizontal boundaries together in 

parallel and anti-parallel directions for flows at Re 

ranging from 100 to 2000. Peng et al. (2003) worked on 

the direct numerical simulations of the transition 

process from laminar to chaotic flow in a lid-driven 

cavity problem. In an interesting study performed by 

Koblitz et al. (2010), the driven cavity problem is used 

as a validation case. The authors improved a previously 

developed in-house CFD code for 2D simulations 

including the effect of thermal stability in the 

atmospheric boundary layer for predicting geophysical 

transport phenomena.    

 

For many of the engineering applications involving fluids, 

CFD plays a crucial role as one of the major tools to 

observe flow structures and their characteristics. On the 

other hand, for many practical approaches and realistic 

problems those involve fluids, CFD process remains 

expensive, time-consuming and resource-demanding 

(Gracia, 2010). Considering this, although CFD is counted 

as a valuable tool to obtain solutions for design and 

analysis purposes of complex thermo-fluidic systems, it 

lacks the functionality of being practical and quick for real-

time or time-constrained applications. Such limitations 

cause difficulties especially in the development of flow 

control strategies (Fitzpatrick et al., 2005). 

 

To be fast enough in analyses to observe flow structures and 

their characteristics in a time-dependent system, a practical 

procedure is necessary to separate the space and time 

dependency of the system. Proper Orthogonal 

Decomposition (POD) is a statistical reduced order 

modeling technique which offers a lower dimensional model 

approximation to a given data ensemble obtained from 

computational or experimental studies (Paksoy et al., 2011).  

 

There are studies in the literature on application of the 

POD technique to construct low-dimensional models for 

lid-driven cavity flows. For example, in a study 

conducted by Gracia (2010), approximation errors are 

investigated by changing the extent of snapshots 

considered for the POD analysis of a 2D lid-driven 

cavity problem. In another study performed by Ahlman 

et al. (2002), driven cavity flow is used to enlighten to 

what extent POD can be successfully used to 

approximate time-dependent solutions of the 

incompressible Navier-Stokes equations with varying 

Reynolds number (Re) ranging from 10 to 2500. In a 

different research conducted for a Reynolds number  

Re=22000, Cazemier et al. (1998) successfully modeled 

the dynamics of a 2D driven cavity flow by representing 

95% of the fluctuating kinetic energy of a direct 

numerical simulation data using the POD approach. 

 

Theory behind the technique implies representation of 

large numbers of instantaneous characteristics of a 

dynamic system by a limited number of spatial and 

temporal structures, namely the coherent structures. A 

set of orthogonal basis functions and time-dependent 

coefficients are used for this purpose. They contain as 

much information as necessary to represent the original 

system dynamics by forming relevant POD modes. The 

representation is accomplished by considering an 

optimal amount of the most energetic POD modes. The 

approximation obtained by the POD technique contains 

adequate information to represent the original data 

ensemble with a reduced number of degrees of freedom 

(Ahlman et al., 2002; Cazemier et al., 1998). 

 

The POD technique has been used widely for applications 

such as jet modeling, weather forecasting and operational 

oceanography, to obtain low dimensional descriptions of 

system dynamics by extracting dominant features and 

trends (Cao et al., 2006). Lumley (1967) and Aubry et al. 

(1988) are the pioneers who utilized the statistical POD 

approach and low dimensional analysis in fluid flows. 

Lumley (1967) is the first person who employed the POD 

technique for the problems involving fluids interactions 

to obtain temporal and spatial characteristics of a flow 

field. As an extension of Lumley’s studies, Aubry et al. 

(1988) modeled the wall region of a turbulent boundary 

layer using the features of the empirical eigenfunctions 

obtained as a result of the POD technique. The authors 

analyzed the chaotic turbulent flow dynamics of a 

realistic system by the POD technique to capture major 

flow characteristics as a low-dimensional model. As 

demonstrated in O’Donnell and Helenbrook (2007), Sen 

et al. (2007), Connell and Kulasiri (2005), Lieu et al. 

(2006), and several other studies in the literature utilize 

the POD technique in fluid mechanics applications as a 

reduced order modeling tool. 

 

Artificial Neural Networks (ANN’s) refer to computing 

systems the main idea of which is inspired from the 

analogy of information processing in biological nervous 

systems and human brain, where billions of neurons are 

interconnected to process a variety of complex 

information. A computational neural network works as a 

mathematical function which transforms a set of input 

variables into a set of output variables (Bishop, 1994). It 

consists of neurons as the simple processing units. In 

general, for systems that contain multiple inputs and 
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multiple outputs, a neural network structure contains 

two different layers, hidden and output layers, apart 

from the input layers. The neurons of each layer are 

interconnected with weights. Correct identification 

between a set of independent input variables and the 

output variables is obtained by changing the weight 

values (Khataee et al., 2010). 

 

Currently, neural networks are used for solution of 

problems in system identification, such as pattern 

recognition, data analysis, and control. ANN’s have also 

been applied to diverse problems in several fields such 

as insurance, medicine, economic predictions, speech 

recognition and image processing. Several notable 

features of ANN’s include relatively high processing 

speeds, learning ability of the solution of a problem 

from a set of examples, dealing with imprecise, noisy, 

and highly complex nonlinear data, and parallel 

processing ability (Nørgaard et al., 2003). ANN’s are 

also used effectively for fluid mechanical systems. For 

example, Zhang et al. (1996) used ANN’s to estimate 

the flow characteristics observed in an elongated 

rectangular cross-sectional area of a static prism by 

considering two-dimensional von Karman vortex 

structures in the flow field. In another study, Ahadian et 

al. (2009) employed the ANN approach for modeling 

and prediction of the length of permeation in a 

nanochannel for two different types of fluids as a 

function of the influencing parameters, such as surface 

tension and viscosity of the fluids.  

 

The objective of this study is to investigate time-

dependent two dimensional flow structures and 

characteristics in a lid-driven cavity flow with the help 

of the POD technique and application of an ANN 

methodology to CFD simulation results. Computational 

data ensembles for the time-dependent two-dimensional 

driven cavity flows at different lid velocities are 

obtained by using an in-house developed CFD code for 

Reynolds numbers 100, 500, 1000, 5000 and 10000. 

The POD technique is used as a post-processing tool to 

analyze numerically obtained CFD data ensemble by 

identifying the most energetic modes (spatial 

components) and mode amplitudes (temporal 

components) according to their frequency contents.  

 

The ANN approach is used to estimate the state of the 

flow for different lid velocities and to prepare a point of 

view for further flow control strategies. Prediction of 

the POD mode amplitudes is essential for that purpose. 

Therefore, the heuristically formed ANN structure is 

designed to work as a mathematical procedure by 

predicting new mode amplitudes for different lid 

velocities from specific lid velocity values under 

investigation and previously obtained POD mode 

amplitudes (a baseline case for which the CFD 

simulations have already been performed). This ANN 

integrated approach helps to predict what is happening 

in the flow without requiring further CFD simulations 

for several Reynolds numbers, which are 

computationally not practical in real-time flow control 

applications. 

METHODOLOGY 

 

Flow Field Simulation Methodology 

 

The problem is on the flow dynamics of an 

incompressible fluid inside a square cavity. The vertical 

and lower horizontal boundaries of the cavity are set to 

meet no-slip condition. A time-dependent sinusoidal 

oscillating velocity function (Up) is assigned as the 

upper horizontal boundary for the lid, which is assumed 

to have an infinite length. Figure 1 shows the schematic 

representation of the problem. 
 

 
Figure 1. Schematic representation of the time-dependent two 

dimensional driven cavity problem. 

 

During the numerical simulations, two-dimensional 

(2D) Navier-Stokes equations are solved. A vorticity-

stream function formulation is used for the 

computations of the 2D flow in x-y plane as shown  in 

Fig. 1. The velocity field is defined as            on 

the 2D bounded square domain with values 
                     . Kinematic viscosity of the 

fluid is taken as 
-6 21 10 m /s . For the domain where 

fluid is enclosed, incompressible Navier-Stokes 

equations and the continuity equation can be written as: 
 

 
Re

V V
V V p

t

 
    


                (1) 

0V                                            (2) 
 

In Eq. (1), “V ” is the velocity field, “p” is the pressure 

and “Re” is the Reynolds number. By rewriting Eq. (1) 

in differential form for both velocity components for the 

2D driven cavity problem Eq. (3) and Eq. (4) can be 

obtained. 
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In addition, the continuity equation is written as: 

 

0
u v

x y

 
 

 
                  (5) 
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The vorticity and stream functions used in vorticity-

stream function approach (Matyka, 2004) are shown by 

Eq. (6) and Eq. (7). 
 

v u
V

x y
 

 
    

 
                (6)  

u and v
y x

  
  

 
                (7) 

 

When the vorticity and stream function definitions given 

above are combined with Eq. (3) and Eq. (4), the pressure 

term is eliminated from the momentum equations. As a 

result of this combination, another form of the transport 

equation presented by Eq. (8) is revealed.  
 

2 2

2 2

1

Re
u v

t x y x y

         
    
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               (8) 

 

Combination of the Eq. (6) and Eq. (7) leads to 

acquisition of the Poisson equation as shown in Eq. (9) 

for the “ ” variable. 
 

2 2
2

2 2x y

 
 

 
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 
                 (9) 

 

In the vorticity-stream function formulation, simple first 

order expressions for the derivatives of the vorticity,  , 

are defined at the wall boundaries. In addition, the 

stream function, “ ”, is set to zero at all boundaries. 

Then, for those boundaries defined to remain at the no-slip 

condition, the expression given by Eq. (10) is used, 

whereas, for the moving boundary the expression given by 

Eq. (11) is used where “ p” is the moving lid velocity.  
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After obtaining finite-difference equations for the 

vorticity transport equation with first order upwind 

differences for convective term, Alternating Direction 

Implicit (ADI) method is applied for the solution, while 

Point Successive Over-Relaxation (PSOR) method is 

used for the solution of the Poisson equation for the 

stream function. More information on these methods 

can be found in Tannehill et al. (1997).  

 

In order to obtain the time-dependent data ensemble, the 

sinusoidal velocity profile of the lid is defined as: 
 

 
2

sinpU t A t B C
t T

  
      

              (12) 

 

where “  ” is the time step, “T” is the total number of 

time steps in one period of the simulation, “t” is the 

actual time, and A,B and C are arbitrary coefficients. 

These arbitrary parameters serve to retain the minimum 

lid velocity greater than zero and keep the maximum 

velocity value at desired limits. This is important, since 

Reynolds number is defined with a basis on the cavity 

height (0.01 m) and the maximum lid velocity. 

 

There are totally five cases investigated in the numerical 

simulations of the 2D time-dependent driven cavity 

flow, at Reynolds numbers (Re) of 100, 500, 1000, 5000 

and 10000. 10 complete sine cycles are simulated for 

each case. Hence, for 3000 time steps, there are totally 

10 periods and each period contains 300 time steps. The 

parameters and maximum and minimum velocities for 

the analyzed Reynolds numbers are given in Table 1. 

 
Table 1. Lid side velocity function parameters used in Eq. 

(12) and minimum and maximum velocities for all cases. 

Re  

Lid Side  

Velocity Function 

Parameters 

Velocity (m/s) 

A B C 
Minimum 

 510  Maximum 

100 0.999 1.001 200 1.0 0.01 

500 0.999 1.000 40 2.5 0.05 

1000 0.999 1.000 20 5.0 0.10 

5000 0.999 1.001 4 50.0 0.50 

10000 0.999 1.002 2 15.0 1.00 

 

All the codes necessary to perform the numerical 

simulations are developed using Matlab. The CFD 

codes provide solutions at each time step for both 

velocity components of the 2D driven cavity flow, 

stream function, and vorticity values at each grid point. 

 

The computational grid is generated by using quadratic 

grid elements for 101x101 (coarse), 201x201, and 

301x301 (finer) grids. Before starting the unsteady 

simulations, each grid is tested with 3000 iterations for 

steady state simulations for a maximum of 1.00 m/s lid 

velocity. In Table 2, evaluated maximum stream 

function values are compared for each grid.  

 

According to Table 2, it is seen that by improving the 

grid, maximum stream function value continues to 

evolve; however, this change is just about 5% between 

grids 101x101 and 301x301. Since the scope of this 

study is not based on obtaining very finely represented 

CFD simulations of detailed flow features, it is decided 

that the coarse 101x101 grid is eligible for further POD 

and ANN studies applied in the context of flow control 

purposes. 

 
Table 2. Maximum stream function values for the tested grids 

with 3000 iterations at a Reynolds number 10000. 

Grid 
Maximum Stream  

Function Value 

101x101 0.000440 

201x201 0.000445 

301x301 0.000416 
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POD Methodology 

 

The POD technique is a statistical data analysis tool that 

is used for extracting dominant features and trends named 

as coherent structures that are typically patterns of space 

and time (Holmes et al., 1996). In this study, the POD 

technique is used as a post-processing tool to analyze 

numerically obtained 2D driven cavity flow stream 

function and x-direction velocity data ensembles. The 

flow field observed in the cavity contains both spatial and 

temporal components. Utilization of the POD technique 

provides a relevant set of basis functions (also called as 

the modes) and mode amplitudes as a result of 

identification of the coherent structures depicted in the 

data ensembles. By projecting the governing Navier-

Stokes equations, it is possible to mimic the physical 

behavior of the flow field accurately as a low-

dimensional subspace model (Apacoglu et al., 2011; 

Holmes et al., 1996).   

 

“      ” denotes a set of “M” observations including data 

of any property in the 2D cavity flow field taken at a 

position. Here, each observation is called a snapshot, and 

each snapshot represents the flow structures at one time 

step in time-dependent flow simulations.  There is a 

debate in the literature about subtraction of the mean of 

data ensemble. Deane et al. (1991), Lall et al. (2002) and 

Newman (1996) suggested that the mean of the ensemble 

should be subtracted from the data ensemble to prevent 

further scaling requirements. However, Zhang et al. 

(2003) states that this approach provides no noticeable 

advantage for multiple data sets at different parameter 

values combined to generate a global reduced-order model.  

 

In this study, the mean of the ensembles are subtracted 

to form new modified data ensembles as expressed in 

Eq. (13). POD is applied to two variables, the stream 

function and x-velocity. 
 

     
1

1
1,2,...,

M

i i i

i

K x U x U x i M
M 

         (13) 

 

In the POD technique, modes are sorted out according 

to their energy content, which identifies the sheltering 

ability of the mode to portray original flow structures 

and their characteristics inside its formation. By 

projecting the governing Navier-Stokes equations, it is 

possible to mimic the physical behavior of the flow field 

accurately as a low-dimensional subspace model 

(Holmes et al., 1996). Further detailed mathematical 

procedure for POD methodology is given in Ly and 

Tran (2001), and Sanghi and Hasan (2011). 

 

ANN Methodology 

 

In ANN, a neuron is a processing element that takes 

number of inputs, weighs them, sums them up, and uses 

the result as the argument for a singular valued function, 

which is called the activation function. The processing 

ability of the ANN is stored in the interunit connection 

strengths, or weights, obtained by a process of adaptation 

to, or learning from, a set of training patterns (Nørgaard 

et al., 2003). Information about ANN fundamentals, 

network types and applications to different types of 

examples can be found in Haykin (1999), Mehrotra et al. 

(1996), and Samarasinghe (2006). 

 

In this study, the system consists of multi inputs 

(namely the lid velocity data for five different cases 

observed at various Reynolds numbers and sampling 

mode amplitudes) and multi outputs (estimated mode 

amplitudes). Therefore, the ANN estimation method of 

choice includes application of Spatio-Temporal Time-

Lagged (delayed) Multi Layer Perceptron (MLP) 

network structure, which is also named as Auto-

Regressive, eXternal input (ARX), engaged ANN model 

system identification approach described by Nørgaard et 

al. (2003). This model includes nonlinear optimization 

techniques based on the Levenberg-Marquardt back 

propagation method.  

 

The Levenberg-Marquardt method is a hybrid algorithm 

that combines advantages of the steepest descent and 

Gauss-Newton methods to produce a more efficient 

method than either of these two methods. It minimizes 

the difference between the extracted POD mode 

amplitudes and the ANN estimations, while adjusting 

the weights of the model (Samarasinghe, 2006).  

 

The importance of the ARX engaged ANN dynamic 

network model structure is its strong stability capability 

even if the dynamic system under investigation is unstable. 

The stability is very important when dealing with nonlinear 

systems of partial differential equations, such as the 

Navier-Stokes equations (Siegel et al., 2008). Further 

mathematical definition of the ARX-ANN model is given 

in Nørgaard et al. (2003) and Samarasinghe (2006).  

 

By ANN application, it is needed to estimate mode 

amplitudes that are the same as the mode amplitudes 

obtained from the POD analyses utilized to the CFD 

results, but without using further CFD simulations. In this 

study, all the necessary ANN algorithms are coded using 

Matlab. In-house codes are used instead of built-in 

toolboxes. 

 

RESULTS 

 

Flow Field Numerical Simulation Results 

 

The unsteady behavior of the flow field based on stream 

function data are shown in Fig. 2. Snapshots taken at 

1300
th
, 1400

th
 and 1500

th
 time steps falling into the half of 

the 10 periods are used to compare the flow structures 

and their characteristics in the 2D square cavity.  

 

At first glance to Fig. 2, it is seen that the core region of 

the major vortex changes its place by moving closer to 

upper right corner of the cavity with increasing Reynolds 

numbers (Re). In addition, it is observed that the 

secondary flow structures exist at the bottom corners of 

the cavity for lower Reynolds numbers (Re), such as for 

Re=100 and Re=500. On the other hand, for rather higher 

Reynolds numbers, such as Re=1000, Re=5000 and 
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Re=10000, the secondary vortices do not expand widely 

at the corners, but they are scattered and confined to a 

smaller area on the vertical sides of the cavity. One 

reason of this is the application of increased lid velocities, 

and correspondingly, enhanced circulation of the fluid 

retained inside the flow field at higher Reynolds numbers. 

Another distinction that can significantly be expressed is 

that the major vortex formation dissipates for lower 

Reynolds numbers within time. 

 

POD Application Results 

 

The POD technique reveals the flow structures observed 

in the flow field of the 2D cavity. Both stream function 

and x-direction velocity data ensembles acquired for 

Reynolds numbers (Re) 100, 500, 1000, 5000 and 10000 

are investigated by application of the POD technique for 

a total of 3000 snapshots. Each resulting POD mode 

carries certain spatial characteristic parts of the time-

dependent physical behavior (either stream function or x-

direction velocity formation) in the 2D square cavity flow 

field. For a good enough retention of the spatial 

characteristics and representation of the flow structures, it 

is adequate to consider a few most energetic POD modes.  

 

Tables 3 and 4 show the energy content variation for the 

most energetic first four POD modes. As can be seen from 

those tables, most of the energy is accumulated in the first 

two POD modes of all cases for both stream function and 

x-direction velocity data analyses. When stream function 

data formation is taken into account, about 99% of the total 

energy content is revealed with consideration of the most 

energetic four POD modes. On the other hand, this value 

remains at a range between 90 – 95% for the x-direction 

velocity data formation cases. Since the stream function 

data ensembles retain the flow characteristics of both 

velocity components seen in the flow field, more 

behavioral activity can be kept for identification of the flow 

field during application of the POD technique. 

 

Figure 3 shows time coefficient histories (mode 

amplitudes) for test cases at Re=100 and Re=10000. Mode 

amplitudes of each case represent temporal characteristics 

of the flow field. In Fig. 3a and Fig. 3c, for Reynolds 

number (Re) 100, which has the lowest maximum lid 

velocity and a velocity change in a narrower region 

compared to other cases, mode amplitudes shown by 

sinusoidal structures present a uniform periodical 

movement. The monotonic trend of the mode amplitudes 

seems to be still existing for the case at Re=10000. 

However, it is seen that in each of the 300 snapshots, 

which corresponds to one period in numerical flow 

simulations, the magnitudes of the mode amplitudes tend 

to change in a stepwise fashion. This can be clearly seen 

for all modes in Fig. 3b based on the stream function data 

analysis, and for modes 2, 3 and 4 in Fig. 3d based on the 

x-direction velocity data analysis. An identical attitude is 

also detected for Re=500, Re=1000 and Re=5000. The 

results shown in Fig. 3b and Fig. 3d are given as an 

illustration. The only change between the cases for 

Reynolds number (Re) 500, 1000, 5000, and 10000 is the 

maintained magnitudes of the mode amplitudes.  

 

The uniform periodical movement observed for Re=100 

and the stepwise monotonic attitude for other cases 

physically mean that there are major and secondary 

vortices formed in the flow field, and their formation 

intensities alternate with time. As an illustration, the most 

energetic four representative POD modes for stream 

function and x-direction velocity cases at Reynolds 

numbers (Re) of 100 and 10000 are shown in Fig. 4. In this 

figure, the spatial characteristics of vortex formation in the 

flow field are demonstrated. Since the amount of energy 

captured falls from mode 1 to mode 4, sizes of the vortices 

also decrease from mode 1 to mode 4. Besides, while the 

most energetic modes 1 and 2 in all cases exhibit the 

presence of a major vortex in the flow field, remaining 

modes show the existence of the secondary vortices 

scattered and confined in a rather small area in the flow 

field.   

 

Figure 5 represents contours of the original and 

reconstructed stream function data ensembles for the 

snapshot number 1400 for Reynolds numbers (Re) 100 and 

10000 using 4 modes. If infinite number of modes could be 

used during the reconstruction process of the flow field as a 

lower dimensional representation of the original one, it is 

clear that both of the results would exactly be the same.   

However, here, most of the flow is represented by only 

using 4 modes as opposed to infinite modes obtained from 

CFD simulations.      

 

ANN Results 

 

The utilized ANN procedure is able to estimate new mode 

amplitudes for different lid velocities and hence for 

different Reynolds numbers (Re) by employing a training 

process defined on a specific data set at a certain Re value.  
 

Table 3. Energy contents of the most energetic first four POD modes of all test cases for stream function data analyses. 

Mode 

Numbers 

Energy Contents (%), Stream Function Data Analyses 

Case 1 

Re=100 

Case 2 

Re=500 

Case 3 

Re=1000 

Case 4 

Re=5000 

Case 5 

Re=10000 

1 89.73 79.94 83.99 87.10 87.60 

2 9.13 16.24 11.08 7.57 7.64 

3 1.09 2.72 3.76 3.86 3.17 

4 0.03 0.93 0.83 0.99 1.07 

Total 

(4 Modes) 
99.98 99.83 99.66 99.52 99.48 
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Figure 2. Unsteady solutions of the 2D lid-driven cavity flow field with a grid size of 101x101 observed for the test cases at (a) 

Re=100, (b) Re=500, (c) Re=1000, (d) Re=5000 and (e) Re=10000. Snapshots taken at 1300th, 1400th and 1500th time steps 

falling into the half of the 10 periods are used to compare the flow structures and their characteristics in the 2D square cavity. 
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Table 4. Energy contents of the most energetic first four POD modes of all test cases for x-direction velocity data analyses. 

Mode Number 

Energy Contents (%), X-Direction Velocity Data Analyses 

Case 1 

Re=100 

Case 2 

Re=500 

Case 3 

Re=1000 

Case 4 

Re=5000 

Case 5 

Re=10000 

1 82.67 78.57 76.64 81.14 86.43 

2 12.47 12.32 13.44 9.66 6.60 

3 0.89 7.30 7.44 5.68 3.40 

4 0.03 1.43 1.50 1.77 2.08 

Total 

(4 Modes) 
96.06 99.62 99.02 98.25 98.51 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 3. Snapshot number vs. mode amplitude change for the most energetic four POD modes of the stream function data 

analyzed test cases (a) for Re=100, and (b) for Re=10000; of the x-direction velocity data analyzed test cases (c) for Re=100, and 

(d) for Re=10000. 
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(a) (b) (c) (d) 

Figure 4. The most energetic four POD modes for (a) Re=100 stream function data analyzed, (b) Re=100 x-direction velocity data 

analyzed, (c) Re=10000 stream function data analyzed and (d) Re=10000 x-direction velocity data analyzed test cases. 
 

Among a total of five cases established at Re values 

100, 500, 1000, 5000 and 10000; Re=100 case is 

selected to determine and validate the network structure 

parameters. Whereas, Re=10000 case is selected as a 

baseline case to estimate mode amplitudes for the other 

cases with Re=500, Re=1000 and Re=5000.  

 

The network is designed as a Spatio-Temporal Time-

Lagged Multi Layer Perceptron (MLP) network in order 

to enable observation of the nonlinear relationship 

between multi inputs and multi outputs. The network 

structure consists of two layers (one hidden layer and 

one output layer) apart from the inputs section. There is 

only one hidden layer in the modeled network structure, 

and activation neuron function is based on the nonlinear 

tanh function. A single bias input has been added to the 

output from the hidden layer. The output layer has a 

linear activation function, and it consists of two outputs, 

namely mode amplitudes of the most energetic POD 

modes 1 and 2. 

 

The problem under investigation is a real-time system 

application, and the use of ANN connected with ARX 

provides great harmony to observe such a dynamic real-

time system via imposing the time delay parameter, 

which is an inherent parameter coming with the spatio-

temporal time-lagged extension applied to the network. 

 

During training process, the designed network uses a 

supervised learning approach with an adequate set of 

data. The training process employed in specification and 

validation of the network parameters (time delay and 
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hidden layer neuron number) uses mode amplitudes and 

time-variant lid velocities observed for Re=100 test 

case. The first half of the 10 periodic observations 

corresponding to 1500 time steps is used for training. 

The remaining data are estimated and used in the 

validation of the network structure.      

 
 

 

 

 

 

 

(a) 
 

 

 

 

 

 

(b) 
Figure 5. Original and reconstructed data for the 1400th 

snapshot by considering the most energetic four POD modes 

of stream function data analyzed test cases (a) for Re=100 and 

(b) for Re=10000. 

 

Complexity and size of the network can be adjusted by 

varying both time delay and hidden layer neuron 

number parameters. Time delay value or the order of the 

lag length qualifies the number of mode amplitudes that 

need to be estimated and provided to the inputs section 

as data observed at the previous sampling instant in 

addition to the external time-variant lid velocity inputs 

for Re=100 test case. Hidden layer neuron number is 

another important parameter that influences prediction 

accuracy of the estimated mode amplitudes.  

 

Accuracy and performance of the network are evaluated 

by monitoring estimation errors. The smaller the value 

of error, the better the forecast is. Considering this, 

deviation, R
2
, root mean square (RMSE), mean absolute 

(MAE), and mean absolute percentage (MAPE) errors 

are calculated for the cases.  

 

Performance measure tools of deviation, RMSE, MAE, 

and MAPE are expressed as: 

 

deviation t t

t

T z

T


                                    (14) 
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t t

t
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                  (15) 

1

1
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n

t t
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z T
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                  (16) 

1
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n
t t
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z T

T

n





 


                   (17) 

 

where “zt” is the network prediction value, and “Tt” is 

the corresponding target or observed value at an instant 

“t”. Figure 6 presents network performance analysis 

results based on RMSE and MAE considered for stream 

function data group at Re=100, which is the network 

design and validation case.  

 

To ascertain a feasible value for the time delay 

parameter, firstly, the network is analyzed by assigning 

an arbitrary constant hidden layer neuron number of 10, 

while time delay is changed from 2 to 10 with a step 

size of 2. According Fig. 6, an increase in time delay 

value positively affects accuracy of the results, and 

relatively decreases the order of the error signals. For 

larger time delay values, the network structure uses 

more known data as previous samples to train itself by 

interconnecting the input sets via setting up larger 

weighing matrices, and hence weights. RMSE does not 

provide a discernible approach for decision of the time 

delay parameter value. On the other hand, MAE of the 

changing time delays shows a difference less than 1% 

for the values 8 and 10. Therefore, it is decided to 

specify the time delay parameter value as 8. With this 

specification, there are 8 previous sampling histories of 

the mode amplitudes fed with the external time-variant 

lid velocity inputs to the network as input sets. 
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Figure 6. Network performance analysis results based on root mean square error (RMSE) and mean absolute error (MAE) applied 

to Re=100 stream function data used test case. 

 

According to POD results, it is revealed that about 95% 

of the total energy content can be represented by using 

only the two most energetic POD modes (1 and 2) for the 

stream function formation. On the other hand, this value 

remains at about 90% for the x-direction velocity 

formation test cases. In either of the analysis cases, POD 

modes 1 and 2 retain most of the flow structures and their 

characteristics. Hence, estimation of the mode amplitudes 

constituting the major temporal behaviors of the flow is 

essential for further flow control purposes of such real-

time application systems. In Fig. 7, ANN estimations of 

the mode amplitudes for modes 1 and 2, their comparison 

with the original POD evaluated data, and corresponding 

deviations are shown by utilizing the designed network 

structure for the test case at Re=100. 

 

After ensuring the network structure, a heuristic approach 

is applied for ANN estimations of Re=500, Re=1000 and 

Re=5000 by selecting Re=10000 case as a baseline case. 

For the baseline case, 3000 time steps corresponding to 

the complete cycle of observations are used as the 

training data. The estimated results are compared with the 

original POD results at every 300 time steps for 10 

periods. At the end of this process, 10 new significant 

data are obtained to scale estimated results to designate 

their monotonically changing patterns. This scaling 

process does not change the magnitudes of the estimated 

mode amplitudes, but assign their behavioral trend with 

respect to the original POD results. 

The trained network structure with the mode amplitudes of 

the Re=10000 case is used for estimation of the mode 

amplitudes of the Reynolds numbers (Re) 500, 1000 and 

5000. During this process just the time-variant lid velocity 

data is fed externally as an input set to the modeled 

network structure. During the estimation process, each 

estimated data set is multiplied with the mean average 

velocity of the external time-variant lid velocity input set 

and divided to the mean average velocity of the baseline 

Re=10000 case. Figures 8, 9, and 10 provides a 

comparison of the original and estimated mode amplitudes 

including deviations for Re=500, 1000, and 5000 for both 

stream function and x-direction velocity formations. 

 

Among different error representation kinds, according to 

Emang et al. (2010), MAPE is a decisive error type in 

predictive analysis due to its understandable representation 

coming from the easy generic percentage term. Based on 

Lewis (1982), certain MAPE ranges representing various 

predictive model evaluations can be used to classify the 

quality of estimations. MAPE ranges and related accuracy 

settings defined by Lewis (1982) are given in Table 5. 

 

It can be observed from Figures 7, 8, 9, and 10, resulting 

ANN estimations for mode amplitudes of modes 1 show 

adequate coherency with minor errors. On the other hand, 

for modes 2, the estimated outputs predict the similar 

periodical behavior observed for the POD results well 

enough but with a slight error in magnitude range. 
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(a) (b) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 7. Comparison of original and estimated mode amplitudes for Re=100 test case, (a) and (b) for stream function, (e) and (f) 

for x-direction velocity data formation with their respective deviation plots (c,d,g and h). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 8. Comparison of original and estimated mode amplitudes for Re=500 test case, (a) and (b) for stream function, (e) and (f) 

for x-direction velocity data formation with their respective deviation plots (c,d,g and h). 
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Comparison of original and estimated mode amplitudes for Re=1000 test case, (a) and (b) for stream function, (e) and (f) 

for x-direction velocity data formation with their respective deviation plots (c,d,g and h). 
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(a) (b) 

  

(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 10. Comparison of original and estimated mode amplitudes for Re=5000 test case, (a) and (b) for stream function, (e) and 

(f) for x-direction velocity data formation with their respective deviation plots (c,d,g and h). 
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Tables 6, 7, 8, and 9 show R
2
, RMSE, MAE, and MAPE 

values calculated for Re=100, 500, 1000, and 5000. 

Paying attention to MAPE results, it is seen that the 

network estimations are at high accuracy for modes 1 of 

x-direction velocity formations in all cases. There are 

reasonable outputs observed for stream function 

formations of Re=500 and Re=1000 cases. Although for 

some cases the constructed network structure catches 

trends but cannot manipulate amplitudes of the 

periodicity well enough, among 10 of 16 different 

prediction studies, according to MAPE results, the 

network structure forecasted the data in high accuracy 

with MAPE values lower than 10%. 

 
Table 5. Typical MAPE values for prediction evaluation 

defined by Lewis (1982). 

MAPE (%) Forecasting Evaluation 

MAPE  10% High Accuracy 

10% MAPE  20% Good 

20% MAPE  50% Reasonable 

MAPE  50% Inaccurate 

CONCLUSION 
 

In this study, accurate enough CFD data is obtained for 

the unsteady solutions of two-dimensional (2D) driven 

cavity flows for Reynolds numbers (Re) 100, 500, 1000, 

5000 and 10000 using vorticity-stream function 

formulation with a grid size of 101x101. To obtain the 

unsteady behavior, velocity of the moving upper 

boundary (lid) is assigned to change within time in a 

sinusoidal oscillating manner. The computational data 

ensembles for the time-dependent 2D driven cavity 

flows at different lid velocities are obtained by using an 

in-house developed CFD code for a total of 10 periods, 

where each period contains 300 time steps. The 

computed stream function and x-direction velocity 

component values at each grid point of flow field are 

considered for further POD and ANN applications. 

 

POD technique is applied to the data ensembles in order 

to separate the spatial and temporal components of the 

flow by means of modes and mode amplitudes. The 

most energetic POD modes defining the vortical 

structures in the square flow field region of the 2D 

cavity reserve certain amount of the characteristics of 

the flow. 

 
Table 6. R2 values for modes 1 and 2 for both stream function (SF) and x-direction velocity data. 

Mode 

# 

Re=100 Re=500 Re=1000 Re=5000 

SF x-Velocity SF x-Velocity SF x-Velocity SF x-Velocity 

1 0.935 0.996 0.882 0.997 0.941 0.990 0.997 0.999 

2 0.819 0.987 0.811 0.893 0.922 0.863 0.858 0.989 

 

 
Table 7. RMSE values for modes 1 and 2 for both stream function (SF) and x-direction velocity data. 

Mode 

# 

Re=100 Re=500 Re=1000 Re=5000 

SF 

( 10
-12

) 

x-Velocity 

( 10
-7

) 

SF 

( 10
-11

) 

x-Velocity 

( 10
-9

) 

SF 

( 10
-11

) 

x-Velocity  

( 10
-9

) 

SF 

( 10
-11

) 

x-Velocity 

( 10
-9

) 

 1 2.3302 4.4054 1.3961 1.9274 3.1193 2.7388 2.0659 5.8309 

 2 1.9577 1.5626 0.6670 4.4029 0.6586 11.6960 4.6655 10.3940 

 

 
Table 8. MAE values for modes 1 and 2 for both stream function (SF) and x-direction velocity data. 

Mode 

# 

Re=100 Re=500 Re=1000 Re=5000 

SF 

( 10
-12

) 

x-Velocity 

( 10
-7

) 

SF 

( 10
-11

) 

x-Velocity 

( 10
-9

) 

SF 

( 10
-10

) 

x-Velocity 

( 10
-8

) 

SF 

( 10
-10

) 

x-Velocity 

( 10
-8

) 

1 9.4683 1.6460 5.8198 6.9131 1.1862 1.0226 0.7557 2.2303 

2 7.4382 0.6468 2.6056 17.8190 0.2601 5.0903 1.7663 3.9675 

 

 
Table 9. MAPE values and accuracy definitions for modes 1 and 2 for both stream function (SF) and x-direction velocity data.  

Mode # 
Re=100 Re=500 Re=1000 Re=5000 

SF x-Velocity SF x-Velocity SF x-Velocity SF x-Velocity 

1 
8.06 0.51 21.67 2.82 28.03 1.45 2.50 0.80 

High High Reasonable High Reasonable High High High 

2 
19.42 5.16 18.13 20.43 8.92 6.01 28.76 4.03 

Good High Good Reasonable High High Reasonable High 
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By considering a few amount of energetic POD modes 

and related mode amplitudes, it is possible to mimic the 

retained physical behaviors obtained by CFD analyses 

with an adequate level of approximation. According to 

POD results, it is seen that more than 99% of the total 

energy content (frequency of the flow structures in the 

flow field) of the flows can be represented by using only 

four POD modes for the stream function data formation 

cases. On the other hand, this value remains at a range 

of 90 – 95% for the x-direction velocity data formation 

cases. The energy content of the modes decreases from 

mode 1 to mode 4. For lower Reynolds numbers (Re), 

such as Re=100, mode amplitudes present a periodically 

moving trend; however, for higher Reynolds numbers 

(Re), such as Re=10000, a monotonically changing 

(increasing or decreasing) trend is observed. The 

resulting modes and mode amplitudes of all test cases 

represent vortex formation and their evolution in time.  

 

The spatio-temporal time-lagged Multi Layer Perceptron 

(MLP) network ANN structure with ARX extension is 

employed for prediction of the mode amplitudes for 

different lid velocities. The input set of the network 

consists of specific time-variant lid velocities that 

correspond to an investigated Reynolds number (Re) 

value and time delayed amount of POD mode amplitudes. 

The network structure uses training data of a baseline 

case for which the CFD simulations are performed, and 

estimates new mode amplitudes as outputs. With this 

ARX integrated ANN approach, a robust and real-time 

estimator of mode amplitudes which is necessary for 

observation of the effects flow structures and their 

characteristics in the flow field is evaluated effectively 

without requiring further CFD simulations. 
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