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Abstract:  Two-dimensional solidification problem of a finite cylinder, in which the liquid phase is initially at the 

fusion temperature, is solved by using a front fixing approach.  The external surfaces of the cylinder are subjected 

to a temporally or spatially varying temperature below freezing.  The method employed is based on one used for 

the solution of a solidification problem in Cartesian domain.  A coordinate transformation is applied in both radial 

and axial directions to obtain a square computational domain.  This transformation results in a computationally 

intensive grid generation for every time step of solution.  Finite difference form of the transformed energy 

equation is solved for the temperature distribution in the solid phase and the solid-liquid interface energy balance 

is integrated for the new position of the moving solidification front.  The effect of the aspect ratio and spatially 

varying boundary temperatures on solidification is studied. 
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SONLU BİR SİLİNDİRDEKİ DONMANIN İKİ BOYUTLU MODELLENMESİ  
 

Özet:  Silindirik geometride sıvı fazın ergime sıcaklığında bulunduğu donma problemi katı – sıvı sınırını 

sabitleme yöntemi kullanılarak çözülmüştür.  Dış yüzeyde ergime sıcaklığının altında olmak üzere zamana veya 

pozisyona göre değişken olan sıcaklık sınır koşulu tanımlanmıştır.  Daha önce kartezyen koordinat sisteminde 

kullanılmış olan koordinat dönüşümü tekniği radyal ve eksenel yönde uygulanarak çözüm bölgesi olarak sabit bir 

kare elde edilmiştir.   Bu dönüşüm yöntemi her çözüm adımı için yeniden çözüm ağı oluşturmayı gerektirmektedir.  

Koordinat dönüşümü ile elde edilen enerji denklemi sonlu farklar yöntemi ile katı fazdaki sıcaklık dağılımı ve katı 

– sıvı sınırının ilerlemesini belirlemek üzere çözülmüş ve yükseklik/yarıçap oranı ve dış yüzeydeki konuma göre 

değişen sınır koşullarının etkileri incelenmiştir.  

Anahtar Kelimeler: donma, faz değişimi, hareketli sınır problemi, koordinat dönüşümü, sınır sabitleme 

 

 

LIST OF SYMBOLS  

Ar Aspect ratio RA  

A Cylinder height [m] 

C Specific heat [J/kg K] 

J Jacobian  

k Thermal conductivity [W/m K] 

L Latent heat of fusion [J/kg] 

n Normal direction 

n Unit normal vector 

R Cylinder radius [m] 

r Dimensionless radial coordinate 

St Stefan number, LTTC reff )(St **    

T Dimensionless temperature 

t Time [s] 

V Interface velocity [m/s] 

z Dimensionless axial coordinate 

 

Subscript 

f Fusion 

n  Differentiation with respect to the 

                       outward normal direction 

nor Normal direction 

n-r Component of normal in r direction 

n-z Component of normal in z direction 

r Differentiation with respect to r direction 

ref Reference  

sur Surface 

z Differentiation with respect to z direction 

 Differentiation with respect to direction 

 Differentiation with respect to direction

 

Superscript 

* Dimensional quantity 

 

Greek letters 

 Thermal diffusivity 

 Interface position 

 Dimensionless transformed coordinate 

 Density 

 Dimensionless transformed time 

 Dimensionless transformed coordinate 
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INTRODUCTION 

 

Solidification problems are a subclass in a larger class of 

moving boundary problems.  Due to the presence of a 

moving boundary there are inherent mathematical 

difficulties in the solution of these problems.  To 

overcome these difficulties immobilization techniques 

have been employed to fix the moving boundary via a 

coordinate transformation.  The drawback of this 

approach is that the energy equation is rendered complex, 

introducing additional terms due to the coordinate 

transformation.  The cases, when a transformation in 

more than one of the coordinates is needed are 

particularly problematic. 
 

A number of researchers have studied the phase change 

problem in the cylindrical geometry.  The problems, where 

the original medium is at the fusion temperature, are 

single-phase problems, since only the temperature 

distribution in the newly formed phase is to be solved.  

When the original medium is at a different temperature 

than solidification, the solution involves the computation of 

temperatures in both phases, hence a two-phase problem.  

Duda et al., 1975; solved a two-dimensional ( zr   plane) 

two-phase problem of a finite cylinder with convective 

boundary condition, in which the penetration of the 

interface in the axial direction is used for immobilization.  

Perturbation method was applied by Huang and Shih, 

1975; for inward and outward solidification of saturated 

liquid in spherical and cylindrical containers.  The solution 

for the inward solidification in cylindrical geometry was 

for a cylinder with infinite length, resulting in a one-

dimensional formulation of the problem.  The original 

phase was at the fusion temperature; hence the method was 

applied to single phase problems.  Saitoh, 1976; reported 

experiments for the solidification of water in various 

geometries, including cylindrical containers.  The 

solidification process resulted in a one-dimensional motion 

of the interface, in the radial direction.  A temporal 

variation of boundary temperature was applied, including 

linearly decreasing and sinusoidally varying boundary 

temperatures.  Coordinate transformation method generally 

used in one-dimensional problems was extended by Saitoh, 

1978; to the multi-dimensional problem by using an 

independent variable, which takes constant values at the 

physical boundaries and the freezing front.  In this method, 

both the phase and fixed boundaries could be selected 

arbitrarily and the functions defining the boundaries were 

used for the definitions of the transformed independent 

variables.  Calculations were performed for single-phase 

freezing problems with constant physical properties in 

regular squares, triangles and ellipses.  In this study, 

problems with variable and constant surface temperature 

were analyzed.  Voller and Cross, 1981 solved the one-

dimensional, radial solidification of an infinitely long 

cylinder, where the liquid is initially at the melting 

temperature, and reported the total solidification time.  The 

enthalpy method in conjunction with a finite difference 

formulation was used and the results were compared to an 

existing approximate analytical solution. 
 

The inward one-dimensional, radial solidification in a 

liquid cylinder initially at the fusion temperature was given 

by Hill and Dewynne, 1986.  In this problem a front fixing 

method was applied, where the radial position of the 

boundary was fixed through a logarithmic transformation 

and an analytic series solution was introduced for the 

transformed energy equation. The complete solidification 

time was approximated using the first three terms of the 

series, where the boundary conditions are of the constant 

temperature and convection type.  Saitou and Hirata, 1993; 

considered the effect of buoyancy in the freezing of a finite 

cylinder.  The problem involved the solution of the 

conduction on the solid side and the buoyancy induced 

convection on the liquid side.  Kharche and Howarth, 2000; 

solved the single-phase solidification of a finite cylinder, 

where the solidification occurs along the radial and axial 

directions, subjected to a spatial variation of boundary 

temperatures.  A perturbation solution was obtained for large 

Stefan numbers.  The temperature profiles and interface 

locations were reported in the form of infinite series. 
 

Dursunkaya and Odabaşı, 2003; used a coordinate 

transformation technique to immobilize the moving 

interface in the two-dimensional solidification of an infinite 

square prism.  In this case the phase change interface was 

assumed to have a complex shape and a coordinate 

transformation was applied where both of the original x 

and y coordinates are transformed. This was applied in 

conjunction with a boundary-fitted mesh, with constant arc 

length along a constant coordinate line.  The predictions 

were compared to experimental results having constant and 

temporally varying boundary temperatures, and new results 

for spatially varying boundary temperatures were 

presented. 
 

Phase change materials (PCM) encapsulated in containers 

are used as thermal storage systems which take the 

advantage of latent heat removal capacity. Bilir and İlken, 

2005; studied total solidification time for the inward 

solidification for cylindrical and spherical containers. The 

phase change in radial direction was modeled by enthalpy 

method, where a convection boundary condition was 

defined for the external boundary. A parametric study 

was conducted and total solidification time was correlated 

to Stefan and Biot numbers and the difference between 

the melting and ambient temperatures. 
 

Rattanadecho and Wongwises, 2008; applied a front 

fixing method on a structured grid in a rectangular cavity 

to study freezing of a porous material, where constant 

boundary condition was defined for a small portion of the 

upper side of the domain and the rest of the boundaries 

were assumed to be insulated. The transformed form of 

the energy equation in both solid and liquid regions were 

solved by finite difference method for the interface 

position as a function of time and compared to 

experimental results. 
 

A phase change material along horizontal tube, which 

was used a cooling medium, was analyzed by Kamal et 

al., 2014; using solid-liquid interface boundary fixing 

method. Landau transformation was used to fix the 
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boundary and the energy equation in the zr   plane was 

solved by finite volume method. The analysis was 

validated by the experimental results for the, interface 

velocity. To optimize the thermal storage system, multiple 

tubes with different diameters served as heat sink array 

were placed inside a phase change material contained in a 

cylinder.  Melting of the PCM around the heat sinks was 

modeled by enthalpy method using commercial code 

FLUENT. The temperature distribution and phase change 

interface motion were obtained and the effect of the 

number and diameter of the heat sink combinations was 

analyzed for total melt time by Huawei et al., 2014.  
 

Bourdillon et al., 2014; implemented the enthalpy 

method on the Open FOAM code to analyze two-

dimensional freezing of water in rectangular and 

cylindrical cavities with constant temperature boundary 

condition.  Energy and momentum equations in both 

solid and liquid regions were solved and mushy zone was 

also considered to include the complete physical 

phenomena. 
 

Huang and Wu, 2014; applied the lattice Boltzmann 

method to model two dimensional melting in a cylinder 

with constant temperature boundary condition.  Immersed 

boundary method was adapted to the model to capture the 

velocity and temperature at the solid-liquid interface. The 

model was validated by analytical and numerical solution 

of solidification in a semi-infinite domain and a 

rectangular cavity. The temperature and velocity 

distributions were solved for the cylindrical geometry, 

where the solid phase position was defined as either fixed 

or free, where the latter case reduced the melting time. 
 

Phase change of semi-transparent material was analyzed 

by Piotr and Piotr, 2012; by a front tracking algorithm.  

The production of glass, oxide crystals or ceramics, 

melting of ice due to sunlight were some examples of 

phase change for such materials, where in modeling this 

phenomena the effect of radiation was included.  Fluid 

flow and energy equations were solved in a fixed grid 

using finite volume method, which was applied for the 

solidification of a semitransparent material in an 

axisymmetric rectangular and cylindrical cavity and the 

results for the interface movements were obtained.  
 

In the present study the two-dimensional solidification in the 

zr   plane of a finite cylinder is solved.  A front-fixing 

approach similar to Dursunkaya and Odabaşı, 2003; was 

used, where a coordinate transformation involving both the 

radial and axial directions was applied.  Computations were 

performed for only half of the physical domain due to 

symmetry, but in this domain the boundary assumed a 

circular shape, i.e. it was a double-valued function of one of 

the coordinates, which required the application of the above 

mentioned front fixing scheme.  Finite difference forms of 

the governing equations were solved in the solid phase only, 

since the liquid phase was at the fusion temperature 

throughout the computation.  Therefore, the present study 

concentrates on a single-phase, two-dimensional 

solidification problem.  Due to the changing shape of the 

solidified region, a new solution grid was generated by 

solving a new set of nonlinear algebraic equations iteratively 

at every time step.   
 

PROBLEM FORMULATION 
 

The problem studied is the two-dimensional freezing of 

an initially liquid cylinder of height A  and radius R .  

Liquid phase is initially at the fusion temperature, and is 

assumed to be at that temperature throughout 

solidification, so the temperature distribution only in the 

solid phase is unknown.  This system is exposed to the 

surface temperature 
*

surT , which is, in general, temporally 

and spatially changing, and is below the fusion 

temperature.  The physical properties are assumed to be 

constant.  Energy equation for the solid phase can be 

written as, 
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Equations (1) and (2) are nondimensionalized using the 

following definitions, 
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For problems with a constant surface temperature, the 

reference temperature 
*

refT  is equal to the surface 

temperature 
*

surT ; for variable surface temperature 

boundary conditions, it is a suitably defined reference 

temperature.   The dimensionless energy equation 

becomes, 
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subject to the initial and boundary conditions, 
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Figure 1 shows the original and transformed 

computational domains.  This transformation is 
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accomplished as follows:  The curved interface is 

transformed to the straight line 1   and the external 

boundary i.e., the top, the sides, and the bottom surfaces 

are transformed to the straight line 0  .  The upper 

above the interfaceand lower below the interface 

side of the center line become the last two boundaries, 

where the former is transformed to the straight line, 

0  and the latter becomes 1 .  The interior points 

are obtained by solving a system of nonlinear equations, 

which is formed by equating the physical distance 

between two successive grid points along constant   and 

  lines.   

 
Figure 1.  The physical domain, transformed computational 

domain with boundary conditions 

 

In order to transform the physical domain into the 

computational domain, new independent variables   ,  in 

space and   in time replace the original set of zr  ,  and t , 

as, 
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With this definition, the final form of the transformed 

dimensionless energy equation is obtained as, 
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where, J  is the Jacobian given by, 
 

 zrzrJ  .                                                          (8) 

 

Initial and boundary conditions in transformed variables 

become, 
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Since the temperature in the liquid is constant, the 

energy balance at the interface can be obtained by 

equating the amount of heat released due to 

solidification to the heat conducted to the solid at the 

interface as,  
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This equation can be nondimensionalized using the 

following definitions,  
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and takes the dimensionless form, 
 

Stnnor TV  .                                                               (12) 

 

Using the definition of the surface normal vector, 

TT n , the components of the normal velocity in 

r  and z  directions can be written as follows. 
 

Strrn TV  ,           Stzzn TV                                  (13) 

 

SOLUTION METHODOLOGY 

 

The original physical, and the transformed computational 

domains, and the corresponding coordinates are given in 

Figure 1.  A general transformation of the form 
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is used for the mapping.  The coordinate transformation and 

grid generation are obtained simultaneously.  The external 

boundaries are divided into equal arc length segments, and 

equations are written for the locations of the interior points 

by enforcing equal arc length grid spacing, in the physical 

domain along constant  and   lines.  This results in a set of 

nonlinear equations for the interior points where the 

temperatures are to be calculated.  This set is solved using an 

iterative, multi-dimensional Newton-Raphson scheme.  The 

details of the grid generation to facilitate equal arc length are 

given in Dursunkaya and Odabaşı, 2003. 

 

Once the grid is generated, the finite difference form of the 

energy equation is solved for the temperatures, the 

derivatives of which are used in the computation of radial 

and axial components of the interface velocity using 

Equation (13).  A numerical integration of Equation (13) in 

time gives the new position of the phase change interface. 
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RESULTS 

 

The results in the cylindrical geometry were validated 

using experimental data available in the literature.  

These cases involved a temporal variation of boundary 

temperatures.  The method was then applied to 

problems where the boundary temperatures have a 

spatial variation.   

 

Saitoh, 1976; carried out experiments for the freezing of 

water in various geometries.  For the cylindrical 

solidification problem a cylinder with an aspect ratio of 

5 was used.  The temperature on the external surface of 

the cylinder was altered temporally and temperature 

measurements were taken at various radial locations, 

along the lateral mid-plane of the cylinder.  The results 

were similar to a one-dimensional solidification in an 

infinitely long cylinder, since no coolant was applied to 

the top and bottom surfaces of the cylinder.  Although, 

the exact nature of the boundary condition at the top and 

bottom of the cylinder was unclear, it was reasonable to 

assume insulated conditions to prevail at the top and 

bottom, which render this solidification problem one-

dimensional, changes occurring only in the radial 

direction.  To validate the present method, a temporally 

changing boundary temperature, identical to the 

experiments, was specified on all surfaces and the 

interface motion on the lateral mid-plane of the cylinder 

was compared to the findings of Saitoh, 1976.  Since the 

aspect ratio is large ( 5Ar ), it can be argued that the 

motion of the phase change interface along the lateral 

mid-plane assumes that of an infinitely long cylinder.  

This assumption was later justified by observing the 

shape of the interface contours.  To enable a 

comparison, the graphical results given in Saitoh, 1976; 

were digitized and plotted.  The physical properties for 

ice were as follows: ,/secm102358.1 26  

,sec107904.8/ 42 R  kJ/kg 4.333L   and 

CkJ/kg 93.1 oC  .  It should be noted that the 

simulations showed the results to be sensitive to thermal 

properties, the differences existing in literature for the 

values of these lead to deviation from the experimental 

results.  Figure 2 shows the experimental results by Saitoh, 

1976; and the results of the current study.  In this set, the 

boundary temperature of the cylinder is reduced linearly in 

time.  The three curves represent three different cooling 

rates as given in the legend.  In all three cases there is a 

good match between the experimental results and the 

predictions of the current study.  

 

The current study was also validated using the case of a 

sinusoidal variation of the boundary temperature in time.  

Figure 3 shows the predictions of the current study and 

experimental results of Saitoh, 1976.  In the original study 

by Saitoh, 1976; time was nondimensionalized using the 

frequency of the sinusoidal variation of the boundary 

temperature.  For this case, the same 

nondimensionalization was used in the present study in 

order to enable a comparison; in addition a reference 

temperature C10* o

refT   was used in the computations of 

Stefan numbers and dimensionless temperatures. The three 

different set of data points depict the results of three 

experiments given in Saitoh, 1976.  It can be seen that 

there is a good match between the predictions of the 

current study and the experimental results.   
 

 
Figure 2. Radial movement of solidification front in a 

cylinder subject to a linearly varying boundary temperature in 

time 

 

 
 

Figure 3.  Radial movement of solidification front in a cylinder, 

subject to a sinusoidal variation of the boundary temperature. 

 

The computational mesh consisted of 17 base mesh points 

in the  direction with 2 mesh subdivisions near the 

interface resulting in 19 mesh points, and 85 mesh points in 

the  direction, giving a mesh with 8519  nodal points.  

Since the coordinates of the mesh points on the boundaries 

including the points on the moving interface are calculated 

using equidistant node intervals, at every time step only the 

locations of the interior points should be recalculated 

(Dursunkaya and Odabaşı, 2003).  The determination of 

the r and z coordinates of all interior nodal points requires 

the solution of a set of simultaneous nonlinear equations, 

iteratively, at every time step.   

 

Figure 4 shows the motion of the phase change interface 

for the sinusoidally varying boundary temperature.  The 

plot is given for half the domain, since the problem in this 
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case is symmetric with respect to the lateral plane passing 

through the geometric center.  An examination of this 

figure reveals that after about 150 minutes, the angle 

between the phase change interface lines and the cylinder 

axis deviate from perpendicular.  This is due to the number 

of mesh points used in the  direction, which in this case is 

85.  The effect of mesh size was studied extensively, and it 

was observed that this behavior starts earlier for coarser 

mesh.  It was also observed that for cases, when the shape 

of the solidification front resembles a circle, a course mesh 

gives satisfactory results, which occurs when the aspect 

ratio is close to unity.  For larger or smaller aspect ratios, or 

in case of an asymmetric spatial boundary temperature 

variation, the moving interface assumes a complex 

shape, necessitating the utilization of a finer mesh. 

 
Figure 4.  Transient interface motion for the sinusoidal 

boundary condition 

 

New results will be presented for three different aspect 

ratios, 3 and 1  ,5.0Ar .  Figure 5 shows the transient 

interface locations for an aspect ratio of 0.5.  In this 

problem all the boundaries of the cylinder are suddenly 

exposed to a temperature less than melting and the Stefan 

number is 0.01, corresponding to approximately 2
o
C 

temperature difference for ice.  In this case the original 

mesh is 7123 with 2 mesh subdivisions near the moving 

interface, resulting in a 7125 grid system.  The results 

show that solidification time   for this problem is 4.2 , 

approximately.  By this time, the phase change interface 

has moved to approximately 45% of the distance in the 

axial direction both from the top and the bottom and 38% 

of the distance radially.  This is expected, since more heat 

transfer occurs through the top and bottom surfaces in this 

geometry, resulting in a faster advance in the axial 

direction.  An examination of the shape of the phase 

change interface reveals that, to resolve the sharp turn in 

the vicinity of 62.0r  a finer mesh in the  direction is 

needed.  A parametric study of the mesh size revealed that, 

with a courser mesh, the interface shape assumes a 

discontinuous slope in earlier dimensionless times. 
 

 
Figure 5.  Transient interface motion for the case

01.0St  ,5.0 Ar  with constant boundary temperatures 

 

The results for an aspect ratio 1Ar with a constant 

temperature boundary condition are given in Figure 6.  The 

solution was obtained using a 6721  base mesh with 4 

mesh subdivision at the interface, resulting in a 6725

mesh.  The figure shows that time for full solidification is 

about 5.9 compared to 4.2  for the case when 

aspect ratio was 0.5.  The interface motion for the same 

aspect ratio but for a linearly varying boundary temperature 

along the axial direction is given in Figure 7.  In this case 

the bottom of the cylinder is kept at zero dimensionless 

temperature ( 0T ), the top at 0.75 ( 75.0T ), and the 

external surface temperature varies linearly from the 

temperature at the bottom to the top.  In casting, void and 

crack formation due to solidification is of interest, and such 

formations can be avoided by controlling the solidification 

process. Figure 7 shows that, using the linearly varying 

boundary temperature, the liquid core remains at the top of 

the cylinder.  Full solidification time, however, is increased 

to 17  almost double the constant temperature case. 
 

 
Figure 6.  Transient interface motion for the case 

01.0St  ,1 Ar with constant boundary temperatures 
 

To assess the effect of the aspect ratio on solidification, 

the study was repeated for an aspect ratio of 3.  Figures 8 

and 9 show the interface motion for the case of constant 

boundary temperature and a spatially linearly varying 

boundary temperature, respectively.  In the first case total 

solidification occurs at 23 , whereas this increases to 

42  for the spatially linearly changing boundary 

temperature.  It can also be observed that the unsolidified 

region moves towards the top of the cylinder for the 

variable temperature boundary condition. 
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Figure 7. Transient interface motion for the case 

01.0St  ,1 Ar with linearly varying boundary temperature 

in the axial direction 

 
Figure 8. Transient interface motion for the case

01.0St  ,3 Ar with constant boundary temperatures 

 

 
Figure 9. Transient interface motion for the case

01.0St  ,3 Ar with linearly varying boundary temperature 

in the axial direction 

 

CONCLUSION 

 

The problem of the inward solidification in a finite 

cylinder, subjected to temporally and spatially varying 

boundary temperatures was analyzed.  A boundary 

fitted, equal arc length mesh was utilized in the solution.  

The interface position variation of the present study is 

compared to the experimental results of Saitoh, 1976 for 

the case, where the external boundary temperature 

varies linearly and sinusoidally with time and the match 

was found to be acceptable.  The method is used to 

calculate the variation of the interface position in time 

for different aspect ratios.  It is found that relatively 

course mesh can be utilized where interface position 

assumes a circular shape until total solidification is 

obtained.  Total solidification time is compared for 

different boundary conditions and aspect ratios.  It is 

shown that total solidification time increases with the 

aspect ratio when the external boundary set to a constant 

temperature, where the nondimensional solidification 

time is 2.4 for aspect ratio 0.5, 9.5 for aspect ratio 1.0 

and 23 for aspect ratio 3.0.  The effect of linearly 

varying external boundary temperature on total 

solidification time was found, when the nondimensional 

time increased from 9.5 to 17 for aspect ratio 1.0 and 23 

to 42 for aspect ratio 3 with respect to constant 

temperature condition.  Linearly varying boundary 

temperature causes unsolidified liquid region to move to 

the upper side of the cylinder.  The results of the present 

study can be employed to determine total solidification 

time and possible void or crack position.  By positioning 

the location of final solidifying region close to a 

boundary open to the atmosphere, through using 

different boundary temperature profiles, the formation 

of interior voids or cracks can be avoided.  
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