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ABSTRACT:  

Gastrointestinal (GI) diseases are a major issue in the human digestive system. 

Therefore, many studies have explored the automatic classification of GI 

diseases to reduce the burden on clinicians and improve patient outcomes for 

both diagnosis and treatment purposes. Convolutional neural networks (CNNs) 

and Vision Transformers (ViTs) in deep learning approaches have become a 

popular research area for the automatic detection of diseases from medical 

images. This study evaluated the classification performance of thirteen different 

CNN models and two different ViT architectures on endoscopic images. The 

impact of transfer learning parameters on classification performance was also 

observed. The tests revealed that the classification accuracies of the ViT models 

were 91.25% and 90.50%, respectively. In contrast, the DenseNet201 

architecture, with optimized transfer learning parameters, achieved an accuracy 

of 93.13%, recall of 93.17%, precision of 93.13%, and an F1 score of 93.11%, 

making it the most successful model among all the others. Considering the 

results, it is evident that a well-optimized CNN model achieved better 

classification performance than the ViT models 
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INTRODUCTION 

The gastrointestinal (GI) system is a tubular system that performs a range of digestive functions, 

including chewing, swallowing, digestion, absorption, and excretion. The GI system includes several 

organs, starting from the mouth and extending to the anus. The sequence of organs in the GI system 

comprises the mouth, pharynx, esophagus, stomach, small intestines, large intestines, rectum, and anal 

canal (Sivari et al., 2023). The human GI system may be affected by a number of diseases, the most 

prevalent of which are esophageal, stomach and colorectal cancer. For example, stomach cancer is one 

of the GI disorders and is the fourth most common type of cancer in women and the seventh most 

common in men (Siddiqui et al., 2024). According to research, the success rate of treating cancer 

diagnosed at the second stage is 91.5%, whereas at the fourth stage, this rate drops to 16.4% (Katai et 

al., 2018). Therefore, early diagnosis of stomach cancer is of great importance for the success of the 

treatment process. Endoscopy is a commonly employed imaging method in the diagnosis of GI cancer 

types in GI system. It is a diagnostic procedure that employs the use of a lighted camera at the tip of a 

flexible tube to image the internal organs of the digestive system. This allows for the detection of 

potential issues. There are different types of endoscopies, including gastroscopy, colonoscopy, 

magnifying endoscopy, and capsule endoscopy (Sivari et al., 2023). The manual evaluation of 

endoscopic images is a time-consuming and labor-intensive process. Additionally, subjective 

evaluations can result in a high rate of misdiagnoses, leading to delays in the application of effective 

treatment. Statistics reveal that about 22% to 28% of polyps and 20% to 24% of adenomas are either 

missed or misdiagnosed (Leufkens et al., 2012). It is probable that missed polyps will develop into 

cancer. Therefore, there is a pressing need for the development of reliable computer-aided diagnostic 

systems that are capable of automatically analyzing endoscopic images and providing a secondary 

opinion to experts. In recent years, deep learning methods have been employed to address a variety of 

computer vision problems, including image classification, segmentation, and object detection (Chai et 

al., 2021; Pacal, 2024; Sermet and Pacal, 2024), have also been preferred by researchers for the analysis 

of endoscopic images. A summary of the studies in the literature is as follows: 

Agrawal et al. employed transfer learning along with Convolutional Neural Networks (CNNs) for 

classification of endoscopic images (Agrawal et al., 2019). They developed a metric to determine the 

model to be used for transfer learning. The proposed method achieved a classification accuracy of 83.8%, 

as reported in the study. Zhang et al. improved the architecture of the single-shot multi-box detector in 

the detection of polyps (Zhang et al., 2019). The method proposed in the study was successful in 

detecting polyps with a mean average precision (mAP) rate of 90.4%. Gjestang et al. proposed a semi-

supervised teacher-student learning method aimed at enhancing the classification performance of 

endoscopic images, achieving an accuracy of 89.3% (Gjestang et al., 2021). Meanwhile, Losenko et al. 

introduced a deep convolutional neural network (CNN)-based spatial attention mechanism for the 

classification of gastrointestinal (GI) diseases, utilizing encoder-decoder layers in their implementation 

(Lonseko et al., 2021).With their proposed method, 93.19% classification success was achieved in 

classifying endoscopic images. Yogapriya et al. trained VGG-16, ResNet-18 and GoogLeNet 

architectures for the classification of endoscopic images using the transfer learning method (Yogapriya 

et al., 2021). In the study, it was reported that the VGG-16 model achieved 96.33% accuracy, which was 

more successful than other models. Karaman et al. utilized the artificial bee colony algorithm to 

determine the training hyperparameters of various You Only Look Once (YOLO) models (Karaman et 

al., 2023). Optimized YOLO models were used for the detection of polyps from endoscopic images in 

the study. It was reported that the YOLOv4 model outperformed other models with a 78% mean average 
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precision (mAP) value in the study. Mukhtorov et al. suggested an interpretable deep learning method 

based on Grad-CAM combined with ResNet152 for the classification of endoscopy images (Mukhtorov 

et al., 2023). In the study, the proposed method achieved a classification accuracy of 93.46%. Demirbaş 

et al. developed an architecture called Spatial Attention ConvMixer for classifying endoscopic images 

(Demirbaş et al., 2024). They compared the classification performance of their developed model with 

models such as Vanilla Vision Transformer (ViT), Swin Transformer, ConvMixer, MLPMixer, 

ResNet50 and SqueezeNet. The study reported that the developed model achieved a classification 

accuracy of 93.37%. Huo et al. introduced Self-Peripheral-Attention (SPA), an novel methodology that 

incorporates peripheral vision modeling into the attention mechanism (Huo et al., 2024). This approach 

aims to enhance the accuracy and efficiency of classification and segmentation tasks in endoscopic 

imaging, achieving a classification accuracy of 92.7%. 

The literature shows that there has been research into the segmentation, detection and classification 

of polyps from endoscopic images. In these studies, CNN-based models are mostly preferred. The results 

show the clear success of CNNs and learning in classifying endoscopic images. However, improving the 

classification performance of endoscopic images remains an open area of research. Our contributions to 

improving the classification performance of endoscopic images in this study are as follows. A wide 

range of pre-trained CNN models (thirteen) have been evaluated for the classification performance of 

endoscopic images using transfer learning strategy. The impact of transfer learning parameters on the 

classification performance of the CNN model has been observed. A comparison was made between the 

performance of CNN models and ViTs in the classification of endoscopic images.  

MATERIALS AND METHODS  

In this study, the classification performance of thirteen different pre-trained CNN models and two 

different ViT models on endoscopic images was compared. The effect of changing the tra1nsfer learning 

hyperparameters of the most successful CNN model on classifying performance was observed. Figure 1 

provides a summary of the study. 

 
Figure 1. A visual representation of the study 

Dataset 

The dataset used in the study consists of endoscopic images in the field of gastroenterology, 

created to support research in medical image analysis. This dataset was collected by the health 

organization in Norway and is called Kvasir-V2 (Pogorelov et al., 2017). The Kvasir-V2 dataset was 
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shared as open source in 2017 as part of the Mediaeval Medical Multimedia Challenge. There are eight 

classes in total in the dataset and each class contains 1000 images. Images are in 1920x1072 resolution 

from 720x576. The dataset was organized based on three key anatomical landmarks and three clinically 

significant findings. It also features two categories of images related to endoscopic polyp removal. The 

anatomical landmarks include the z-line, pylorus, and cecum, while the pathological findings encompass 

esophagitis, polyps, and ulcerative colitis. Additionally, various images related to lesion removal are 

provided in the dataset; for example, dyed and lifted polyps, and dyed resection margins. Figure 2 shows 

some example images from the dataset. In the study, the dataset was randomly divided into training, 

validation, and test sets with a ratio of 80:10:10. Detailed information on the class distribution is given 

in Table 1. Also, to prevent the models from overfitting, various data augmentation techniques were 

applied to the training dataset during training. These techniques include width shift range and height 

shift range with a 0.2 ratio, shear range with a 0.2 ratio, zoom range with a 0.2 ratio, and vertical and 

horizontal flips. 

 
Figure 2. Image samples and their id values from Kvasir-V2 dataset 

Table 1. The class names and dataset distribution in train, validation and test groups 

Class Name-(Id) Train Validation Test 

Dyed-lifted-polyps (0) 800 100 100 

Dyed-resection-margins (1) 800 100 100 

Esophagitis (2) 800 100 100 

Normal cecum (3) 800 100 100 

Normal pylorus (4) 800 100 100 

Normal-z-line (5) 800 100 100 

Polyps (6) 800 100 100 

Ulcerative colitis (7) 800 100 100 

Total 6400 800 800 

Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are deep learning algorithms widely used in image 

processing and computer vision. CNNs automatically learn problem-related features from raw images 

and exhibit high performance in tasks such as classification, object detection, segmentation and 

recognition (Li et al., 2022). A traditional basic CNN architecture consists of convolutional layers, 

pooling layers and fully connected layers. Sequential convolutional and pooling layers are used to 

automatically extract features. The extracted features are used in fully connected layers to perform 

classification or regression, depending on the type of problem to be solved (Li et al., 2022). Various 

CNN architectures have been developed in the literature. In this study, thirteen pre-trained CNN 

architectures are used to classify endoscopic images in eight class.  
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DenseNet 

DenseNet (Dense Convolutional Network) is proposed by (Huang et al., 2018).  This architecture 

features a unique connectivity pattern where each layer receives feature maps from all preceding layers 

and passes its output to all subsequent layers. This connectivity helps DenseNet mitigate the vanishing 

gradient problem commonly seen in deep networks and enables more efficient parameter usage. The 

fundamental building blocks of DenseNet are called "dense blocks." Within each dense block, every 

layer takes the output of all previous layers as its input and includes its own output as part of this set. 

This enhances the flow of information and the propagation of gradients, allowing the network to continue 

learning effectively even as it becomes deeper. Moreover, this architecture increases parameter 

efficiency, achieving better performance with fewer parameters. These characteristics of DenseNet make 

it particularly effective when working with limited datasets or performing complex tasks that require 

deeper networks. Models with different depths, such as DenseNet-121, DenseNet-169, and DenseNet-

201, have been evaluated within this study. 

VGG 

VGG (Visual Geometry Group) is a deep learning architecture developed by (Simonyan & 

Zisserman, 2015). The key novelty of VGG is the use of small 3x3 convolution filters applied 

sequentially instead of large kernel filters. This approach allows for the creation of deeper and wider 

networks, resulting in better generalization and higher accuracy rates. Due to its simple and clear design, 

VGG is widely used in deep learning research and applications. There are different versions of VGG, 

such as VGG16 and VGG19, depending on the number of layers. In this study VGG16 architecture was 

used.  

ResNetV2 

ResNet architecture, first introduced by (He et al., 2015) and ResNetV2 is an improved version of 

ResNet architecture (He et al., 2016). The ResNet architecture uses residual connections to address the 

vanishing gradient problem encountered in training deep neural networks. These connections enable the 

network to reach deeper layers and perform better. ResNetV2 introduces improvements to this structure. 

One significant novelty is the application of batch normalization and activation functions (ReLU) before 

and after each residual block. Additionally, ResNetV2 employs a full pre-activation approach, allowing 

better gradient propagation and easier network training. These enhancements support the development 

of deeper and more effective neural networks, achieving superior performance in image recognition and 

other deep learning tasks. There are different versions of ResNet architecture. In this study ResNet50V2, 

ResNet101V2 and ResNet152V2 were evaluated.  

MobileNetV2 

MobileNetV2, developed by Google (Sandler et al., 2019). It is a deep learning architecture 

optimized for use on mobile and embedded devices that aims to deliver high performance with low 

latency and light computational requirements. It builds on MobileNetV1 and includes key enhancements 

such as inverted residual and linear bottleneck layers. These layers enhance network efficiency by 

minimizing information loss, with inverted residual structures expanding and then compressing feature 

maps to reduce computational costs, and linear bottleneck layers preserving the non-linear properties of 

activation functions. In addition, deep separable convolutions reduce the number of parameters and 

computational load, enabling efficient and accurate image classification, object detection and 

segmentation on mobile devices and embedded systems. 
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MobileNetV3 

MobileNetV3, introduced by Google in 2019 (Howard et al., 2019), is a deep learning architecture 

optimized for mobile and embedded devices. The architecture is built on MobileNetV1 and 

MobileNetV2 to further enhance performance. Key innovations include the integration of SE (Squeeze-

and-Excitation) blocks, the "hard-swish" activation function, and more efficient depth wise separable 

convolutions. MobileNetV3 has two main versions, MobileNetV3-Large and MobileNetV3-Small and 

both models were used in the study.  

NasNet 

NasNet (Neural Architecture Search Network) is an architecture developed by Google Brain (Zoph 

et al., 2018), designed to automate the creation of deep learning models.  NasNet utilizes the NAS 

(Neural Architecture Search) algorithm to minimize human intervention in configuring deep neural 

networks. This algorithm explores and optimizes numerous potential network configurations to discover 

the best-performing architecture. The modular design of NasNet enhances computational efficiency and 

optimizes the number of parameters, making it both high-performing and flexible. NasNetMobile 

version was used in this study.  

Xception 

Xception (Extreme Inception) is a deep learning model developed by (Chollet, 2017), inspired by 

the Inception architecture. Xception primarily uses depth-separable convolutional layers to improve 

computational efficiency and model performance. Each convolution layer is divided into two steps: 

depth-wise convolution, which filters each input channel independently, followed by pointwise 

convolution, which combines all channels linearly. This approach significantly reduces the number of 

parameters and computational cost, while maintaining flexibility and learning capacity. 

InceptionResNetV2 

InceptionResNetV2 is a hybrid deep learning model that combines the Inception architecture with 

residual connections, introduced by (Szegedy et al., 2016). This architecture integrates the strengths of 

both Inception modules, which efficiently handle multi-scale features, and ResNet's residual 

connections, which mitigate the vanishing gradient problem in deep networks. 

Vision Transformers 

Transformers models are particularly known for their successes in natural language processing 

(NLP). However, in recent years, researchers have developed vision transformers (ViTs) to extend this 

success to the field of computer vision (Dosovitskiy et al., 2021). ViTs have managed to become an 

alternative to traditional CNN architectures with their success in computer vision problems. ViTs use 

Transformer architecture for image classification and other vision tasks. They divide images into small 

patches and process these patches as sequences to learn the necessary features for classification. ViTs 

consist of four main components: Patch Embedding, Positional Encoding, Transformer Blocks, and 

Classification Head. Image Patching (Patch Embedding): The input image is divided into fixed-sized 

patches. For example, a 224x224 image can be divided into 16x16 patches, resulting in 14x14 = 196 

patches. Each patch is then flattened and transformed into a vector of a certain dimension using a linear 

layer. Positional Encoding: Positional information of the elements in the sequence is required. Therefore, 

positional encoding is added to each patch vector. Transformer Blocks: ViTs utilize classic Transformer 

blocks. Each block comprises multi-head self-attention mechanisms and feed-forward neural networks. 

These blocks learn relationships between image patches and extract important features. Multi-layer 

attention mechanisms effectively capture both global and local features of the image. Classification 
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Head: The output of the Transformer blocks is passed through a classification layer (usually an MLP - 

Multi-Layer Perceptron) for final classification. Two ViT models (ViT-16, ViT-32) pre-trained on the 

ImageNet dataset were used in the study. The classifier layers of the models were removed, and an eight-

dimensional output layer with softmax activation function was used. Input images with a resolution of 

224 x 224 x 3 were utilized. For the ViT-16 model, the patch size was set to 16 x 16, while for the ViT-

32 model, the patch size was set to 32 x 32. The optimizer employed was Stochastic Gradient Descent, 

with a learning rate of 0.001. The batch size was configured to 32, the epoch size to 50, and the loss 

function used was categorical cross-entropy. A visual representation of ViTs processing is given in 

Figure 3. 

 
Figure 3. ViTs architecture for endoscopic image classification 

Transfer Learning and Fine Tuning 

Transfer learning is the process of using the features learned by a model in one task to solve a 

similar task. This method is particularly useful for problems with insufficient training data (Ribani & 

Marengoni, 2019). In deep learning models, transfer learning often involves adapting pre-trained models 

on large and diverse datasets to specific and smaller datasets. In CNNs, the layers closer to the input 

tend to capture more general features such as edges, corners, shapes, and colors, while layers closer to 

the output learn more task-specific features (Krizhevsky et al., 2012). Using CNNs for transfer learning 

in other problem domains is a widely preferred methodology. However, determining the depth, width, 

and the number of layers to be fine-tuned in the fully connected layers at the output requires expertise. 

In this study, all models used were trained with the ImageNet dataset. Fully connected layers were not 

added to any models except for the output layer, utilizing the weights of the pre-trained models. 

Additionally, no freezing operation was performed on the convolutional layers of the models. Among 

these models trained in this manner, the most successful model was selected, and fully connected layers 

were added, with various freezing rates applied to the convolutional layers to analyze classification 

performance. The depth, width, and freezing rates of the convolutional layers were determined using a 

random search algorithm. Fully connected layers were added to the DenseNet-201 model, which yielded 

the most successful results among pre-trained CNN models, with configurations of (1920-8), (1920-256-

8), and (1920-256-256-8). After adding these layers, classification performance was evaluated by 

applying freezing rates of 0%, 25%, 50%, 75%, and 100% to the convolutional layers of the model. 

 



Enes AYAN 14(3), 988-999, 2024 

Classification of Gastrointestinal Diseases in Endoscopic Images: Comparative Analysis of Convolutional 

Neural Networks and Vision Transformers 

 

995 

Experimental Environment and CNN Model Hyperparameters 

The study's experiments conducted on a system running the Ubuntu operating system, featuring 

32 GB of RAM, and a 1080Ti graphics card. Training of the CNN models was conducted using the 

Keras deep learning library. Table 2 outlines the hyperparameters applied throughout the model training 

process. 

Table 2. Hyperparameters of CNN models 

Hyperparameter Value 

Input Size (224x224x3) - (299x299x3) 

Epochs  50 

Loss Function  Categorical Cross Entropy 

Batch Size 32 

Learning Rate 0.001 

Output Activation Softmax 

Optimizer Stochastic Gradient Descent  

Evaluation Criteria 

The classification performance of the models was assessed using accuracy, sensitivity, precision, 

and F1 score metrics. These metrics were calculated on a per-class basis, and the final results were 

reported as the averages of these values. The calculations were carried out by using confusion matrix 

and formulas in Figure 4. 

 
Figure 4. Confusion matrix and metric formulas 

RESULTS AND DISCUSSION  

All models trained in the study were evaluated using an external test dataset. No data augmentation 

was applied to the test dataset. The evaluation results are presented in Table 3. 

Table 3. Average classification performances of models 

Model Accuracy Precision Recall F1-Score 

VGG-16 90.75 90.89 90.75 90.76 

ResNet50V2 91 91.18 91 90.96 

ResNet101V2 91.25 91.38 91.25 91.22 

ResNet152V2 90.87 90.93 90.87 90.88 

InceptionResNetV2 91.75 91.98 91.75 91.71 

MobileNetV2 90.62 91.57 90.62 90.48 

MobileNetV3Large 88.62 89.45 88.62 88.53 

MobileNetV3Small 87.62 89.11 87.62 87.38 

NasNetMobile 90.12 90.95 90.12 89.94 

Xception 90.12 90.54 90.13 90.03 

DenseNet121 91.87 92.02 91.87 91.87 

DenseNet169 92.25 92.40 92.25 92.23 

DenseNet201 92.75 92.75 92.75 92.74 

ViT-16 91.25 91.34 91.25 91.24 

ViT-32 90.50 91.01 90.50 90.44 
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According to Table 3, the DenseNet201 architecture achieved the highest accuracy rate of 92.75%. 

Therefore, the impact of transfer learning and fine-tuning parameters on the classification performance 

of the DenseNet201 model is presented in Table 4. Additionally, the confusion matrix for the 

DensNet201 and ViT-16 model are shared in Figure 5. Table 5 shows the best fine-tuned CNN model 

DenseNet201’s class-based classification performance.  

Table 4. Acc-1, Pre-1, Rec-1, F1-1 Indicates That after global average pooling two fully connected 

layers with 256,256 neurons, acc-2, pre-2, rec-2, f1-2 indicates that after global average pooling one 

fully connected layers with 256 neurons, acc-3, pre-3, rec-3, f1-3 indicates that after global average 

pooling only classification layer with 8 neurons 
Froze Rate Acc-1 Acc-2 Acc-3 Pre-1 Pre-2 Pre-3 Rec-1 Rec-2 Rec-3 F1-1 F1-2 F1-3 

0% 92.63 91.87 92.75 92.66 91.90 92.75 92.63 91.87 92.75 92.63 91.87 92.74 

25% 92.13 91.63 92 92.22 91.77 91.97 92.12 91.63 92 92.10 91.60 91.97 

50% 92.13 93.13 92.25 92.42 93.17 92.29 92.12 93.13 92.25 92.09 93.11 92.25 

75% 90.87 90.25 90 90.97 90.34 89.99 90.87 90.25 90 90.87 90.25 89.98 

100% 87.75 91.87 87.75 88.84 86.94 87.84 87.75 86.75 87.75 87.71 86.75 87.71 

Acc: Accuracy, Precision, Recall: Rec, F1 Score: F1 

Table 5. Fine tuned DenseNet201 model class based average classification performance 

Class Name-(Id) Precision Recall F1-Score 

Dyed-lifted-polyps (0) 93.14 95 94.06 

Dyed-resection-margins (1) 94.90 93 93.94 

Esophagitis (2) 88.27 82 84.97 

Normal cecum (3) 96.04 97 96.52 

Normal pylorus (4) 98.04 1 99.01 

Normal-z-line (5) 83.18 89 85.99 

Polyps (6) 95.88 93 94.42 

Ulcerative colitis (7) 96 96 96 

Average 93.17 93.13 93.11 

 

 

Figure 5. Confusion matrices of DenseNet201 and ViT-16 

In this study, thirteen different CNN models (VGG-16, ResNet50V2, ResNet101V2, 

ResNet152V2, InceptionResNetV2, MobileNetV2, MobileNetV3Large, MobileNetV3Small, 

NasNetMobile, Xception, DenseNet121, DenseNet169, DenseNet201) and two ViT models (ViT-16, 

ViT-32) were trained using transfer learning to classify endoscopic images. Based on the evaluation of 

the test results, the fine-tuned DenseNet201 architecture achieved the highest performance among the 
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models with 93.13% accuracy, 93.17% precision, 93.13% recall, and a 93.11% F1 score. On the other 

hand, the MobileNetV3Small model was observed to have the lowest classification performance. It is 

believed that the small number of parameters of this model negatively affected its classification 

performance. The impact of freezing layers in the convolutional layers and the number of fully connected 

layers on the classification performance of the most successful DenseNet201 model is shown in Table 

4. For this dataset, it was observed that the model trained with a 50% freezing rate and a single fully 

connected layer consisting of 256 neurons performed better in all metrics compared to the model trained 

without freezing and without a fully connected layer. Although the ViT models did not surpass the CNN 

models in classification, they achieved a similar classification performance. Table 5 shows that the 

Esophagitis (2) and Normal-z-line (5) classes are the most challenging to detect. The confusion matrices 

in Figure 5 indicate that the high number of false negatives for these two classes is due to their similarity. 

Additionally, the confusion matrices show that the model also confused the Dyed-lifted-polyps (0) and 

Dyed-resection-margins (1) classes. An image of a visual incorrectly predicted by the model and 

belonging to the predicted class is shared in Figure 6. Although ViTs are powerful models that could 

potentially replace CNNs, they require a large number of examples to be well-trained. In this study, it 

was observed that they were not as effective as CNNs on small datasets. Table 6 provides a comparison 

of the results obtained with studies in the literature using the same dataset. 

 
Figure 6. Misclassified images by the DenseNet201 

Table 6. A comparision of the results obtained in this study with those reported in previous studies that 

have used the kvasir dataset 
Number Study Accuracy Precision  Recall F1-Score 

1 Yogapriya et al (2021)  96.33 96.50 96.37 96.50 

2 Losenko et al. (2021)  93.19 92.8 92.7 92.8 

3 Gjestang et al. (2021)  89.3 89 89.3 88.6 

4 Mukhtorov et al. (2023)  93.46 - - - 

5 Huo et al. (2024)  92.87 93.01 92.87 92.88 

6 Demirbaş et al. (2024)  93.37 93.66 93.37 93.42 

7 Here 93.13 93.17 93.13 93.11 

As indicated in Table 6, the proposed method yielded superior outcomes in terms of accuracy 

compared to studies 3 and 5. In terms of recall, the study performed better than studies 2, 3, and 5, but 

lagged behind studies 1 and 6. Regarding precision, the proposed method outperformed studies 2, 3, and 

5, but was inferior to studies 1 and 6. The proposed method also achieved better F1 scores than studies 

2, 3, and 5. In this context, the proposed method demonstrated promising performance. The test results 

indicate that simple transfer learning methods are still effective compared to complex and difficult-to-
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train architectures. Only study 1 appeared to be more successful than the others in Table 6. However, in 

this study, the data was augmented before training, and the augmented data was divided into training, 

validation, and test sets. This indicates a data leakage problem. One of the limitations of the study is the 

small number of data samples. Although online data augmentation methods were used, the quantity and 

quality of the data have a positive impact on classification performance. 

CONCLUSION 

In this study, thirteen different CNN models and two ViT models were trained to classify 

endoscopic images into eight different classes. Among the models, the one with the best classification 

performance was fine-tuned, and the results were analyzed. The fine-tuned DenseNet201 model 

achieved 93.13% accuracy, 93.17% precision, 93.13% recall, and a 93.11% F1 score. According to the 

obtained results, the fine-tuned model outperformed the other models. Although the two ViT models 

trained in the study achieved classification performance close to that of the CNN models, they did not 

yield better results. Future work plans to explore methods to enhance the effectiveness of ViTs on small 

datasets. 
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