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Abstract. Let n and d be non-negative integers. We introduce the concept

of strongly (n, d)-injective modules to characterize n-coherent rings. For a

right perfect ring R, it is shown that R is right n-coherent if and only if every

right R-module has a strongly (n, d)-injective (pre)cover for some non-negative

integer d ≤ n. We also provide equivalent conditions for an (n, d)-ring being

n-coherent. Then we investigate the so-called right G-(n, d)-rings, over which

every n-presented right module has Gorenstein projective dimension at most

d. Finally, we prove a Gorenstein analogue of Costa’s first conjecture.
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1. Introduction

Throughout this paper, R is an associative ring with identity and all modules

are unitary R-modules.

Let n and d be non-negative integers. Following Costa [16], Chen and Ding [14],

a right R-module M is called n-presented if there exists an exact sequence of right

R-modules Fn → Fn−1 → · · · → F1 → F0 → M → 0 where Fi is finitely generated

and free for every i = 0, 1, · · · , n. M is said to be of type FP∞ if it is n-presented

for any non-negative integer n. A ring R is called right n-coherent ([14,16]) in

case every n-presented right R-module is (n + 1)-presented. It is easy to see that

R is right 0-coherent (1-coherent) if and only if R is right Noetherian (coherent).

According to Costa [16] and Zhou [50], R is said to be a right (n, d)-ring (resp.

right weak (n, d)-ring) if every n-presented right R-module has projective (resp.

flat) dimension at most d. Thus, right (0, d)-rings are exactly the rings of right

global dimension at most d, and right weak (1, d)-rings are exactly the rings of

weak global dimension at most d. n-coherent rings and (weak) (n, d)-rings have
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been extensively studied in the existing literature (see, for instance, [1, 7, 8, 11-14,

16, 32-35, 46, 48-50]).

In this paper, we introduce and study the concepts of strongly (n, d)-injective

modules and strongly (n, d)-flat modules (see Definition 3.1), and use these classes

of modules, among others, to give new characterizations for n-coherent rings and

(n, d)-rings. We also provide equivalent conditions for an (n, d)-ring being n-

coherent. Another goal of this paper is to extend the idea of Costa and introduce

a doubly indexed set of classes of rings called right G-(n, d)-rings (Section 6).

This paper is organized as follows.

In Section 2, we collect some known definitions and notions.

In Section 3, we introduce the concepts of strongly (n, d)-injective right R-

modules and strongly (n, d)-flat left R-modules (these classes of modules are de-

noted by SIn,d and SFn,d, respectively). For any ring R, we prove that (⊥SIn,d,

SIn,d) is a hereditary complete cotorsion theory, and (SFn,d, SF⊥
n,d) is a hereditary

perfect cotorsion theory.

Section 4 is devoted to study the classes of modules of finite weak injective (flat)

dimension. As in [26, Definition 3.6], we set r.sp.gldim(R) = sup{pd(M) | M is a

right R-module of type FP∞}, where pd(M) is the projective dimension of M . We

provide examples to show that rings R with r.sp.gldim(R) ≤ d may fail to be right

(n, d)-rings (see Example 4.8), and in particular, answers affirmatively a problem

posted by Bravo and Parra in [11].

In Section 5, we explore some applications of our previous results. We first give

some new characterizations for right n-coherent rings (see Theorem 5.6); several

interesting corollaries are obtained, allowing us to provide new counterexamples to

an open problem posed by Gillespie in [27] (see Example 5.10). For a right perfect

ring R, we show in Theorem 5.14 that R is right n-coherent if and only if SIn,t

is (pre)covering for some non-negative integer t ≤ n. We also provide equivalent

conditions for a right (n, d)-ring being right n-coherent (see Theorem 5.20).

Costa’s paper [16] concludes with a number of open problems for commutative

rings, including his first conjecture: given non-negative integers n and d, there is

an (n, d)-ring which is neither an (n, d − 1)-ring nor an (n − 1, d)-ring. The final

section is devoted to prove a Gorenstein analogue of Costa’s first conjecture.

2. Preliminaries

In this section, we shall recall some known definitions and notions needed in the

sequel.
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For an R-module M , the character module HomZ(M,Q/Z) is denoted by M+.

Hom(M,N) (resp. Extd(M,N)) means HomR(M,N) (resp. ExtdR(M,N)), and

similarly M ⊗ N (resp. Tord(M,N)) denotes M ⊗R N (resp. TorRd (M,N)). The

symbol rD(R) (resp. wD(R)) stands for the usual right (resp. weak) global dimen-

sion of R.

We denote by Pm the class of all right R-modules of projective dimension at

most m. For a class of right R-modules C , we put

C<∞ = {C | C ∈ C and C is of type FP∞}.

2.1. Ext and Tor orthogonal classes. Let C be a class of right R-modules and

D a class of left R-modules. We will use the following notation:

C⊥ = {X is a right R-module | Ext1(C,X) = 0 for all C ∈ C },
⊥C = {X is a right R-module | Ext1(X,C) = 0 for all C ∈ C },
C⊤ = {Y is a left R-module | Tor1(C, Y ) = 0 for all C ∈ C },

⊤D = {X is a right R-module | Tor1(X,D) = 0 for all D ∈ D},
C⊥∞ = {X is a right R-module | Exti(C,X) = 0 for all C ∈ C and any i ≥ 1},
⊥∞C = {X is a right R-module | Exti(X,C) = 0 for all C ∈ C and any i ≥ 1},
C⊤∞ = {Y is a left R-module | Tori(C, Y ) = 0 for all C ∈ C and any i ≥ 1}.

2.2. Precover and preenvelope. Let C be a class of right R-modules and M

a right R-module. A homomorphism ϕ : C → M with C ∈ C is called a C -

precover [19] of M if for any homomorphism f : C ′ → M with C ′ ∈ C , there is

a homomorphism g : C ′ → C such that ϕg = f . Moreover, if the only such g are

automorphisms of C when C ′ = C and f = ϕ, then the C -precover ϕ is called

a C -cover. An epimorphic C -precover ϕ : C → M is said to be special in case

ker(ϕ) ∈ C⊥. Dually, we have the definitions of a (special) C -preenvelope and a

C -envelope. We say that C is (pre)covering (resp. (pre)enveloping) in case every

right R-module has a C -(pre)cover (resp. C -(pre)envelope).

2.3. Cotorsion theory. A pair (C , D) of classes of right R-modules is called

a cotorsion theory [23] if C⊥ = D and ⊥D = C . A cotorsion theory (C , D) is

called complete if every right R-module has a special C -precover and a special D-

preenvelope. A cotorsion theory (C , D) is called perfect if every right R-module

has a C -cover and a D-envelope. A cotorsion theory (C , D) is said to be hereditary

if whenever 0 → C ′ → C → C ′′ → 0 is exact with C, C ′′ ∈ C , then C ′ ∈ C .
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3. Strongly (n, d)-injective and strongly (n, d)-flat modules

Let n and d be non-negative integers and R a ring. Recall that a right R-

module M (resp. left R-module N) is called (n, d)-injective (resp. (n, d)-flat) if

Extd+1(P,M) = 0 (resp. Tord+1(P,N) = 0) for any n-presented right R-module P

[50].

Definition 3.1. Let n, d be non-negative integers. A right R-module M is called

strongly (n, d)-injective if Extd+j(P,M) = 0 for any n-presented right R-module

P and all j ≥ 1.

A left R-module N is called strongly (n, d)-flat if Tord+j(P,N) = 0 for any

n-presented right R-module P and all j ≥ 1.

We write:

In,d = {(n, d)-injective right R-modules},
Fn,d = {(n, d)-flat left R-modules},

SIn,d = {strongly (n, d)-injective right R-modules},
SFn,d = {strongly (n, d)-flat left R-modules}.

It is clear that SIn,d ⊆ In,d and SFn,d ⊆ Fn,d. For the other direction, we

have:

Proposition 3.2. Let R be a right n-coherent ring. Then In,d = SIn,d and Fn,d =

SFn,d.

Proof. Since R is right n-coherent, we deduce from [12, Corollary 2.6] that every

n-presented right R-module G admits a projective resolution

· · · → Pm
fm−→ Pm−1

fm−1−→ · · · f1−→ P0
f0−→ G

f−1−→ 0

with ker(fm) (m ≥ −1) n-presented. Hence In,d ⊆ SIn,d. But it is obvious that

SIn,d ⊆ In,d. So In,d = SIn,d. The second identity can be proved similarly. □

We say that a class C of modules is definable provided that C is closed under

direct limits, direct products and pure submodules.

Proposition 3.3. Let R be a ring.

(1) If n ≥ d+ 1, then In,d is closed under pure submodules.

(2) Fn,d is closed under direct limits, extensions and pure submodules. A left

R-module N is (n, d)-flat if and only if N+ is (n, d)-injective.

(3) If either one of the following two conditions holds, then In,d is definable

and closed under pure quotients, and a right R-module M is (n, d)-injective

if and only if M+ is (n, d)-flat:
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(I) n ≤ d+ 1 and R is right n-coherent;

(II) n > d+ 1.

Proof. It is clear that In,d is closed under direct products (see [50, Proposition

2.2(2)]).

(1) This is [50, Proposition 2.4(1)].

(2) It is clear that Fn,d is closed under direct limits and extensions. In addition,

Fn,d is closed under pure submodules by [50, Proposition 2.4(2)]. The final assertion

follows from [50, Proposition 2.3].

(3) Assume that R satisfies one of the conditions (I) or (II). Then In,d is closed

under pure submodules and direct limits by [48, Lemma 2.1] and [50, Proposition

3.1], respectively. We also see from [50, Proposition 3.1] that a right R-module M

is (n, d)-injective if and only if M+ is (n, d)-flat.

Now let 0 → C → B → A → 0 be a pure short exact sequence of right R-modules

with B (n, d)-injective. Then B+ is (n, d)-flat, and we have a split exact sequence

of left R-modules 0 → A+ → B+ → C+ → 0 by [28, Lemma 1.2.13(e)]. Thus both

A+ and C+ are (n, d)-flat. Hence A and C are (n, d)-injective by what we have

proved. This proves (3). □

In what follows, the composition

•
3

α // •
2

β // •
1

of two paths α and β in a quiver is denoted by αβ.

The following example tells us that (n, d)-injective modules may fail to be strongly

(n, d)-injective.

Example 3.4. Let n be a fixed non-negative integer. Let Q be the following quiver

•
n+1

αn+1 // •
n

αn // · · ·
α3 // •

2

α2 // •
1

βs (s∈S)

��

with n+ 1 vertices, one arrow αi+1 from vertex i+ 1 to vertex i for each i ∈ {1, 2,
· · · , n}, and infinitely many loops {βs | s ∈ S} at the vertex 1.

Let R be the quotient of the path algebra of Q over an algebraically closed field

k by the ideal generated by the set of all paths of length ℓ ≥ 2.

For any s ∈ S, let Es be the injective envelope of the right ideal βsR. Write

M :=
⊕
s∈S

Es. Then M ∈ In,t for t < n, but M /∈ SIn,d for any d.
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Proof. It is clear that M ∈ In,t for t < n (see Proposition 3.3).

Let Pi be the indecomposable projective right R-module corresponding to the

vertex i ∈ { 1, 2, · · · , n + 1}, and let Sn+1 be the simple right R-module corre-

sponding to the vertex n + 1. Write Ns = βsR. We have naturally the following

exact sequences of right R-modules

0 −→ rad P1 =
⊕
γ∈S

Nγ −→ P1 −→ Ns −→ 0, (ζ0)

0 → rad P1 → P1 → P2 → · · · → Pn → Pn+1 → Sn+1 → 0. (ζ1)

By using the exact sequence (ζ0) and mimicking the proof of [32, Example 1],

one can show that Ext1R(Ns,M) ̸= 0. So Ext1R(
⊕
γ∈S

Nγ ,M) ∼=
∏
γ∈S

Ext1R(Nγ ,M) ̸= 0,

and hence Ext2R(Ns,M) ̸= 0 again by (ζ0). Continuing this way, we see that

ExtmR (Ns,M) ̸= 0 for any m ≥ 1. It follows from the exact sequence (ζ1) that

Extn+m
R (Sn+1,M) ̸= 0 for any m ≥ 1. Note that Sn+1 is n-presented. Therefore,

M /∈ SIn,d for any d. □

Remark 3.5. For an arbitrary ring R, it is known that In,d is covering if n ≥ d+2

[48, Lemma 2.4]. Note that for any family {Mj}j∈J of R-modules,
⊕

j∈J Mj is pure

in
∏

j∈J Mj . Hence, for n ≥ d + 1, one can deduce from Proposition 3.3(1) that

In,d is closed under direct sums. However, for n ≤ d, both classes SIn,d and In,d

given in Example 3.4 are not closed under direct sums, so, they are not precovering

by [34, Proposition 2.6].

Lemma 3.6. Let R be a ring.

(1) SIn,d is closed under extensions, products and cokernels of monomorphisms.

(2) SFn,d is closed under direct limits, extensions, pure submodules and kernels

of epimorphisms. A left R-module M is strongly (n, d)-flat if and only if

M+ is strongly (n, d)-injective.

Proof. The proof of part (1) is straightforward.

Clearly, we have that SFn,d is closed under kernels of epimorphisms. Note that

an R-module is strongly (n, d)-flat (resp. strongly (n, d)-injective) if and only if it

is (n, d+ j)-flat (resp. (n, d)-injective) for all j ≥ 0. This observation together with

Proposition 3.3(2) give part (2). □

Following [30], a duality pair over a ring R is a pair (M, C), where M is a

class of left R-modules and C is a class of right R-modules, subject to the following

conditions:

(1) for a left R-module M , one has M ∈ M if and only if M+ ∈ C;



ON G-(n, d)-RINGS AND n-COHERENT RINGS 7

(2) C is closed under direct summands and finite direct sums.

A duality pair (M, C) is called perfect if M is closed under extensions and direct

sums in the category of all left R-modules, and if R belongs to M.

I. Bican, R. El Bashir, and E. E. Enochs proved that (SF1,0, SF⊥
1,0) is a perfect

cotorsion theory, thus proving the celebrated Flat Cover Conjecture: every module

over any ring has a flat cover (see [9]). More generally, we have:

Theorem 3.7. For any ring R, (SFn,d, SF⊥
n,d) is a hereditary perfect cotorsion

theory.

Proof. By Lemma 3.6(2), (SFn,d, SIn,d) is a perfect duality pair. It follows from

[30, Theorem 3.1(c)] that (SFn,d, SF⊥
n,d) is a perfect cotorsion theory. Moreover,

(SFn,d, SF⊥
n,d) is hereditary again by Lemma 3.6(2). □

The following result is a generalization of [28, Theorem 4.1.7] and [32, Theorem

3.4].

Theorem 3.8. For any ring R, (⊥SIn,d, SIn,d) is a hereditary complete cotorsion

theory.

Proof. The proof is similar to that of [32, Theorem 3.4]. Let M be a right R-

module. Then M ∈ SIn,d if and only if Extd+j(P,M) = 0 for every j ≥ 1 and

P ∈ FPn, where FPn is the class of n-presented right R-modules. Since FPn is

skeletally small, we can choose a set S of representatives for FPn. Let Xi be a set

of representatives of ith syzygy modules of modules in S. Then X =
⋃∞

t=0 Xd+t

is also a set. Note that Ext1(
⊕

X∈X X,M) ∼=
∏

X∈XExt1(X,M). Hence SIn,d =

X⊥. So (⊥SIn,d, SIn,d) is a complete cotorsion theory by [18, Theorem 10], and

(⊥SIn,d, SIn,d) is hereditary by Lemma 3.6(1). □

Corollary 3.9. The following are equivalent for a right R-module M .

(1) M ∈ SIn,d+m.

(2) There is an exact sequence 0 → M → A0 → A1 → · · · → Am−1 → Am → 0

with each Ai ∈ SIn,d, for i = 0, 1, · · · , m.

(3) If the sequence 0 → M → A0 → A1 → · · · → Am−1 → Am → 0 is exact

with each Ai ∈ SIn,d, for i = 0, 1, · · · , m − 1, then Am also belongs to

SIn,d.

Proof. Using Theorem 3.8 and dimension shifting. □

Following [16] and [50], R is said to be a right (n, d)-ring (resp. right weak

(n, d)-ring) if every n-presented right R-module has projective (resp. flat) dimen-

sion at most d.
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Remark 3.10. Let R be a ring. We see from the definitions that: R is a right

(n, d)-ring if and only if every right R-module is strongly (n, d)-injective; R is a

right weak (n, d)-ring if and only if every left R-module is strongly (n, d)-flat.

Let R[x] denote the polynomial ring in one variable x with coefficients in a ring

R, where x commutes with each element of R. Richman [42, Corollary 8] proved

the flat Hilbert syzygy theorem: wD(R[x]) = wD(R)+1. This allows us to give the

following proposition which will be used in Section 5.

Proposition 3.11. Let R be a non-right-coherent ring with wD(R) = 1, and let

S := R[x1, x2, . . . , xm] be the polynomial ring in m indeterminates over R, where

every xi commutes with each element of R. Then S is non-right-coherent with

wD(S) = m+ 1.

Proof. By [42, Corollary 8], we have that wD(S) = m+ 1, i.e., S is a right weak

(1,m+ 1)-ring. Next we show that S is non-right-coherent. Suppose the contrary

that S is right coherent. Then S is a right (1,m+1)-ring by [50, Proposition 2.6(3)].

Thus, by [16, Theorem 6.3], R is a right (1, 1)-ring, i.e., R is right semihereditary.

This contradicts the condition that R is non-right-coherent. Hence S is non-right-

coherent. □

Remark 3.12. We do not know whether there is a “syzygy theorem” to the effect

that if R is a right (resp. weak) (n, d)-ring, then R[x] is a right (resp. weak)

(n, d+ 1)-ring; we know that this is true for n = 0.

4. Modules of finite weak injective (flat) dimension

Recall that a right R-moduleM (resp. left R-module N) is called weak injective

(resp. weak flat) [26] if Ext1(G,M) = 0 (resp. Tor1(G,N) = 0) for any right R-

module G of type FP∞. Weak injective (resp. weak flat) modules coincide with

absolutely clean (resp. level) modules in the sense of [10].

We let WId denote the class of right R-modules M such that Extd+1(G,M) = 0

for any right R-module G of type FP∞. Similarly, WFd denotes the class of left

R-modules N such that Tord+1(G,N) = 0 for any right R-module G of type FP∞.

Note that WId (WFd) is just the class of right (left) R-modules of weak injective

(weak flat) dimension at most d (see [26]).

It is clear that the following inclusions hold:

SIn,d ⊆ In,d ⊆ WId and SFn,d ⊆ Fn,d ⊆ WFd.
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Proposition 4.1. For any ring R, the following statements hold.

(1) A right R-module M belongs to WId if and only if M+ ∈ WFd.

(2) A left R-module N belongs to WFd if and only if N+ ∈ WId.

(3) WId is definable and closed under cokernels of monomorphisms.

(4) WFd is definable and closed under kernels of epimorphisms.

(5) Both WId and WFd are covering and preenveloping.

Proof. Parts (1) and (2) hold by [49, Propositions 4.6 and 4.2], respectively.

The proofs of (3) and (4) are straightforward.

Part (5) follows from [49, Theorems 4.4, 4.5, 4.8 and 4.9]. □

We notice that Theorem 4.2(2) below is a generalization of [10, Theorem 2.14].

Theorem 4.2. The following are true for any ring R.

(1) (⊥WId, WId) is a hereditary complete cotorsion theory.

(2) (WFd, WF⊥
d ) is a hereditary perfect cotorsion theory.

Proof. The proof of (1) is similar to the proof of Theorem 3.8, and (2) follows

from [49, Proposition 4.18]. □

Following [10], a short exact sequence 0 → A → B → C → 0 is said to be clean

if the sequence Hom(M,B) →Hom(M,C) → 0 is exact for any M of type FP∞.

To give a new characterization of weak injective modules, we introduce the fol-

lowing definition.

Definition 4.3. A right R-module M is called clean injective if for any clean

exact sequence 0 → A → B → C → 0 of right R-modules, the induced sequence

Hom(B,M) −→ Hom(A,M) −→ 0

is exact.

A left R-module N is called clean flat if for any clean exact sequence 0 → A →
B → C → 0 of right R-modules, the induced sequence 0 → A ⊗ N → B ⊗ N is

exact.

Remark 4.4. (1) It is easy to see that every pure exact sequence is clean. Hence

every clean injective module is pure injective.

(2) We have that every right R-module has a clean injective envelope by [47,

Theorem 3.8], and every left R-module has a clean flat cover by [47, Corollary 2.3].

(3) By [47, Lemma 2.2], we get that a left R-module M is clean flat if and only

if M+ is clean injective.
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Now we are in a position to give the following characterization of weak injective

modules by clean injective modules.

Proposition 4.5. A right R-module M is weak injective if and only if every ho-

momorphism f : M → C with C clean injective factors through an injective right

R-module.

Proof. “⇒” The canonical exact sequence 0 → M → E(M) → L → 0, with E(M)

the injective envelope of M , is clean because M is weak injective. Hence f factors

through E(M), as desired.

“⇐” By Theorem 4.2(1), there is an exact sequence 0 → M
i→ A → B → 0

with A weak injective. It is enough to show that this sequence is clean. From [47,

Corollary 2.5], we only need to check that the canonical sequence Hom(A,C)
i∗−→

Hom(M,C) → 0 is exact, for all clean injective right R-module C. Indeed, let f :

M → C be any homomorphism with C clean injective. By hypothesis, there exist

g : M → E with E injective and h : E → C such that f = hg. Hence there is θ :

A → E such that g = θi. So f = hθi. This shows that i∗ is epic, completing the

proof. □

Corollary 4.6. Let R be a ring.

(1) For any clean injective right R-module M , there exists a weak injective

cover A → M with A injective.

(3) If N ∈ WI⊥
d , then there exists a WId-cover A → N with A injective.

Proof. We only prove (1); the proof of (2) is similar. By Proposition 4.1(5), M

has a weak injective cover f : A → M . Then there exists g : E → M with E

injective and i : A → E such that f = gi by Proposition 4.5. So we get h : E → A

such that g = fh since f is a weak injective cover. So f = gi = fhi, and hence hi

is an isomorphism. Therefore A is isomorphic to a direct summand of the injective

module E, as desired. □

As in [26, Definition 3.6], we set r.sp.gldim(R) = sup{pd(M) | M is a right

R-module of type FP∞}, where pd(M) is the projective dimension of M . Now we

give some characterizations of those rings over which all modules are weak injective

(cf. [26, Corollary 3.10]).

Corollary 4.7. The following are equivalent for any ring R.

(1) r.sp.gldim(R) = 0.

(2) Every right R-module is weak injective.

(3) Every left R-module is weak flat.
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(4) Every right R-module of type FP∞ is projective.

(5) Every clean injective right R-module is injective.

(6) Every short exact sequence of right R-modules is clean.

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (4) holds by [26, Corollary 3.10].

(2) ⇔ (6) is easy and (2) ⇔ (5) follows from Proposition 4.5. □

It is obvious that if R is a right (n, d)-ring, then r.sp.gldim(R) ≤ d. However, a

ring R with r.sp.gldim(R) ≤ d may fail to be a right (n, d)-ring, as shown in the

following example.

Example 4.8. For any fixed integers m ≥ 2 and d ≥ 0, by [33, Theorem 2.1], there

exists a ring Rm such that:

(1) Rm is a right (m, d)-ring;

(2) Rm is not a right (m− 1, t)-ring for each non-negative integer t;

(3) Rm is not a right (n, d − 1)-ring (for d ≥ 1) for each non-negative integer

n.

Let R =
∏∞

m=2Rm. Then r.sp.gldim(R) ≤ d; but R is not a right (n, d)-ring for

each non-negative integer n.

Proof. By [33, Corollary 2.2], R is not a right (n, d)-ring for each n ≥ 0.

Next we prove that r.sp.gldim(R) ≤ d; it is enough to show that every right

R-module M belongs to WId. Note that M is a direct limit of a direct system of

finitely presented right R-modules. In addition, WId is closed under direct limits

by Proposition 4.1(3). So we need only to show that every finitely presented right

R-module P lies in WId.

By [23, Theorem 3.2.22], we have

P ∼= P ⊗R R ∼= P ⊗R

∞∏
m=2

Rm
∼=

∞∏
m=2

(P ⊗R Rm).

Then each right Rm-module P ⊗R Rm is (m, d)-injective as each Rm is a right

(m, d)-ring. Thus each P ⊗R Rm is also an (m, d)-injective right R-module by [40,

Lemma 3.3(1)]. On the other hand, each class Im,d is contained in WId, and WId

is closed under products by Proposition 4.1(3). It follows that the right R-module

P lies in WId, as desired. □

In [11], Bravo and Parra called right (n, 1)-rings right n-hereditary, while a ring

R was said to be right ∞-hereditary provided that r.sp.gldim(R) ≤ 1.
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Remark 4.9. In [11, Example 3.6], the authors wondered whether there is an

example of a right ∞-hereditary ring that is not right n-hereditary for any n ≥ 0.

The example above gives a positive answer to this question.

Zhao proved in [49, Proposition 4.17] that the class WI⊥
d is enveloping under

the condition that RR ∈ WId. We will show that WI⊥
d is enveloping for any ring

R. But to do that we need the following lemma.

Lemma 4.10. For any ring R, there exists a set X such that WI⊥
d = X⊥.

Proof. The proof is inspired by that of [25, Corollary 3.3.4].

Let Card(R) = κ. Let A ∈ WId and choose any x ∈ A. By [23, Lemma 5.3.12],

there is a pure submodule A0 of A with x ∈ A0 such that Card(A0) ≤ κ (simply

N = Rx, M = A and f the inclusion map from N to M in the lemma). We see

that both A0 and A/A0 are in WId by Proposition 4.1(3).

For any x1 ∈ A/A0, again by [23, Lemma 5.3.12], there is a pure submodule

A1/A0 of A/A0 such that x1 ∈ A1/A0 and Card(A1/A0) ≤ κ. Since A0 is pure in

A and A1/A0 is pure in A/A0, A1 is pure in A by [28, Lemma 1.2.17]. Thus we

obtain that A1/A0, A1 and A/A1 all lie in WId again by Proposition 4.1(3).

Note that WId is closed under direct limits (see Proposition 4.1(3)). Proceed-

ing by transfinite induction we can write A as a union of a continuous chain

(Aα)α<λ of pure submodules of A, such that A0 ∈ WId, Aα+1/Aα ∈ WId and

card(Aα+1/Aα) ≤ κ whenever α+ 1 < λ.

Let X be a set of representatives of modules A ∈ WId with Card(A) ≤ κ. By

[23, Theorem 7.3.4], we have that for any right R-module M , M ∈ WI⊥
d if and

only if M ∈ X⊥. This means that WI⊥
d = X⊥. □

The following corollaries 4.11 and 4.12 were proved in [1, Corollary 2.7] and [28,

Theorem 4.1.13] when the ring is right Noetherian, respectively.

Corollary 4.11. For any ring R, WI⊥
d is enveloping.

Proof. Follows from Proposition 4.1(3), Lemma 4.10 and [25, Corollary 3.1.10]. □

Corollary 4.12. For any ring R, (⊥(WI⊥
d ), WI⊥

d ) is a complete cotorsion theory.

Proof. Combine Lemma 4.10 with [18, Theorem 10]. □

It is clear that WI⊥
d is closed under direct products. However, the following

example shows that WI⊥
d is not closed under direct sums (hence not precovering)

in general.
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Example 4.13. Let Q be the quiver

•
2

αs (s∈S)

**

αs′ (s′∈S)

44 •
1

consisting of two points and infinitely many arrows {αs | s ∈ S}, and let R be

the path algebra of Q over an algebraically closed field k. For any s ∈ S, let Es

be the injective envelope of αsR. Then
⊕
s∈S

Es /∈ I⊥
0,0. Thus

⊕
s∈S

Es /∈ WI⊥
d since

I0,0 ⊆ WId.

Proof. A similar argument to that of Example 3.4 shows that Ext1R(S2,
⊕
s∈S

Es) ̸=

0, where S2 is the simple right R-module corresponding to the vertex 2. Then⊕
s∈S

Es /∈ I⊥
0,0 because S2 is injective by [6, p. 81, Lemma 2.6]. □

Remark 4.14. The modules in I⊥
0,0 are just the so-called copure injectivemodules

(see [21]). We see from Example 4.13 that the class of copure injective modules is

not closed under direct sums in general.

Recall that R is said to be a QF ring if R is right Noetherian and RR is injective.

Proposition 4.15. R is a QF ring if and only if every right R-module belongs to

WI⊥
d .

Proof. Note that every injective right R-module belongs to WId. In addition, we

know that R is a QF ring if and only if every injective right R-module is projective

(cf. [2, Theorem 31.9]). It follows that R is a QF ring if and only if every right

R-module contained in WId is projective. Thus, R is a QF ring if and only if every

right R-module belongs to WI⊥
d . □

5. Applications

In 1981, Enochs proved that a ring R is right Noetherian if and only if I0,0 is

(pre)covering (see [19, Sec. 2]). Recently, Dai and Ding [17, Corollary 3.5] showed

that a ring R is right coherent if and only if I1,0 is (pre)covering. In 1996, for

a positive integer n, Chen and Ding [14, Theorem 3.1] obtained that R is a right

n-coherent ring if and only if In,n−1 is closed under direct limits. In 2004, Zhou [50,

Theorem 3.4] proved that R is a right n-coherent ring if and only if In,0 = In+1,0

if and only if Fn,0 = Fn+1,0 (n ≥ 1). More characterizations for right n-coherent

rings can be found in [11,12,14,16,32,34,39,40,48,50].
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To present some new characterizations for right n-coherent rings, we need several

lemmas.

Lemma 5.1. The following statements hold for a ring R.

(1) In,d = SIn,d if and only if every (n, d)-injective right R-module is (n, d+1)-

injective.

(2) Ij,0 ⊆ In,n−j and F j,0 ⊆ Fn,n−j for 0 ≤ j ≤ n.

Proof. By dimension shifting. □

The following result is a refinement of [12, Lemmas 5.2, 5.3].

Lemma 5.2. The following are equivalent for a right R-module M :

(1) M is n-presented.

(2) M is finitely generated and M ∈ ⊥In,0.

If n ≥ 2, then the above conditions are also equivalent to:

(3) M is finitely presented and M ∈ ⊤Fn,0.

Proof. (1) ⇔ (2) has been proved in [40, Theorem 2.1], and (1) ⇒ (3) is trivial.

The proof of (3) ⇒ (2) is analogous to that of [12, Lemma 5.3]. □

The following result can also be proved using the technique of [10, Proposition

2.4].

Corollary 5.3. R is a right coherent ring if and only if every right R-module is a

direct limit of n-presented right R-modules for some n > 1.

Proof. We only need to prove the sufficiency part. Suppose that every finitely

presented right R-module M can be written as a direct limit lim
−→

Mj of n-presented

right R-modules with n > 1. Since the Tor-functor commutes with lim
−→

, we have

that

Tor1(M,F ) ∼= Tor1(lim−→
Mj , F ) ∼= lim

−→
Tor1(Mj , F ) = 0

for any F ∈ Fn,0. So M is n-presented by Lemma 5.2, and hence R is right

coherent. □

Let Y be a class of right R-modules. We denote by Y the smallest definable

class containing Y . Šaroch and Šťov́ıček [43, Theorem 2.8] recently proved that
⊥Y = ⊥Y provided that Y is closed under direct limits and products. There is

more to say in case Y is the right part of a cotorsion theory.

Lemma 5.4. Let (X , Y ) be a cotorsion theory. If Y is closed under direct limits,

then Y is definable.
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Proof. Note that the right part of a cotorsion theory is always closed under prod-

ucts. It follows from [43, Theorem 2.8] that ⊥Y = ⊥Y since Y is closed under

direct limits. This yields the inclusion Y ⊆ Y because (⊥Y , Y ) is a cotorsion

theory. But then Y = Y , i.e., Y is definable. □

Recall that a ring R is said to be von Neumann regular if every short exact

sequence of right R-modules is pure exact. We now give a characterization of the

right global dimension of von Neumann regular rings, which is far from obvious.

Corollary 5.5. Let R be a von Neumann regular ring. Then rD(R) ≤ d if and

only if SI0,d is closed under direct limits.

Proof. We only need to prove the sufficiency part. Assume that SI0,d is closed

under direct limits. Then SI0,d is closed under pure submodules by Theorem 3.8

and Lemma 5.4. But every submodule of an R-module is pure since R is von

Neumann regular. Hence every right R-module belongs to SI0,d, i.e., rD(R) ≤
d. □

Theorem 5.6. The following are equivalent for a ring R and a positive integer n.

(1) R is a right n-coherent ring.

(2) In,n−1 is (pre)covering.

(3) In,n is closed under direct limits.

(4) SIn,t is closed under direct limits for some non-negative integer t ≤ n.

(5) There exist a non-negative integer m ≤ n and an integer j ≥ n − m + 1

such that Ij,0 ⊆ In,m.

(6) WIm = SIn,m for some non-negative integer m ≤ n.

(7) WIm = In,m for some non-negative integer m ≤ n.

(8) In,t = SIn,t for some non-negative integer t ≤ n− 1.

(9) WF t = SFn,t for some non-negative integer t ≤ n− 1.

(10) WF t = Fn,t for some non-negative integer t ≤ n− 1.

(11) There exist a non-negative integer m ≤ n− 1 and an integer j ≥ n−m+1

such that F j,0 ⊆ Fn,m.

If n ≥ 2, then the above conditions are also equivalent to:

(12) Fn,t = SFn,t for some non-negative integer t ≤ n− 2.

Proof. (1) ⇒ (2) See [34, Theorem 3.6].

(2) ⇒ (1) It is obvious that In,n−1 is closed under direct products. In addition,

In,n−1 is closed under pure submodules by Proposition 3.3(1). Now suppose In,n−1

is precovering. Then In,n−1 is closed under direct limits by [17, Theorem 3.4]. Thus
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R is a right n-coherent ring by [14, Theorem 3.1].

(1) ⇒ (6) Let R be a right n-coherent ring. Then every n-presented right R-

module is of type FP∞. So WIm = In,m. Thus (6) is true since In,m = SIn,m by

Proposition 3.2.

(6) ⇒ (7) is clear.

(7) ⇒ (5) Let m be the integer described in (7) and let j ≥ n −m + 1. It is clear

that Ij,0 ⊆ WI0 ⊆ WIm. But WIm = In,m by (7). Hence Ij,0 ⊆ In,m.

(5) ⇒ (1) Let m and j be the integers described in (5). We must prove that any

n-presented right R-module P is (n+1)-presented. Consider a projective resolution

Fn
fn−→ Fn−1

fn−1−→ · · · f2−→ F1
f1−→ F0

f0−→ P
f−1−→ 0

of P with each Fi finitely generated. We need to prove that Km−1 = ker(fm−1)

is (n−m+ 1)-presented. Let E be any (j, 0)-injective right R-module. Then E is

(n,m)-injective by (5). Whence Ext1(Km−1, E) ∼= Extm+1(P,E) = 0. So Km−1 ∈
⊥Ij,0. Clearly, Km−1 is finitely generated. Thus Km−1 is j-presented by Lemma

5.2. Note that j ≥ n−m+ 1. Hence P is (n+ 1)-presented, as desired.

(1) ⇒ (9) ⇒ (10) ⇒ (11) is similar to that of (1) ⇒ (6) ⇒ (7) ⇒ (5).

(11) ⇒ (1) This is the same as that of (5) ⇒ (1) (by replacing injective and Ext

with flat and Tor, but using the equivalence of (1) and (3) in Lemma 5.2).

(1) ⇒ (8) and (1) ⇒ (12) See Proposition 3.2.

(8) ⇒ (5) Let t be as in (8). Then In−t,0 ⊆ In,t by Lemma 5.1. But In,t = SIn,t

by (8), hence In−t,0 ⊆ In,t = SIn,t ⊆ In,t+1. So (5) follows by letting j = n − t

and m = t+ 1.

(12) ⇒ (11) is analogous to that of (8) ⇒ (5).

(1) ⇒ (3) and (1) ⇒ (4) See Proposition 3.3(3) and Proposition 3.2.

(4) ⇒ (5) Assume that SIn,t is closed under direct limits for some non-negative

integer t ≤ n. Then SIn,t is closed under pure submodules by Theorem 3.8 and

Lemma 5.4. But it is clear that every (1, 0)-injective module is a pure submodule

in every module that contains it. So I1,0 ⊆ SIn,t. On the other hand, it is clear

from the definition of strongly (n, t)-injective modules that SIn,t ⊆ In,n for t ≤ n.

Hence I1,0 ⊆ In,n and (5) follows.

(3) ⇒ (5) is similar to that of (4) ⇒ (5) (using [39, Theorem 3.9] and Lemma 5.4).

The proof is finished. □

Immediately we get the following corollary which was proved by Costa in [16,

Theorem 2.2].
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Corollary 5.7. Let R be a right (n, d)-ring. Then R is a right max{n, d}-coherent
ring.

Proof. Noting that a right (n, d)-ring is a right (max{n, d}, d)-ring, the conclusion
follows from the equivalence of (1) and (4) in Theorem 5.6. □

Corollary 5.8. Let R be a right weak (n, d)-ring. Then R is a right max{n, d+1}-
coherent ring.

Proof. Holds by the equivalence of (1) and (10) in Theorem 5.6 and the fact that

a right weak (n, d)-ring is a right weak (max{n, d+ 1}, d)-ring. □

Recall that a chain complex I of injective right R-modules is said to be AC-

injective (see [27, Definition 5.1]), if each chain map A → I is null homotopic

whenever A is an exact complex with each cycle Zi(A) ∈ WI0.

Let K(Inj) be the chain homotopy category of all complexes of injective right

R-modules, and let K(AC) denote the chain homotopy category of all AC-injective

complexes. Surprisingly, Šťov́ıček [44] showed that K(Inj) = K(AC) whenever R

is just a right coherent ring. Gillespie asked in [27] that whether the ring R is

necessary right coherent in order that K(Inj) = K(AC). Later, a counterexample

to the problem was presented in [46, Example 5.4]. To give new counterexamples

to Gillespie’s question, we need the following proposition.

Proposition 5.9. Let R be a ring and n a non-negative integer. Then K(Inj) =

K(AC) provided that the following three conditions are satisfied:

(1) R is left and right n-coherent;

(2) every (n, 0)-injective right R-module has flat dimension less than or equal

to n;

(3) every (n, 0)-injective left R-module has flat dimension less than or equal to

n.

Proof. This is due to [46, Theorem 5.3]. □

Now we are able to give new counterexamples to Gillespie’s question.

Example 5.10. Let S = (
∏∞

1 (Z/2Z))/(
⊕∞

1 (Z/2Z)), and let R0 = S[[X]] be

the power series ring. Then wD(R0) = 1, and R0 is not semihereditary (see [13,

Example 2]). So R0 is a weak (1, 1)-ring, and R0 is not a (1, 1)-ring (see [50,

Corollary 2.7(5,6)]). Thus R0 is not coherent by [50, Proposition 2.6(3)]. Denote

by Rm := R0[x1, x2, . . . , xm] the polynomial ring in m indeterminates over R0.

Then Ri is not coherent with wD(Ri) = i +1 (see Proposition 3.11) for 0 ≤ i ≤ m;
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but Ri is (i + 2)-coherent by Corollary 5.8 since Ri is a weak (1, i + 1)-ring, and

thus K(Inj) = K(AC) by Proposition 5.9.

Costa [16, Theorem 4.5] proved that, if R is a commutative weak (1, d)-ring,

then R is a (d+ 1, d)-ring. We generalize this result as follows.

Corollary 5.11. Let R be a right weak (n, d)-ring. Then R is a right (t, d)-ring

where t = max{n, d+ 1}.

Proof. Combine Corollary 5.8 with [50, Proposition 2.6(3)]. □

Next we give examples to show the sharpness of Theorem 5.6.

Example 5.12. Let n ≥ 2 be a fixed integer. Let Q be the quiver with 2n + 2

vertices, one arrow αi+1 from vertex i + 1 to vertex i for each i ∈ {1, 2, · · · ,
2n}\{n+1}, infinitely many arrows {βs | s ∈ S} from vertex n+2 to vertex n+1,

infinitely many arrows {γs | s ∈ S} from vertex n+1 to vertex n+2, and infinitely

many arrows {δs | s ∈ S} from vertex 1 to vertex 0.

•
2n+1

α2n+1// •
2n

α2n // · · ·
αn+4// •

n+3

αn+3// •
n+2

βs (s∈S)
++ •
n+1

γs (s∈S)

kk
αn+1 // •

n

αn // · · ·
α2 // •

1

δs (s∈S)

))

δs′ (s′∈S)

55 •
0

Let R be the quotient of the path algebra of Q over an algebraically closed field

k by the ideal generated by the set of all paths of length ℓ ≥ 2. Then the following

are true for R.

(1) R is a right (n, n+ 1)-ring.

(2) R is not a right (m,n)-ring for 0 ≤ m ≤ n.

(3) R is not a right (n− 1, t)-ring for each non-negative integer t.

(4) R is not a right n-coherent ring.

(5) R is a right (n+ 1, 1)-ring.

Proof. We only prove (4); the proof of the remainder is similar to that of [33,

Theorem 2.1].

Let Pi be the indecomposable projective right R-module corresponding to the

vertex i ∈ {1, 2, · · · , n + 1}. Write Ms = δsR and Gn+1 = αn+1R. We have

naturally the following exact sequences of right R-modules

0 −→ Gn+1 −→ Pn+1 −→ L −→ 0,

0 → rad P1 → P1 → P2 → · · · → Pn → Gn+1 → 0,
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where L = Pn+1/Gn+1. Since rad P1 =
⊕
δ∈S

Ms is not finitely generated, we see

from the two exact sequences above that L is n-presented but not (n+1)-presented.

Therefore, R is not a right n-coherent ring. □

Let C be a class of right R-modules. We say that a C -cover f : C → A of

a module A completes the diagrams in a unique way if for any homomorphism

g : C ′ → A with C ′ ∈ C , there is a unique homomorphism h : C ′ → C such that

fh = g.

Remark 5.13. (1) The implication of (2) ⇒ (1) in Theorem 5.6 has been proven

by Zhou (see [50, Proposition 4.3]). But it seems that there is a gap in the proof

there because an In,d-precover can not complete the diagrams in a unique way in

general. In fact, for a right n-coherent ring R, R is a right (n, d + 2)-ring if and

only if R is a right weak (n, d+ 2)-ring (see [50, Proposition 2.6(3)]) if and only if

every right R-module has an In,d-cover which completes the diagrams in a unique

way (see [35, Proposition 4.11]); however, there are right n-coherent rings which

are not right (n, d+ 2)-rings for any n ≥ 2 and d (see [33, Theorem 2.1(3, 4)]).

(2) Let n ≥ 1. It is asked in [34, Remark 4.4] that whether R must necessarily

be right n-coherent in order that In,d is covering for any non-negative integer d.

Theorem 5.6 gives an affirmative answer to this question.

Theorem 5.6 and Proposition 3.2 tell us that, if R is a right n-coherent ring

(n ≥ 1), then SIn,n−1 is (pre)covering. We will see that the converse is also true

for right perfect rings and right (n, d)-rings.

Theorem 5.14. The following are equivalent for a right perfect ring R and a non-

negative integer n.

(1) R is a right n-coherent ring.

(2) SIn,t is (pre)covering for some non-negative integer t ≤ n.

(3) SIn,t is closed under direct sums for some non-negative integer t ≤ n.

Proof. (1) ⇒ (2) By [34, Theorem 3.6] and Proposition 3.2.

(2) ⇒ (3) See [34, Proposition 2.6].

(3) ⇒ (1) Let P be an n-presented right R-module. Then there is an exact sequence

Fn
fn−→ Fn−1 −→ · · · −→ F1 −→ F0 −→ P −→ 0, (♣)

where each Fi is finitely generated and free, from which we obtain the exact sequence

0 −→ K = ker(fn)
η−→ Fn

fn−→ L = im(fn) −→ 0. (♯)
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Since R is right perfect, K has a minimal generating set X (this means that

any proper subset of X no longer generates K) by [41, Theorem 3]. If Card X is

finite, then we are done. Now assume that Card X is infinite. Pick a countable

subset Y = {y1, y2, · · · , yi, · · · } of X . Write Ui = (X\Y)∪{y1, y2, · · · , yi}, i ≥ 1.

Let Ki = Span(Ui) and let Ei be the injective envelope of K/Ki. The natural

homomorphisms πi : K → K/Ki and the inclusions τi : K/Ki → Ei induce a

homomorphism g : K →
⊕∞

i=1 Ei via g(x) = (τiπi(x)). Then g is well defined

because, for any x ∈ K, πi(x) = 0 for i ≫ 0.

Note that
⊕∞

i=1 Ei ∈ SIn,t for some non-negative integer t ≤ n by (3). It follows

from the exact sequence (♣) that

Ext1(L,

∞⊕
i=1

Ei) ∼= Extn+1(P,

∞⊕
i=1

Ei) = 0.

Hence, the exactness of the sequence (♯) yields a homomorphism h : Fn →
⊕∞

i=1 Ei

making the following diagram commutative

Ei K/Ki

τioo K
πioo

g

��

η // Fn

h

{{⊕∞
i=1 Ei.

As Fn is finitely generated and free, there exists a sufficiently large l such that im(h)⋂
Ej = 0 whenever j > l. But im(g) ⊆ im(h). Thus im(g)

⋂
Ej = 0 whenever

j > l.

On the other hand, the generating set X of K is minimal. Hence, for any i, there

is xi ∈ K such that xi /∈ Ki, i.e., πi(xi) ̸= 0. This forces that g(xi) = (τiπi(xi)) ̸= 0.

So im(g)
⋂
Ei ̸= 0 for any i, a contradiction.

Therefore, Card X is finite, as desired. □

Remark 5.15. There are right perfect rings which are not right n-coherent; the

ring constructed in Example 5.12 is such a ring.

Though a right (n, d)-ring is always right max{n, d}-coherent, it need not be

right n-coherent (see Example 5.12). Next we explore equivalent conditions on a

right (n, d)-ring R which imply that R is right n-coherent. Before doing that, we

state the following result which appears in [5, Theorem 2.5].

Lemma 5.16. Let (C , D) be a hereditary complete cotorsion theory of right R-

modules. Then the following are equivalent for a non-negative integer m.

(1) C ⊆ Pm.
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(2) For any right R-module M , there is an exact sequence 0 → M → D0 →
D1 → · · · → Dm−1 → Dm → 0 with each Di ∈ D .

Corollary 5.17. The following statements hold for any ring R.

(1) R is a right (n, d+m)-ring if and only if ⊥SIn,d ⊆ Pm.

(2) R is a right weak (n, d+m)-ring if and only if SF⊥
n,d ⊆ SI0,m.

Proof. (1) holds by Remark 3.10, Theorem 3.8, Corollary 3.9 and Lemma 5.16.

(2) is a dual version of (1). □

For a module M , we denote by Add M (resp. Prod M) the class of all direct

summands of arbitrary direct sums (resp. products) of copies of M .

Let m be a non-negative integer. A right R-module T is called m-tilting [3] if it

satisfies the following three conditions:

(T1) T ∈ Pm;

(T2) Exti(T, T (S)) = 0 for any positive integer i and all sets S;
(T3) there exist r ≥ 0 and a long exact sequence 0 → R → T 0 → · · · → T r → 0

such that T i ∈ Add T for all 0 ≤ i ≤ r.

A class of modules T is m-tilting provided there is an m-tilting module T such

that T = T⊥∞. In this case, (⊥(T⊥∞), T⊥∞) is a hereditary complete cotorsion

theory (cf. [18]), called the m-tilting cotorsion theory induced by T . Moreover, if

there exists S ⊆ P<∞
m such that T = T⊥∞ = S⊥∞, then T and T⊥∞ are called

m-tilting of finite type.

Dually, a left R-module C is called m-cotilting [3] if it satisfies the following

three conditions:

(C1) C ∈ SI0,m;

(C2) Exti(CS , C) = 0 for any positive integer i and all sets S;
(C3) there exist r ≥ 0 and a long exact sequence 0 → Cr → · · · → C0 → Q → 0

such that Ci ∈ Prod C for all 0 ≤ i ≤ r and Q is an injective cogenerator.

A class of modules C is m-cotilting provided there is an m-cotilting module

C such that C = ⊥∞C. In this case, (⊥∞C, (⊥∞C)⊥) is a hereditary complete

cotorsion theory (cf. [3]), called the m-cotilting cotorsion theory induced by C.

Moreover, if there exists S ⊆ P<∞
m such that C = ⊥∞C = S⊤∞, then C and C are

called m-cotilting of cofinite type.

It is known that every tilting class is of finite type (see [28, Theorem 5.2.20]);

however there are cotilting classes that are not of cofinite type (see [28, Example

8.2.13]).
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Proposition 5.18. Every tilting class contains WI0, and every cotilting classs of

cofinite type contains WF0.

Proof. This follows directly by definitions. □

We know that tilting (resp. cotilting) classes are special preenveloping (resp.

special precovering). Here we have:

Proposition 5.19. Every tilting class T is covering, and every cotilting class C

is preenveloping.

Proof. Note that every tilting class T is closed under pure submodules and direct

sums (see [28, Corollary 5.2.17]). Thus T is closed under pure quotients by [4,

Theorem 2.1(1)(b)]. Hence T is covering by [29, Theorem 2.5].

Since every cotilting class C is closed under pure submodules and direct products

by [28, Theorem 8.1.7], it follows from [29, Remark 2.6] that C is preenveloping. □

Now we determine when a right (n, d)-ring is right n-coherent.

Theorem 5.20. Let R be a ring and m a non-negative integer. Consider the

following statements:

(1) R is a right (n, d+m)-ring and R is right n-coherent;

(2) R is a right (n, d+m)-ring and SIn,d is closed under direct sums;

(3) R is a right (n, d+m)-ring and SIn,d is (pre)covering;

(4) SIn,d is an m-tilting class;

(5) SFn,d is an m-cotilting class of cofinite type;

(6) SFn,d is an m-cotilting class;

(7) R is a right weak (n, d+m)-ring and SFn,d is closed under direct products.

Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇒ (5) ⇒ (6) ⇔ (7). Moreover, if n ≥ d, then

(4) ⇒ (1); if n ≥ d+ 1, then (6) ⇒ (1).

Proof. (1) ⇒ (3) By Proposition 3.2, we obtain that In,d = SIn,d. On the other

hand, notice that in this case the n-presented right R-modules coincide with the

right R-modules of type FP∞. Hence, we deduce the equalities WId = In,d =

SIn,d. It follows from Proposition 4.1(5) that SIn,d is covering.

(3) ⇒ (2) is a consequence of [34, Proposition 2.6].

(2) ⇔ (4) Note that R is a right (n, d + m)-ring if and only if ⊥SIn,d ⊆ Pm by

Corollary 5.17(1). Also note that (⊥SIn,d, SIn,d) is a hereditary complete cotorsion

theory (see Theorem 3.8). The equivalence then follows from [4, Theorem 2.1(1)].

(4) ⇒ (3) By (2) and Proposition 5.19.
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(4) ⇒ (5) Let F be a left R-module and P any n-presented right R-module. Then

F ∈ SFn,d if and only if Tor1(Ki, F ) = 0 for all i > d, where Ki denotes the ith

syzygy of P . Let X be a set of representatives of ith (for any i > d) syzygy modules

of all n-presented right R-modules. Then SFn,d = X⊤ and SIn,d = X⊥.

Let U = X<∞. By [28, Theorem 5.2.20], SIn,d is of finite type, so SIn,d = U⊥.

Thus U⊤ is an m-cotilting class of cofinite type by [28, Theorem 8.1.2]. Next we

show that SFn,d = U⊤.

Note that ⊥(U⊥) = ⊥SIn,d = ⊥(X⊥). We may assume that both U and X
contain R. So, by [28, Corollary 3.2.4], every module in X is a direct summand of

a U-filtered module, and every module in U is a direct summand of an X -filtered

module; for the definitions of C -filtered modules we refer to [28, Definition 3.1.1].

Therefore, we infer from [28, Corollary 3.1.3] that U⊤ = X⊤ = SFn,d, as desired.

(5) ⇒ (6) is trivial.

(6) ⇔ (7) Similar to that of (2) ⇔ (4).

(4) ⇒ (1) Assume that n ≥ d and SIn,d is an m-tilting class. Then R is a right

(n, d+m)-ring since (4) and (2) are equivalent. It remains to show that R is right

n-coherent.

If n = 0, then d = 0. So SI0,0 is closed under direct limits. It follows from [23,

Theorem 3.1.17] that R is right noetherian.

If n > 0, we then conclude from the equivalence of (1) ⇔ (4) in Theorem 5.6

that R is right n-coherent.

(6) ⇒ (1) Suppose that n ≥ d + 1 and SFn,d is an m-cotilting class. Then every

direct product of copies of the left module RR belongs to SFn,d by [4, Theorem

2.1(2)]. Hence R is right n-coherent by [50, Proposition 3.1]. On the other hand, we

can mimic the proof of (4) ⇒ (1) to obtain that R is a right weak (n, d+m)-ring.

But then R is a right (n, d+m)-ring by [50, Proposition 2.6(3)]. □

Corollary 5.21. Suppose R is a right (n, d+1)-ring and R is right n-coherent. If

R is commutative, then SFn,d is closed under taking injective envelopes.

Proof. Combine Theorem 5.20 with [31, Proposition 3.11]. □

Remark 5.22. (1) Theorem 5.20 tells us that, a right (n, d)-ring R is right n-

coherent if and only if SIn,t is closed under direct sums for some non-negative

integer t ≤ n if and only if SIn,t is (pre)covering for some non-negative integer

t ≤ n. This generalizes and improves [32, Theorem 4.5], and answers the problem

in [32, Remark 4.7] when R is a right (1, d)-ring.
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(2) It seems reasonable to conjecture that a ring R is right n-coherent if and

only if SIn,t is closed under direct sums for some non-negative integer t ≤ n if and

only if SIn,t is (pre)covering for some non-negative integer t ≤ n.

6. G-(n, d)-rings: a Gorenstein analogue of Costa’s first conjecture

In this section, we deal with a Gorenstein analogue of Costa’s first conjecture.

First, we recall the definitions of Gorenstein projective and flat modules introduced

by Enochs and Jenda in [22] and [24]:

A complete projective resolution is an exact sequence of projective R-modules,

· · · → P1 → P0 → P−1 → P−2 → · · · ,

such that HomR(−, Q) leaves the sequence exact whenever Q is a projective R-

module; the module M = im(P0 → P−1) is then said to be Gorenstein projective.

A right R-module M is said to be Gorenstein flat [24] if there exists an exact

sequence · · · → F1 → F0 → F 0 → F 1 → · · · of flat right R-modules with M =

im(F0 → F 0) such that -⊗E leaves the sequence exact whenever E is an injective

left R-module.

Let M be an R-module. We say that M has Gorenstein projective dimension at

most n, and we write GpdR(M) ≤ n, if there exists an exact sequence of R-modules

0 → Gn → · · · → G0 → M → 0 where each Gi is Gorenstein projective. If there

is no such n, set GpdR(M) = ∞. The Gorenstein flat dimension, GfdR(M), is

defined similarly.

The right Gorenstein global dimension of rings is introduced in [8] as follows:

r.Ggldim(R) = sup{GpdR(M) | M is a right R-module}.
Recently, Christensen, Estrada and Thompson (see [15, Corollary 1.5 and Remark

1.6]) showed that

sup{GfdR(M) | M is a right R-module} = sup{GfdR(N) | N is a left R-module}
for any ring R. The common value of the quantities above is called the Gorenstein

weak global dimension of R and we denote it by Gwgldim(R).

Mahdou and Ouarghi [37] called a commutative ring R a G-(n, d)-ring if every

n-presented right R-module has Gorenstein projective dimension at most d. For a

general ring R, we give the following definition.

Definition 6.1. Let n and d be non-negative integers. R is called a right G-(n, d)-

ring if every n-presented right R-module has Gorenstein projective dimension at

most d; R is called a right weak G-(n, d)-ring if every n-presented right R-module

has Gorenstein flat dimension at most d.
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Proposition 6.2. Let R be a ring.

(1) R is a right G-(0, d)-ring if and only if r.Ggldim(R) ≤ d.

(2) R is a right weak G-(1, d)-ring if and only if Gwgldim(R) ≤ d.

Proof. The assertions (1) and (2) follow respectively from [20, Proposition 3.5]

and [36, Theorem 2.10]. □

Costa’s paper [16] concludes with a number of open problems for commutative

rings, including his first conjecture: given non-negative integers n and d, there is an

(n, d)-ring which is neither an (n, d− 1)-ring nor an (n− 1, d)-ring. This has been

answered positively for non-commutative settings in [33, Theorem 2.1]. In addition,

a right (n, d)-ring is always a right G-(n, d)-ring. So one might be interested to ask

the following question:

Question 1. For all non-negative integers n and d, give examples of rings R

satisfying the following conditions:

(1) R is a right G-(n, d)-ring;

(2) R is neither a right G-(n, d− 1)-ring nor a right G-(n− 1, d)-ring;

(3) R is not a right (n, d)-ring.

Such examples of rings for n = 0, 1 can be easily constructed by using Theorem

4.2(1) and Corollary 6.6 (see [7, Examples 3.4 and 3.8]). For n = 2, 3, examples

of rings R satisfying the conditions (1) and (2) in Question 1 are provided in [37,

Theorems 3.1 and 3.3].

Before answering this question in the positive for all non-negative integers n and

d, we need to study the transfer of the G-(n, d)-property to the finite direct sum of

rings; this requires two lemmas.

Lemma 6.3. Let R1 and R2 be two rings and let R = R1 ⊕R2. Then every right

R-module M has a decomposition that M = A⊕B, where A = M(R1, 0) is a right

R1-module and B = M(0, R2) is a right R2-module via ar1 = a(r1, 0) for a ∈ A,

r1 ∈ R1, and br2 = b(0, r2) for b ∈ B, r2 ∈ R2. Consequently, if M ′ = A′⊕B′ with

A′ ∈ MR1
and B′ ∈ MR2

, then

HomR(M , M ′) ∼= HomR1
(A, A′) ⊕ HomR2

(B, B′).

Proof. The assertion that M = A⊕B is obvious; see also [38, Lemma 3.14]. Now

let f ∈ HomR(M , M ′). Then for arbitrary a ∈ A and b ∈ B, one has

f(a+ b) = f(a) + f(b) = f(a(1R1)) + f(b(1R2)) = f(a)1R1 + f(b)1R2 .

But f(a)1R1
∈ A′ and f(b)1R2

∈ B′. It follows from this observation that

HomR(M , M ′) ∼= HomR1(A, A′) ⊕ HomR2(B, B′).
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□

For an R-module M , as in [45], we set λR(M) = sup{n: M is n-presented} (if

M is not finitely generated, set λR(M) = −1; if M is n-presented for each n ≥ 0,

set λR(M) = ∞).

Lemma 6.4. Let R1 and R2 be two rings and let R = R1⊕R2. If M = A⊕B with

A ∈ MR1
and B ∈ MR2

, then the following statements hold for any non-negative

integer n.

(1) λR(M) ≥ n if and only if λR1
(A) ≥ n and λR2

(B) ≥ n.

(2) pdR(M) ≤ n if and only if pdR1(A) ≤ n and pdR2(B) ≤ n.

(3) GpdR(M) ≤ n if and only if GpdR1(A) ≤ n and GpdR2(B) ≤ n.

Proof. (1) See [37, Lemma 2.8] or [40, Lemma 3.2].

(2) This is well-known; we include an elementary proof for the sake of completeness.

By induction on n, it suffices to prove the assertion for n = 0. If pdR(M) = 0,

then it is obvious that pdR1(A) = pdR2(B) = 0.

Let εR : X → Y → 0 be an arbitrary exact sequence in MR. Then, by Lemma

6.3, there exist an exact sequence εR1
: X1 → Y1 → 0 inMR1

and an exact sequence

εR2 : X2 → Y2 → 0 in MR2 such that εR = εR1 ⊕ εR2 . Note that

HomR(M, εR) ∼= HomR1
(A, εR1

)⊕HomR2
(B, εR2

)

again by Lemma 6.3. Hence, pdR1
(A) = pdR2

(B) = 0 implies that pdR(M) = 0.

(3) By induction on n, it suffices to prove the assertion for n = 0. If GpdR(M)

= 0, then GpdR1(A) = GpdR2(B) = 0 by [7, Lemma 3.2]. Now assume that there

exist a complete projective resolution in MR1

F : · · · → F1 → F0 → F 0 → F 1 → · · ·

with A = im(F0 → F 0), and a complete projective resolution in MR2

P : · · · → P1 → P0 → P 0 → P 1 → · · ·

with B = im(P0 → P 0). By Lemma 6.3, any projective right R-module Q is a

direct sum of a projective right R1-module Q1 and a projective right R2-module

Q2. Then

HomR(F⊕P, Q) ∼= HomR1
(F, Q1)⊕HomR2

(P, Q2)

again by Lemma 6.3. Hence F⊕P is a complete projective resolution in MR. Thus

GpdR(M) = 0. □
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Remark 6.5. Lemma 6.4(3) has been established in [7, Lemma 3.3] under the

additional assumption that the rings R1 and R2 are commutative and all projective

modules have finite injective dimensions.

Corollary 6.6. Let R1 and R2 be two rings and let R = R1 ⊕ R2. Then the

following statements hold for any non-negative integers n and d.

(1) R is a right (n, d)-ring if and only if both R1 and R2 are right (n, d)-rings.

(2) R is a right G-(n, d)-ring if and only if both R1 and R2 are right G-(n, d)-

rings.

Proof. This is a direct consequence of Lemma 6.4. □

Remark 6.7. Corollary 6.6(2) has been proved in [37, Theorem 2.7] under the

additional assumption that the rings R1 and R2 are commutative and have finite

Gorenstein global dimensions.

Now we answer Question 1 for all n ≥ 2.

Example 6.8. Let n ≥ 2 and d ≥ 0 be fixed integers. Let Q be the quiver with

n+ d+ 1 vertices, one arrow αi+1 from vertex i+ 1 to vertex i for each i ∈ {0, 1,
· · · , n+ d− 1}\{d}, infinitely many arrows {βj | j ∈ Z} from vertex d+1 to vertex

d, and infinitely many arrows {γj | j ∈ Z} from vertex d to vertex d+ 1.

•
n+d

αn+d// •
n+d−1

αn+d−1// · · ·
αd+3// •

d+2

αd+2// •
d+1

βj (j∈Z)
** •
d

γj (j∈Z)
kk

αd // •
d−1

αd−1// · · ·
α2 // •

1

α1 // •
0

Set R = S ⊕ T . Here S is the quotient of the path algebra of Q over an

algebraically closed field F by the ideal generated by the set of all paths of length

ℓ ≥ 2, and T is a quasi-Frobenius ring with rD(T ) = ∞. Then the following are

true for R:

(1) R is a right G-(n, d)-ring;

(2) R is not a right G-(n− 1, t)-ring for each non-negative integer t;

(3) R is not a right G-(m, d− 1)-ring for each non-negative integer m;

(4) R is not a right (n, d)-ring.

Proof. It has been shown in [33, Theorem 2.1] that S is a right (n, d)-ring. So

R is a right G-(n, d)-ring by Corollary 6.6(1). Note that finitely generated right

T -modules are n-presented, and T is not a right (0, d)-ring. Hence T is not a right

(n, d)-ring. Thus R is not a right (n, d)-ring by Corollary 6.6(2). This gives (1) and

(4).
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Now we consider the following exact sequences of right R-modules (see the proof

of [33, Theorem 2.1])

0 →
⊕
j∈Z

βjR → Pd+1 → · · · → Pn+d−1 → Pn+d → Sn+d → 0, (ζ1)

0 →
⊕
j∈Z

βjR
η−→ Pd+1 → γkR → 0, k ∈ Z, (ζ2)

0 →
⊕
j∈Z

γjR⊕ αdR → Pd → βkR → 0, (ζ3)

0 → P0
∼= α1R → P1 → · · · → Pd−1 → αdR → 0, (ζ4)

where Pi is the indecomposable projective right S-module corresponding to the

vertex i ∈ {0, 1, 2, · · · , n+d}, and Sn+d is the simple right S-module corresponding

to the vertex n+ d.

Since projective S-modules are also projective R-modules, we see from (ζ1) that

λR(Sn+d) = n− 1; hence, to prove (2), it suffices to show that GpdR(Sn+d) = ∞.

First, we argue that GpdR(γkR) ̸= 0 for any k ∈ Z; otherwise, we see from (ζ2)

that, the composition of the natural projection π :
⊕
j∈Z

βjR ↠ βkR and the injection

ι : βkR ↣ Pd+1 can be extended to Pd+1, i.e., there exists a non-zero endomorphism

f of Pd+1 such that ιπ = fη. By the construction of S, one can easily verify that

f(ed+1) = ued+1 (here ed+1 denotes the stationary path at the vertex d + 1) for

some non-zero element u ∈ F , i.e., f is an isomorphism of Pd+1. This forces that π

is monic, a contradiction. Thus GpdR(γkR) ̸= 0, and we conclude from (ζ1), (ζ2),

(ζ3) and [30, Proposition 2.7] that GpdR(Sn+d) = ∞. So (2) is true.

Finally we prove (3). From (ζ4) and the short exact sequence 0 → αdR → Pd →
L −→ 0 we get that λR(L) = ∞ and pdR(L) = d. So GpdR(L) = d > d − 1, and

(3) follows. □

We see from Corollary 5.11 that, if R is a right (n, d)-ring, then R is a right

max{n, d}-coherent ring. This raises the following:

Problem 1. Is every right G-(n, d)-ring right max{n, d}-coherent?

Costa [16, Sec. 7] asked whether R[x] is a right (n, d+ 1)-ring whenever R is a

right (n, d)-ring. We end this article with the following:

Problem 2. Let R be a right G-(n, d)-ring. Is R[x] a right G-(n, d+ 1)-ring?
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