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ABSTRACT 
 

 

 
Worldwide, breast cancer is quite widespread among many types of cancer. Early detection is crucial for 

effective treatment. While early detection does not cure cancer or prevent its recurrence, it significantly 

improves treatment outcomes. Regular breast cancer check-ups, including mammograms, play a vital role 
in early detection. The type of the observed tumour is also crucial. Therefore, our study utilized a range of 

deep learning methods to accurately classify distinct forms of breast cancer cells, including both benign 

and malignant varieties. The problem addressed in the study relies on the classification of tumour images 
as either benign or malignant. We used the augmented MIAS and INBREAST datasets, implementing 

fourteen deep learning models by adjusting different hyperparameter values. Aside from these, we 

trained a new model we created, the Hybrid Attention VGG16 model, on the datasets by adjusting the batch 
size and learning rate values used in other models. Our research has shown that initially models like 

VGG16, VGG19, ResNet50, ResNet101, EfficientNetV2B0 and EfficientNetV2L performed better at 

different hyperparameter values, whereas our proposed model, the Hybrid Attention VGG model, 
achieved one of the highest performance among deep learning models across many hyperparameter 

values and on both datasets, especially on the Augmented INBREAST dataset. Our newly proposed 

model, with its unique skip connection and attention mechanism, surpasses the accuracy of models 
employed in earlier studies, as demonstrated when comparing them in the literature. 

 

 
 

 

 

Introduction 

Cancer is a highly lethal illness that, if not detected in its 

early stages, can rapidly spread to other cells, resulting in 

severe harm to vital organs such as the pancreas, lungs, 

breasts, and blood. Notably, breast cancer is the most 

widespread kind of cancer among women worldwide. 

Breast cancer is a type of cancer that has a high mortality 

rate when not diagnosed early and accurately. In particular, 

it is necessary to determine the shade of the detected 

tumour. Mammography is one of the most helpful imaging 

tools used by radiologists to correctly diagnose breast 

lesions by performing many tests under challenging 

conditions. With the emergence of deep learning models, as 

opposed to traditional machine learning methods, with 

fewer data preprocessing steps, more successful results 

have been achieved through more complex models. 

Machine learning relies on manual feature extraction, 

whereas deep learning and artificial neural networks depend 

upon automatic feature extraction. Convolutional neural 

networks are a renowned and extensively utilized model in 

deep learning. A Convolutional Neural Network (CNN) is 

a form of artificial neural network specifically created to 

reduce the requirement for lengthy preprocessing. It is a 

deep, feed-forward network that utilizes a version of 

multilayer perceptrons. 

Since the advent of deep learning, numerous studies have 

been published that utilize deep architectures [1]. The 

Convolutional Neural Network (CNN) is the predominant 

deep learning architecture. Arevalo et al. [2] conducted a 

study where they tested and compared various 

Convolutional Neural Networks (CNNs) to detect masses 

using two manually designed descriptors. Their 

experimentation was performed using the dataset from the 

Breast Cancer Digital Repository Film Mammography [3]. 

Huynh et al. [4] employed the pre-trained AlexNet [5] for 

mass diagnosis without additional fine-tuning. Jias et al. [6] 

propose a method that fine-tunes a pre-trained 

convolutional neural network (CNN) utilizing a part of the 

digital database specifically designed to screen 

mammography (DDSM) database. Ting et al. [7] have 

developed and trained their breast mass classification 

network. Rampun et al. [8] employed a modified pre-trained 

and fine-tuned variant of AlexNet on a carefully selected 

subset of breast images from the DDSM dataset, known as 

CBIS-DDSM. Benign and malignant tumours are 

distinctly different. Round or oval shapes characterize 

benign tumours, while malignant tumours have 

unpredictable outlines. Furthermore, a comparison is 

made between 
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support vector machines (SVM) and artificial neural 

networks [9] to classify healthy, aberrant tissues, benign 

tumours, and malignant tumours [10]. The breast cancer 

classification techniques are presented in reference [11]. 

Several CNN designs are accessible, including CiFarNet 

[12], AlexNet, GoogLeNet [13], ResNet, VGG16, and 

VGG19 [14]. Transfer learning refers to utilizing a pre- 

existing model, which has been trained on a particular 

problem, to address a different situation. Training an 

extensive neural network from the beginning requires 

substantial data and computational resources. Data 

augmentation is a method that enlarges the training dataset 

by generating additional samples by implementing random 

alterations to the existing data [15]. The advantages of this 

include accelerating the convergence process, avoiding 

excessive adjustment, and enhancing generalization 

capabilities [16]. A practical method is to make subtle 

modifications to limited datasets, such as translation, 

zooming, flipping, mirroring, rotation, and so on [17]. 

The primary focus of this research is to highlight the 

significance of the Hybrid Attention VGG model, which is 

a more efficient and innovative model for classifying 

benign and malignant breast cancer. This study stands out 

from others in its emphasis on this particular model. Our 

objective is to showcase the effectiveness of this model by 

conducting a comparative analysis with fourteen deep- 

learning models on two distinct datasets, applying a range 

of hyperparameter values. The models in examining are 

VGG16, VGG19, DenseNet121, DenseNet169, ResNet50, 

ResNet101, MobileNet, MobileNetV2, InceptionV3, 

InceptionResNetV2, Xception, NasNetMobile, 

EfficientNetV2B0 and EfficientNetV2L. The 

investigation used mammography images from the 

Mammographic Image Analysis Society (MIAS) and 

INBREAST databases. We acquired both datasets, which 

employed diverse augmentation strategies, in PNG 

format. We categorised the dataset into separate folders 

based on the benign and malignant classes; then, we 

retrieved the class labels from these folders. 

The following sections of the article are arranged in the 

following manner: Section 2 provides a concise overview 

of the datasets utilised for mammography imaging and the 

augmentation strategies employed. Chapter 3 focuses on the 

deep learning models used in this classification assignment 

and comprehensively explains the newly presented model. 

Section 4 contains the performance criteria utilised to assess 

and compare the achievements of these models. Section 5 

presents the performance metrics of the deep learning 

models employed and our proposed model across various 

hyperparameter values and datasets. It also includes 

graphical representations of accuracy and loss values during 

the training and validation stages for the most successful 

models and our proposed model. Additionally, the results of 

the confusion matrix are provided. Chapter 6 evaluates the 

results, examining the effectiveness of our model 

concerning prior studies and mentioning possible avenues 

for further research. Chapter 7 is a conclusion section that 

explains the reasons behind the success of the suggested 

model and presents information regarding future study. 

Materials and Methods 

Imbalanced Datasets and Data Augmentation 

Techniques 

The problem of imbalanced datasets frequently arises in 

numerous classification tasks. An imbalanced dataset 

arises when one or more classes possess markedly fewer 

samples than others, resulting in disproportionate 

representation among the classes. 

In breast cancer medical statistics, malignant tumour cells 

are typically significantly less than benign tumour cells. 

Data augmentation approaches represent a practical 

approach. This technique enhances the minority class or 

several classes using diverse augmentation methods. 

In the dataset utilised, 106 images of breast masses were 

picked from the 410 mammograms in the INbreast 

database for this investigation. This study boosted the 

amount of breast mammography images to 7632 through 

data augmentation, comprising 2520 benign and 5112 

malignant tumours. Primarily, horizontal or vertical flips 

and rotations between 30 and 330 degrees have been 

utilized. The augmented MIAS dataset includes 2376 

benign and 1440 malignant masses, comprising 3816. 

Figure 1 provides information about the augmented 

datasets. Augmentation techniques have been used for both 

classes in the datasets [18]. 
 

Figure 1. The augmented datasets and the counts of benign 
and malignant masses 

Rotation involves adjusting the position of an image by a 

specified angle, either in a clockwise or anticlockwise 

direction. This method enhances the model's ability to 

identify things from various perspectives and augments 

data diversity. In medical imaging, rotating mammography 

images of masses enables the model to learn to recognize 

the same mass from several viewpoints, hence enhancing 

its generalization capability. Nevertheless, rotation can 

occasionally damage the inherent structure of the data, 

necessitating cautious use. 

Flipping denotes the reflection of an image across a 

horizontal or vertical axis. Horizontal flipping reflects the 

image laterally, but vertical flipping reflects it vertically, 

so augmenting the dataset and enhancing its diversity. This 

enables the model to identify objects from various 

orientations. In medical imaging, such as mammograms, 

horizontal flipping can assist the model in accurately 

analyzing both breasts. Nonetheless, as flipping may 

modify the anatomical structure in certain instances, 

particularly in medical circumstances, it should be 

executed with prudence. 
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Dataset 

The collection comprises mammography images 

depicting both benign and malignant tumours. The 

collection consists of 106 mass photographs obtained 

from the INBREAST dataset, 53 mass images from the 

MIAS dataset, and 2188 from the DDSM dataset. 

Subsequently, they utilize data augmentation and 

contrast-limited adaptive histogram equalization 

approaches to preprocess the images. The INBREAST 

dataset has 7632 photos after data augmentation, the 

MIAS dataset contains 3816 images, and the DDSM 

dataset contains 13128 images. Furthermore, they 

consolidate the INBREAST, MIAS, and DDSM datasets. 

The images' overall size was adjusted to 227*227 pixels 

[18]. 

This work utilized a dataset [18] in which each image 

was annotated with the matching breast density. The 

DICOM files containing the original pictures from the 

mammography database were transformed into PNG 

files. The initial 106 photos have undergone the 

application of contrast-limited adaptive histogram 

equalization (CLAHE), a method used for image 

preparation. Furthermore, with CLAHE, the data is 

enhanced by rotating it at various angles (The values of θ 

are 30, 60, 90, 120, 150, 180, 210, 240, 

270, 300, and 330 degrees). Subsequently, the original 

and 11 rotated images are flipped horizontally and 

vertically. This approach has also been discovered to 

mitigate the problem of overfitting. 

A breast cancer tumour can be categorized as either 

benign, indicating that it poses no threat to one's health, 

or malignant, indicating that it has the potential to be 

destructive and deadly. Benign tumours are non- 

malignant as their cells closely resemble normal cells; 

they grow gradually and do not infiltrate nearby tissues or 

metastasize to other body areas. Malignant tumours are 

characterized by their malignant nature. If left untreated, 

malignant cells have the potential to metastasize and 

spread to other regions of the body, extending beyond the 

boundaries of the initial tumour. Malignant tumours are 

lethal due to their dramatically faster growth rate 

compared to benign tumours. 

Augmented MIAS Dataset 

This study utilized the augmented MIAS dataset, which 

included PNG images. The dataset included 2456 

samples labelled as Benign and 1440 as Malignant. 

 
 

Figure 2. Some images from the Augmented MIAS 
dataset and their classes 

Figure 2 shows two classes of mammogram images: benign 

and malignant. Benign is the type of tumour with good 

behaviour, while malignant is the tumour type with bad 

behaviour. Benigns often have a modest growth rate, a 

small geographic range, and a capsule surrounding them to 

prevent direct interaction with nearby tissues. Benign 

tumours do not exhibit metastases. Malignant is a type of 

tumour that can be considered cancer. A primary tumour is 

a malignant growth originating in a specific body location. 

Conversely, the tumours that develop in other parts of the 

body due to this tumour are called metastases. 

Augmented INBREAST Dataset 

For this investigation, we utilized the augmented 

INBREAST dataset, comprising 2520 images classified as 

Benign and 5112 images classified as Malignant. 

 

Figure 3. Some images extracted from the augmented 
INBREAST dataset and their corresponding class 

labels are displayed. 
 
 

Figure 3 shows an image for each class of the augmented 

INBREAST dataset. 

Deep Learning Models 

Artificial Intelligence technologies are improving day by 

day. Deep learning models are beneficial when there is a 

high level of computational complexity and a need to 

classify massive datasets. Over the past ten years, deep 

learning in histopathology has gained interest due to its 

state-of-the-art performance in tasks including 

classification and localization. Convolutional neural 

networks are deep learning frameworks that produce 

impressive results in tissue image processing. Deep learning 

makes it possible to learn directly from data. Deep learning 

is a method of image classification that uses many data to 

achieve highly successful results using a complex model. In 

this study, we are therefore using fourteen deep learning 

models, described in more detail below, to classify images 

of breast cancer. Apart from the existing models, we 

developed a new Hybrid Attention VGG model, to increase 

success in this classification problem. 

For this purpose, we used Google Colab and L4 cloud GPU, 

which has 24 GB VRAM memory for calculation. We set 

the hyperparameter values as epoch=25 and 

optimizer=”Adam”. We used models trained on the 

ImageNet [19] dataset through fine-tuning and Transfer 

Learning. 
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Transfer Learning[20] is a machine learning technique 

that leverages acquired information from one activity to 

enhance performance on a related task. This approach 

has been extensively implemented in diverse domains, 

including computer vision, natural language processing, 

and speech recognition. 

This study tested different hyperparameter values for 

both datasets and deep learning models as 

hyperparameter optimization. We tried a learning rate of 

0.001 and 0.0001. We conducted our analysis using batch 

size values of 16, 32, and 64. To get better results, during 

the training phase of the model, we assign the same 

values to the hyperparameters for all models. Within the 

data splitting stage, a specific portion of the data set, 

amounting to 15%, is allocated as the test set. The 

validation set comprises 20% of the data. During the 

training phase, the models processed the data in PNG 

image format containing only two class labels: Benign 

and Malignant. In the study, we classified the 

characteristics of the tumour images using only images 

with tumours. We utilized accuracy, precision, recall, f1- 

measure, Cohen Kappa score, and Roc auc score as 

performance metrics to compare and evaluate the 

classification models. In addition, we utilized a confusion 

matrix to assess the outcomes. 

Vgg-16 : VGG16 comprises three completely connected 

layers and thirteen interconnected convolutional layers. 

The initial two convolutional layers consist of 64 filters, 

each with a dimension of 3 x 3. Subsequently, there are 

two further layers, each composed of 128 filters, two layers 

with 256 filters, two layers with 512 filters, and 

ultimately, the last layer with 512 filters. Beyond the 

layers of convolution, there are three fully linked layers, 

each composed of 4096 neurons. Subsequently, there is a 

classification layer with 1000 neurons. [21]. 

Vgg-19 : VGG19 comprises 19 layers: 16 convolutional 

and three fully connected. The first two convolutional 

layers comprise 64 filters, measuring 3 × 3 pixels. These 

are then succeeded by two more layers, each containing 

128 filters, followed by four layers with 256 filters, four 

layers with 512 filters, and finally, one layer with 512 

filters. After the convolutional layers, there are three fully 

connected layers, each consisting of 4096 neurons, and a 

classification output layer with 1000 neurons. [22], [23]. 

DenseNet-121 : DenseNet contains two additional 

essential blocks in addition to the typical convolutional 

and pooling layers. The designs of the convolution block, 

pooling layer, transition layer, and classification layer are 

all shared by DenseNet's different versions. All DenseNet 

versions, however, have a distinct set of four 

DenseBlocks with various repeat times [24]. The first 

convolutional block consists of 64 filters with 

dimensions of 7 x 7 and a stride of two. Afterwards, a 

Max Pooling layer can be constructed with a stride of two 

and a 3 × 3 max pooling arrangement. A convolutional 

block is made up of the input layer, that is subsequently 

followed by the Batch Normalization, ReLu activation, 

and Conv2D layers. Every dense block has two 

convolutions with 1 × 1 and 3 × 3 kernel sizes. 

DenseNet-121 [24] is a specific type of neural network 

architecture. The blocks denoted as "dense Block1," "dense 

Block2," "dense Block3," and "dense Block4" are iterated 

6, 12, 24, and 16 times, correspondingly. 

DenseNet-169 : DenseNet-169 [24] is a convolutional 

neural network architecture. The blocks denoted as "dense 

Block1," "dense Block2," "dense Block3," and "dense 

Block4" are replicated 6, 12, 32, and 32 times, respectively. 

ResNet-50 : ResNet-50 [25] is a deep CNN design that 

circumvents the vanishing gradient problem by learning 

from deep networks through residual connections. Its fifty 

levels include convolutional layers, batch normalization 

layers, ReLU activation functions, and fully connected 

layers. Additionally, ResNet50 uses a skip connection to 

bypass a few network layers and efficiently learns high- 

level and low-level features. 

ResNet-101 : The ResNet-101 architecture is composed of 

101 layers. Based on the Residual neural network learning 

approach, this architecture is considered one of the most 

advanced architectures for ImageNet [19] due to its depth. 

Compared to other architectures, the primary distinguishing 

characteristic of Resnet-101 is its optimization of the 

discrepancies between the input and required convolution 

qualities. Obtaining desired characteristics is more 

effortless and effective than obtaining alternative designs. 

Therefore, residual optimization can be performed to 

decrease the number of parameters in a more complex 

network. To attain a more optimal result, it is possible to 

reduce the number of layers by minimizing the number of 

parameters [26]. 

The ResNet architecture incorporates a ResBlock layer to 

transfer information from the previous layer to the new 

layer, enabling the learning of information not captured in 

the prior layer. The ResBlock layer in the Resnet design 

transmits residual values to the subsequent layer. This skip 

connection, placed between the weight layers and the Relu 

activation code at every two-layer activation, modifies the 

system's output [27]. 

MobileNet : A deep learning architecture called MobileNet 

[28] is appropriate for quickly and precisely analyzing 

medical images, particularly regarding BC diagnosis. 

MobileNet's focus on computational efficiency makes it 

possible to extract information from mammography images 

efficiently, facilitating the identification of minute patterns 

or anomalies linked to breast cancer. MobileNet is perfect 

for contexts with limited resources since it optimizes 

memory consumption and computational effort through 

depthwise separable convolutions. Integrating the ReLU6 

activation mechanism further improves efficiency and 

compatibility with medical imaging devices. MobileNet 

presents a valuable option for BC analysis, yielding precise 

outcomes with minimal computing overhead. 
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MobileNet-V2 : MobileNet-V2 [29] builds upon the 

Depthwise Separable technique used in MobileNetV1 and 

incorporates the residual structure. It has been discovered 

that the Rectified Linear Unit (ReLU) leads to 

significant information loss in feature maps with just 

a few channels. As a result, linear bottlenecks and 

inverted residuals were developed as solutions. 

MobileNet-V2 maintains the structural simplicity of 

MobileNet-V1, enabling the same level of precision 

without requiring additional specialised procedures. 

MobileNet-V2 is specifically designed to investigate 

the capabilities of neural networks and create a 

network architecture that is both simple and 

efficient. The research primarily focuses on two 

areas: the utilisation of optimization approaches, 

such as evolutionary algorithms and reinforcement 

learning, for conducting framework searches [30] 

and the management of the "BottleNeck" Structure 

[31]. MobileNet-V2 incorporates two crucial 

innovations: line bottlenecks and inverted residuals 

and implementing the 3×3 depth-separable 

convolution. The linear bottleneck arises due to the 

linear transformation of the "manifold of interest" 

region, which may have a non- zero value following 

the ReLU process. Furthermore, following the ReLU 

activation function, a portion of the channel 

information will be discarded. The rationale behind 

incorporating inverted residuals is that the bottleneck 

already encompasses the essential information. 

Hence, the shortcut immediately connects the two 

bottlenecks. Furthermore, initially increasing the 

dimensionality, followed by feature extraction and 

subsequent dimensionality reduction, is employed 

because of the higher significance of information in 

the low-dimensional space. 

Inception-V3 : Inception-V3 model's input layer 

supports shape images (299, 299, 3). The input image 

performs spatial dimension reduction and fundamental 

attribute extraction by utilizing two convolutional layers, 

max pooling and batch normalization. Convolutional 

filters and pooling techniques are present in the Inception 

modules. The outputs of the concatenated modules pass 

on to the subsequent module. Modules 5 and 11 of the 

Inception introduce two more classifiers. Each consists 

of two fully connected layers with ReLU activation, a 

global average pooling layer, and a classification softmax 

layer. The ultimate layer includes a global average 

pooling layer, a classification softmax output layer, and a 

fully connected layer [32]. 

InceptionResNet-V2 : InceptionResNet-V2 is the 

combination of the Inception and ResNet networks. In its 

164 layers, skip connections improve gradient propagation 

during training. The stem module, classification layer, and 

several Inception-ResNet-A, B, and C modules utilize 

convolutional, pooling, and activation layers to analyse 

images. The Inception-ResNet-A, B, and C modules 

gather features at various scales using max pooling and 1 

× 1 convolutions. Ultimately, the classification layer 

generates class predictions using a fully linked layer and a 

global average pooling layer [33]. 

Xception: Xception is a complex neural network structure 

that utilizes Depthwise Separable Convolutions. Google 

employee researchers developed this technology. Google 

introduced the concept of Inception modules in 

convolutional neural networks as a transitional stage 

between ordinary convolution and the depthwise separable 

convolution operation, which involves doing a depthwise 

convolution followed by a pointwise convolution [34]. 

NasNetMobile : Nasnet is a convolutional neural network 

(CNN) architecture designed to be scalable. It is developed 

using a process called neural architecture search. The 

architecture comprises fundamental building blocks called 

cells optimised via reinforcement learning [35]. A cell 

consists of limited processes, including separable 

convolutions and pooling, and is iterated numerous times 

based on the desired network capacity. The mobile version, 

known as Nasnet-Mobile, comprises 12 cells and has 5.3 

million parameters and 564 million multiply-accumulates 

(MACs). 

EfficientNetV2B0 : EfficientNetV2B0 [41] is the smallest 

and most fundamental variant of the EfficientNet [41] 

series, engineered as a convolutional neural network to 

optimize efficiency in deep learning applications. The 

model seeks high accuracy with a reduced number of 

parameters by the "compound scaling" method, which 

optimizes the equilibrium among width, depth, and 

resolution. Moreover, it is organized with Mobile Inverted 

Bottleneck Conv (MBConv) blocks, which provide rapid 

and efficient computing. 

The model exhibits remarkable efficacy, especially in 

image classification, object detection, and image 

segmentation. Employing data augmentation techniques 

during training enables favourable outcomes even with 

limited data. EfficientNetV2b0, providing a robust 

alternative for research and practical applications, has a 

significant position in deep learning. 
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EfficientNetV2L : EfficientNetV2L [41], a larger and 

more potent iteration of the EfficientNet series, delivers 

enhanced performance on intricate jobs owing to its 

increased number of layers and parameters. 

EfficientNetV2L employs a "compound scaling" 

methodology to improve the equilibrium among breadth, 

depth, and resolution, whereas EfficientNetV2B0 is a 

more compact model intended for operation with reduced 

resources. Furthermore, EfficientNetV2L leverages 

enhanced training methodologies and optimised MBConv 

blocks, enabling it to attain superior accuracy with 

extensive datasets. Thus, EfficientNetV2L is superior for 

large-scale applications, while EfficientNetV2B0 delivers 

rapid and efficient outcomes with reduced resource 

demands. 

Hybrid Attention VGG (Proposed Method): 

Initially, in creating this proposed model, VGG-16, VGG- 

19, ResNet50, and ResNet101 were experimented with as 

basis models. After comparing the performances of the 

models produced from these basic models on two datasets, 

it was decided to choose VGG16 as the base model. When 

we take the VGG16 model as the base, it has been observed 

that the Hybrid Attention Network is more successful in 

most hyperparameter values and both datasets. 

Model Architecture: 

The HybridAttentionVGG model is constructed by 

extending the pre-trained VGG16 model with the following 

architecture: 

The VGG16 model, in its base form, is utilised without 

including the completely connected layers at the top. It acts 

as the feature extractor, using its deep and well-established 

convolutional layers to capture intricate visual features. 

The Hybrid Attention Block is a newly introduced one 

that follows the VGG16 base architecture. This block 

applies Global Average Pooling to capture the overall 

context of the input. 

It employs dense layers to acquire channel-wise attention 

weights highlighting the most significant characteristics. 

The original and attention-refined feature maps are 

combined using a skip link, guaranteeing raw and refined 

information preservation. 

Flatten Layer: Transforms the two-dimensional output 

from the attention block into a one-dimensional feature 

vector, which can be used as input for dense layers. 

A fully connected layer is included, incorporating Batch 

Normalization and Dropout techniques to enhance feature 

learning and regularization. 

The output layer comprises a dense layer employing a 

softmax activation function for classification. 

 

 

Figure 4. The layers of the proposed model and the 
connections between the architecture of the proposed 

model 
 
 

Figure 4 depicts the structure of this model. The 

HybridAttentionVGG model improves upon the pre-

trained VGG16 architecture by incorporating a novel 

Hybrid Attention Block to enhance learning features. This 

block utilizes global average pooling to capture the overall 

context and employs dense layers to calculate attention 

weights for each channel, highlighting significant aspects. 

The model uses a skip connection to combine the initial 

VGG16 output with the attention-refined features, 

preserving unprocessed and enhanced information to 

enhance learning. After that, the model employs flattened 

and fully linked layers using Batch Normalization and 



DUJE (Dicle University Journal of Engineering) 16:1 (2025) Sayfa 27-47 
 

33 

 

Dropout to analyse the features further before performing 

classification. The new integration of attention techniques 

and classic CNN layers achieves a favourable equilibrium 

between simplicity and improved performance, rendering it 

highly suitable for applications requiring concentrated 

feature extraction. 

Essential Architectural Elements: 

The VGG16 base model is a powerful feature extractor pre- 

trained on the ImageNet[19] dataset. It is well-regarded for 

its straightforward design and effectiveness in extracting 

hierarchical features. 

The Hybrid Attention Block is this concept's core 

breakthrough. The system dynamically adjusts the feature 

maps, taking into account their significance, and then 

merges them with the original features using a skip 

connection. 

A dense layer with batch normalization and dropout 

enhances the recovered features from the attention block 

and mitigates the risk of overfitting. 

The Softmax Output Layer generates probability 

distributions for classification problems. 

Significance of this Model: 

Blends straightforwardness and ingenuity: This model 

successfully integrates VGG16's straightforwardness with a 

lightweight yet potent attention mechanism, effectively 

closing the divide between user-friendliness and improved 

performance. 

Enhanced Feature Learning: By incorporating an attention 

mechanism, the model acquires the ability to concentrate on 

the most significant characteristics. This has the potential to 

enhance performance on tasks that require highlighting 

critical aspects, such as object detection and medical 

imaging. 

The model is both flexible and lightweight, as it does not 

substantially increase computational complexity compared 

to the base VGG16. This makes it well-suited for 

applications with limited resources. 

Benefits of HybridAttentionVGG: 

The attention block improves feature representation by 
selectively emphasising the most pertinent regions of the 
image. This results in improved generalisation, particularly 
on intricate datasets where not all features have the same 
significance level. 

The benefits of skip connections lie in the ability to merge 
raw and refined features, allowing the model to preserve a 
broader range of information. This reduces the likelihood of 
losing potentially valuable information that the attention 
mechanism could overlook. 

Regularisation techniques such as Batch Normalization and 
Dropout are employed in the dense layers to enhance 
training stability and mitigate overfitting, which is 
especially crucial in deep learning models. 

The use of a pre-trained VGG16 model in transfer learning 
becomes advantageous, particularly in scenarios with a 

scarcity of data. The model can rapidly adjust to new tasks 
by making small adjustments to a smaller number of layers. 

Effortlessness and straightforwardness of implementation: 
The architecture is uncomplicated to execute, alter, and 
comprehend. This makes it an excellent option for 
practitioners exploring attention mechanisms without 
delving into excessively intricate models such as 
transformers. 

Drawbacks of Hybrid Attention: 

Possible Exaggeration of Specific Features: The attention 
mechanism can excessively concentrate on some features, 
potentially disregarding other features that may be less 
apparent but nonetheless significant for certain activities. 

Limitations of Dependency on VGG16: While serving as 
a robust benchmark, VGG16 is rather outdated compared 
to more recent architectures like ResNet or EfficientNet. 
The model may not utilise certain advanced strategies 
included in such models, such as residual connections or 
advanced activation functions. 

Utilisation Scenarios and Prospective Implementations: 

Medical imaging: The attention mechanism can be utilised 
in tasks such as tumour identification to prioritise the most 
significant regions over others, hence enhancing the focus 
on the most relevant parts. 

Object Detection and Localisation: This approach applies 
when certain regions of a picture hold more importance than 
others, such as identifying particular objects in crowded 
scenes. 
Satellite Image Analysis: Attention processes can be used in 
remote sensing to improve predictions by enhancing the 
ability to differentiate between small characteristics in huge 
images. 

Performance Metrics 

Fourteen deep-learning models and the proposed model 

were analyzed using augmented mammogram images from 

MIAS and INBREAST datasets. Comparisons with other 

deep learning models have been made to demonstrate the 

algorithm's superiority in breast cancer diagnosis. This 

classification's most commonly used comparison criteria 

are accuracy, precision, recall, F1-score, Cohen Kappa 

score, Roc Auc score and confusion matrices. 

Accuracy : Accuracy is the ratio of correctly identified 

samples in the evaluation dataset to the total number of 

samples. This metric is frequently used in machine learning 

applications in the medical field, but it is also notorious for 

its potential to mislead when dealing with imbalanced class 

distributions. This is because reaching high accuracy can be 

easily accomplished by assigning all samples to the 

dominant class. The accuracy is limited to a range of 0 to 1. 

A value of 1 indicates that all positive and negative samples 

are correctly predicted, while 0 indicates that none of the 

positive or negative samples are predicted correctly. 
 

𝑇𝑃 + 𝑇𝑁 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 
(1) 
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Precision : Precision is the measure of the ratio of correctly 

identified samples to all samples assigned to a particular 

class, indicating the proportion of relevant retrieved 

samples. It is a quantitative measure that fluctuates between 

0 and 1. A precision score of 1 signifies that all samples in 

the class were accurately predicted, while a score of 0 

indicates that no valid predictions were produced. 
 

𝑇𝑃 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   

𝑇𝑃 + 𝐹𝑃 
(2) 

 

 

Recall : The recall, often referred to as the sensitivity or 

True Positive Rate (TPR), represents the proportion of 

positive samples that are accurately classified. It is 

computed by dividing the number of correctly classified 

positive samples by the total number allocated to the 

positive class. The recall metric is defined within the range 

of [0, 1], with 1 indicating a precise prediction of the 

positive class and 0 indicating an inaccurate prediction of 

all positive class samples. This statistic is considered one of 

the most crucial in medical studies because it aims to 

minimize missed positive cases, resulting in a high recall 

rate. 
 

𝑇𝑃 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 + 𝐹𝑁 
(3) 

 

 

F1 Score : The F1 score is computed by calculating the 

mean harmonic of precision and recall, resulting in a 

measure penalizing excessive values of either metric. This 

metric exhibits asymmetry between the classes, meaning 

that its value is contingent upon the designation of one class 

as positive and the other as negative. For instance, if there 

is a significant positive class and a classifier inclined 

towards this majority, the F1 score, which is directly related 

to the true positive (TP) rate, would be high. Modifying the 

class labels to make the negative class the dominant one and 

introducing a bias towards the negative class in the classifier 

will decrease the F1 score, even though there have been no 

changes in the data or the distribution of classes. The F1- 

score is constrained within the range of [0, 1], with 1 

indicating the highest precision and recall and 0 indicating 

no precision or recall. 
 

2 × 𝑇𝑃 
𝐹1 𝑆𝑐𝑜𝑟𝑒 =   

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
(4) 

Cohen Kappa Score : The reliability of raters for inter- 

rater and intra-rater agreement in categorising data can be 

assessed using Cohen's Kappa value (K). Due to its 

consideration of the possibility of coincidental agreement, 

most individuals perceive it as a more precise method to 

measure agreement than a straightforward percentage 

agreement. While it can be adapted for situations involving 

more than two raters, it is commonly used in contexts where 

there are just two raters. In binary classification models, one 

rater acts as the classification model, while the second is an 

observer who knows the true classifications for each record 

or dataset. Cohen's Kappa considers the level of agreement 

amongst raters in terms of both true positives and negatives, 

as well as false positives and negatives. Cohen and Kappa 

can assess overall agreement and agreement by considering 

random factors. The Cohen's Kappa score (κ) is a metric 

used to evaluate the performance of classification models 

by measuring the level of agreement between two raters: a 

real-world observer and the classification model. It 

considers both the perfect agreement and the agreement that 

could occur by chance. Po is the measured level of 

agreement between the raters. Pe represents the probability 

of obtaining an agreement by chance. 
 

𝑃𝑜 − 𝑃𝑒 
𝜅 = 

1 − 𝑃𝑒 
(5) 

Roc Auc Score : The Receiver Operating Characteristics 

(ROC) is a statistical measure that evaluates the 

performance of a binary classification model. The ROC 

curve is a visual depiction of the performance of a binary 

classification model. ROC is an acronym for receiver 

operating characteristics. The function visually illustrates 

the correlation between the true positive rate (TPR) and the 

false positive rate (FPR) at different categorisation 

thresholds. 

The Area Under Curve (AUC) is a quantitative measure 

representing the extent of the region bounded by the ROC 

curve. The metric evaluates the holistic effectiveness of the 

binary classification model. Since both the true positive rate 

(TPR) and the false positive rate (FPR) have values between 

0 and 1, the area under the curve (AUC) will also always fall 

within this range. A higher value of AUC indicates superior 

model performance. The primary objective is to optimize 

the area to achieve the maximum true positive rate (TPR) 

and the lowest false positive rate (FPR) at the specified 

threshold. The AUC quantifies the likelihood that the 

model would assign a higher predicted probability to a 

randomly selected positive case than a randomly selected 

negative instance. 
 

𝑇𝑃 
𝑇𝑃𝑅 = 

𝑇𝑃 + 𝐹𝑁 
(6) 

𝐹𝑃 
𝐹𝑃𝑅 =   

𝐹𝑃 + T𝑁 
(7) 

 

 

Confusion Matrix : Confusion matrices are utilised to 

assess the efficacy of machine learning algorithms by 

contrasting their predictions with the data's actual labels. 

The predictions are organised in a grid structure, with rows 

representing the predicted classes and columns representing 

the actual classes. This configuration facilitates the 

comprehension of the model's performance in classified 

various classes. The matrix has measures such as True 

Positive (accurately predicted positive samples), True 

Negative (accurately predicted negative samples), False 

Positive (incorrectly classified negative samples), and False 
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Negative (incorrectly classified positive samples). The 

selection of the null hypothesis determines how these 

metrics are interpreted within the matrix. 

Results 

In our study, the models were trained on two datasets: the 

Augmented MIAS and the Augmented INBREAST. In 

addition to the existing fourteen deep learning models, 

our proposed HybridAttentionVGG model has utilized 

different hyperparameter values with learning rates of 

0.001 and 0.0001, and batch sizes of 16, 32, and 64. The 

model was trained using the pre-trained ImageNet[19] 

model by transfer learning, utilizing the Adam optimizer 

for 25 epochs. The accuracy, precision, recall, F1-score, 

Cohen's kappa score, and ROC AUC score values of these 

models are shown in Figure 5 and Figure 6. 

 

 

 
Figure 5. The performance metrics of the first eight deep learning models trained on two different datasets and 

the different hyperparameter values of these models. 
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Figure 6. The performance metrics of six deep learning models trained later and the performance metrics of our 
proposed Hybrid Attention VGG model, comparing all models to determine some of the best models before and 

after our proposed model, as well as the Accuracy and F1-score values of these models. 
 
 

Figure 6 displays the preceding and subsequent models that achieved the some of the highest level of success, alongside 

the Accuracy and F1-Score values employed for their evaluation and comparison. The models highlighted in red 

represent our models and some of the most influential models for each dataset. 
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Figure 7. Before the proposed model, the loss and accuracy graphs of some of the most successful models based 
on the learning rate as a hyperparameter for two different datasets. 

 
 

In Figure 7, the loss and accuracy values for training and validation are presented for some of the most successful models 

among the fourteen deep learning models before the proposed model, in both datasets and learning rates. 
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Figure 8. Before the suggested method, the confusion matrices of some of the most influential models were 
analyzed using the learning rate as a hyperparameter for two distinct datasets. 

 
 

Figure 8 shows the confusion matrix values for some of the most successful models among the fourteen deep learning 

models for both datasets and the learning rate before the proposed model. 
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Figure 9. After the proposed model, the loss and accuracy graphs of some of the most successful models based on 
the learning rate as a hyperparameter for two different datasets. 

 
 

Figure 9 displays the loss and accuracy values for training and validation of some of the most successful models out of 

fifteen deep learning models. The proposed model was incorporated following training on both datasets with diverse hyperparameter 

values, including the learning rate. The graph presents these values based on the number of epochs. 
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Figure 10. Following the suggested methodology, the confusion matrices of some of the best effective models 
are presented for two distinct datasets, considering the learning rate as a hyperparameter. 

 
 

The confusion matrix values for some of the best-performing models out of fifteen deep-learning models are shown in 

Figure 10. These values were obtained by including the suggested model in both datasets and varying the learning rate. 
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GRAD-CAM: GRAD-CAM(Gradient-weighted Class 

Activation Mapping) is a method employed to 

visualize the regions of interest that a deep learning 

model prioritizes during decision-making, particularly 

in image classification tasks. It enhances the 

transparency of the model's decision-making process 

by indicating which features influenced the 

classification of a specific class. GRAD-CAM 

enhances model reliability by examining accurate and 

inaccurate classifications, pinpointing areas of focus, 

and resolving potential problems. In medical image 

analysis, it can improve clinical applications by 

confirming whether the model is concentrating on 

pertinent areas. 

GRAD-CAM utilizes gradients from the last 

convolutional layer to produce a heatmap that 

emphasises the pixels deemed significant by the model. 

The places that significantly influence the model's 

choice are represented in warm hues (red, orange), 

whilst regions of lesser importance are depicted in 

cooler tones (blue). The results assess the model's 

accuracy in classifications and its attention to 

significant regions within the image. 

 

 

 
 

 

 

Figure 11. GRAD-CAM outputs of mammography images from both categories in two datasets for the VGG19, 
RESNET50 models, and our suggested model. 
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Figure 12. Mammogram images from two distinct classes sourced from both datasets, along with the GRAD- 

CAM outputs of the RESNET101, EFFICIENTNETV2B0, and EFFICIENTNETV2L models. 

Figures 11 and 12 illustrate the GRAD-CAM outputs of the decision structures of the highest-performing models on 

mammograms from each dataset and class. In the GRAD-CAM output, the areas where the model focuses are depicted 

with varying color tones. Warm colors (red, orange, yellow) highlight the regions that contribute the most to the model's 

decision, reflecting the key features the model considers important. On the other hand, cool colors (blue, purple) show the 

areas that the model pays less attention to or disregards. This visualization clearly illustrates which parts of the image the 

model takes into account during the classification process. 

 

 

Figure 13. The training durations of high-performing models 
 
 

Although the attention mechanism usually increases computational cost, the training times for Hybrid Attention VGG 

were observed to be average compared to other high-performing models. It is shown in Figure 13. When examining other 

computational costs by looking at a few hyperparameter values, it has been observed that the proposed model's resource 

usage is also reasonable. 
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Figure 14. Comparing our findings with other studies in the literature 
 
 

Figure 14 compares the Accuracy values of the most successful results obtained from hyperparameter optimization of our 

studies with some studies conducted in this literature. The line plot below the image emphasizes this comparison even 

more. 
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Figure 15. Bar plot graph of the studies in the literature and our work. 

 

Figure 15 shows the bar plot graph of studies conducted in 

the literature on breast cancer classification and the studies 

we have carried out. 

Discussions 

During the preliminary investigation conducted before 

proposing the model, the performances of various models, 

including VGG16, VGG19, RESNET50,  

RESNET101, EfficientNetV2B0 and EfficientNetV2L 

were compared based on Accuracy and F1 scores. 

These models demonstrated exceptional performance 

concerning the dataset and hyperparameter values. Even 

so, the proposed model demonstrated outstanding 

performance across a wide range of hyperparameter 

values and surpassed the performance of the other 

models in some hyperparameter values, especially on the 

Augmented INBREAST dataset. EfficientNetV2B0 and 

EfficientNetV2L models have demonstrated superior 

performance, attaining above 0.95 accuracy using 

diverse hyperparameter configurations prior to the 

evaluation of the proposed model. The models exhibiting 

the highest accuracy values are these models. 

Before suggesting a model in the augmented MIAS dataset, 

it was seen that RESNET50 obtained one of the superior 

performance with a learning rate of 0.001 and a small batch 

size, whereas VGG19 performed well with a batch size of 

64. RESNET50 achieved one of the superior performance 

using a learning rate of 0.0001 and a batch size 16. 

However, RESNET101 outperformed it by achieving even 

better results with bigger batch sizes. Within the 

Augmented INBREAST dataset, the VGG16 model 

exhibited notable performance with a learning rate of 

0.001. However RESNET101 model displayed one of the 
superior performance with a learning rate of 0.0001. 

Upon assessing the performance of deep learning models 

using the proposed HybridAttentionVGG model, it has 

been observed that this newly recommended model 

outperforms others in various hyperparameter 

configurations. Our suggested model exhibits equivalent 

accuracy to the EfficientNetV2B0 model, utilising a 

learning rate of 0.001 and a batch size of 32 on the 

Augmented MIAS dataset. The model enhanced 

performance across all batch size parameters on the 

Augmented INBREAST dataset with a learning rate of 

0.001. With a learning rate of 0.0001, the accuracy has 

improved with a batch size of 16. The augmented 

INBREAST dataset enhanced performance in four of six 

distinct hyperparameter configurations. The usefulness of 

our newly proposed model has been shown by achieving 

superior performance in five out of twelve scenarios, 

including two datasets and six distinct hyperparameter 

values. 

Before the model was proposed, the model with the highest 

accuracy value was EfficientNetV2L with an accuracy 

value of 0.9764, whereas after including our developed 

model, the model with the highest performance is the 

HybridAttentionVGG model with an accuracy value of 

0.9790. 

As shown in Figures 14 and 15, when compared to other 

breast cancer classification studies in the literature, our 

proposed new model, the HybridAttentionVGG model, 

has been demonstrated to be a successful model with 

accuracy values of 0.9556 and 0.9790 on the augmented 

MIAS and the augmented INBREAST datasets, 

respectively. 
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The HybridAttentionVGG model surpasses conventional 

models by integrating the robust feature extraction skills 

of VGG16 with a unique attention method that 

dynamically highlights significant features, guaranteeing 

more concentrated and resilient learning. The unique skip 

connections of the model preserve both the original and 

improved information, resulting in a well-balanced 

strategy that improves accuracy without substantially 

increasing computational complexity. Accordingly, the 

performance measure values of this model have surpassed 

those of other models. 

Conclusions 

The HybridAttentionVGG model integrates the 

straightforwardness and resilience of the VGG16 

architecture with an innovative attention mechanism that 

improves feature learning by prioritizing significant 

regions in the image. It offers a balanced solution 

between typical CNN models, which may miss important 

subtle features, and more computationally expensive 

designs like ResNet or Vision Transformers. The 

proposed model incorporates a streamlined attention 

mechanism and skip connections to preserve original and 

enhanced characteristics, providing a flexible and 

computationally practical option for various image 

classification tasks. 

The proposed model can compete with those within the 

EfficientNet architecture. Nearly all hyperparameter 

values exhibit comparable or superior accuracy across 

the two datasets. Particularly on the augmented 

INBREAST dataset, it has exceeded the performance of 

EfficientNet models across numerous hyperparameter 

configurations. The model's training duration is 

intermediate between the training durations of the two 

EfficientNet models, considering the computational cost. 

The suggested model exhibits both low computational 

requirements and high accuracy. 

The study has shown that this model is highly effective and 

helpful for classifying both benign and malignant cancers, 

consistently outperforming other models in most 

circumstances. 

The forthcoming study will investigate the influence on 

classification accuracy by employing diverse data obtained 

by creating synthetic data from a derived dataset in deep 

learning models and evaluating the effectiveness of using 

synthetic data by comparing these datasets. Generating 

synthetic data will address the imbalanced data problem and 

find a solution. 
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