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ABSTRACT 

This paper investigates heat transfer in a nanofluid using the Homotopy Perturbation method. Similarity transformation 
variables and a stream function are used to transform the partial differential equations governing the fluid flow into ordinary 
differential equations. He’s Homotopy perturbation method is then used to solve the resulting dimensionless equations. It 
was discovered that an increase in the fraction number, magnetic parameter or Grashof number led to a corresponding 
increase in the rate of heat transfer regardless of the nanoparticles in the fluid. These results are in agreement with those 
found in existing literature.  
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1. INTRODUCTION 
 
Nanofluids are formed when nanoparticles such as 

oxide ceramics, nitrides, graphites etc are mixed with 
base fluids like water, polymer solutions and lubricants. 
Nanofluids possess heat transfer properties that can help 
address the energy demand and emission issues of the 
present world. They can be used for industrial cooling 
purposes and this could result in great energy savings and 
significantly reduce emission. 

 These properties and their potential benefits have 

made nanofluids an important area of research. Wang et 
al. (1999) in their research into the thermal conductivity 
of nanoparticle-fluid mixture provided suggestions to 
improve the conductivity of nanofluids. Do and Jang 
(2010) analyzed the effects of thermophysical properties 
Aluminum Oxide on the heat transfer of a flat micro heat 
pipe. Uddin et al. (2012) discovered that an increase in 
Newtonian heating enhanced the heat and mass transfer 
rate of a nanofluid. The dimensionless governing 

equations were solved using the Runge-Kutta-Fehlberg 
method coupled with shooting technique.  

Hamad (2011) studied free convective flow of a 
nanofluid over a linearly stretching sheet in the presence 
of magnetic field.  Oahimire et al. (2016) extended the 
work of Hamad by incorporating a thermal radiation 
parameter into the flow equations and solved them using 
the Runge-kutta Fehlberg method together with shooting 

technique. To the best of our knowledge, HPM has not 
been applied to solve the flow equations of Oahimire et 
al. (2016).  

In this present study, HPM is applied to study the 
effects of volume fraction, magnetic field and buoyancy 
force on the rate of heat transfer of natural convection 
flow of a nanofluid over linearly stretching sheet in the 
presence of magnetic field. The Homotopy Perturbation 

method (HPM) is a technique based on the concept of the 
Homotopy from topology that was introduced by Dr. Ji-
Huan He in 1998. It is a simple but effective method for 
solving non-linear partial differential equations. The 
basic idea is illustrated below. Consider a non-linear 
differential equation 

 
[𝑨(𝒖) − 𝒇(𝒓)] = 𝟎    (1) 

 
Where f(r) is a known analytic function and A(u) is a 

nonlinear differential operator which can be separated 
into 2 parts, one linear part, L and a non-linear part, N. 
i.e.  

𝑨(𝒖) =  𝑳(𝒖) +  𝑵(𝒖)     (2) 
 

We construct a homotopy as follows 
 

𝑯(𝒖, 𝒑) = (𝟏 − 𝒑)[𝑳(𝒖𝟎) − 𝑳(𝒗𝟎)] + [𝑨(𝒖) − 𝒇(𝒓)]
= 𝟎                                              (𝟑) 

 

where  𝒑 is an embedding parameter that lies in the 

unit interval [𝟎, 𝟏]  and 𝒗𝟎  is an initial guess of the 
solution to the equation. Setting the value of our small 
parameter to 0, we have the initial guess while setting its 

value to 1 gives us the original equation. This process of 
changing p from 1 to 0 is called a deformation. 

 

𝑯(𝒖, 𝟎) = 𝑳(𝒖) − 𝑳(𝒗𝟎) = 𝟎                                   (𝟒) 
 

𝑯(𝒖, 𝟏) = 𝑨(𝒖) − 𝒇(𝒓) = 𝟎                                     (𝟓) 

According to the HPM, we assume our solution is in 
form of a series 

 

𝒖 = 𝒖𝟎 + 𝒑𝒖𝟏 + 𝒑𝟐𝒖𝟐 + ⋯ 
 

 We solve for 𝒖𝒏  iteratively and setting 𝒑 = 𝟏, we 
have 
 

𝒖 = 𝒖𝟎 + 𝒖𝟏 + 𝒖𝟐 
 

This is the approximate solution to Eq. (1). We have 
the freedom of choice for the operator L. However great 
care must be taken to choose an operator which simplifies 
the solution process as the solution depends entirely on 

the choice of the L and the initial guess 𝒗𝟎. Ayati and 
Biazar (2015) showed that in most cases, the HPM 

solution is convergent. 
 

NOMENCLATURE 

a = Constant 
g = Acceleration due to gravity 
k = Thermal Conductivity 
Pr = Prandtl Number 
T = Fluid Temperature 

Tw = Surface Temperature 
T∞ = Free Stream Temperature 
u,v = Velocity Components 
x,y = Cartesian  Coordinates 
f(x) = Dimensionless Stream Function 
Gr = Grashof Number 
qr = Heat Flux Radiation 
Bo = Magnetic Field of Constant Strength 

R = Radiation Parameter 
Ks = Rosseland Mean Absorption Coefficient 
K = Thermal Conductivity Coefficient 
GREEK SYMBOLS 

β = Thermal Expansion Coefficient 
µ = Dynamic Coefficient of Viscosity 
θ (η) = Dimensionless Temperature 
η = Similarity Variable 

ρ = Fluid Density 
ψ = Stream Function 
σ’ = Stefan-Bottzman Constant 

 

2. MATHEMATICAL FORMULATION  
 
Consider a steady, two-dimensional flow of an 

incompressible viscous nanofluid past a linearly semi-
infinite stretching sheet. Magnetic field of strength B0 is 
applied perpendicularly to the sheet. The nanofluid under 

consideration is water-based and contains Copper, Silver, 
Aluminum oxide and Titanium Dioxide. The nanofluid is 
assumed to be in thermal equilibrium. Following 
Oahimire et al. (2016), the governing equations are: 

 
𝝏𝒖′

𝝏𝒙′
+

𝝏𝒗′

𝝏𝒚′
= 𝟎                                                              (𝟔) 

 

𝝆𝒏𝒇 [𝒖′
𝝏𝒖′

𝝏𝒙′
+ 𝒗′

𝝏𝒗′

𝝏𝒚′
] =  𝝁𝒏𝒇

𝝏𝟐𝒖′

𝝏𝒚′𝟐
− 𝝈𝑩𝟎𝒖′ + 𝒈𝜷𝒕(𝑻′ −

𝑻′
∞)                                                                     (7) 

 

(𝝆𝒄𝒑)𝒏𝒇 [𝒖′
𝝏𝑻′

𝝏𝒙′
+ 𝒗′

𝝏𝑻′

𝝏𝒚′
] = 𝑲𝒏𝒇

𝝏𝟐𝑻′

𝝏𝒚′𝟐
−

𝝏𝒒𝒓

𝝏𝒚′
          (𝟖) 
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The boundary conditions of the equations are 

𝒖′ = 𝒖𝒘
′ (𝒙′) = 𝒂𝒙′, 𝒗′ = 𝟎,  𝑻′ =  𝑻𝒘

′  𝒂𝒕 𝒚′ = 𝟎 

𝒖′ → 𝟎, 𝑻′ → 𝑻∞
′ , 𝒚′ → ∞                                                 (𝟗) 

 

Where qr is the radiative heat flux, 𝑻′ is the 

temperature of the fluid, 𝒙′𝒂𝒏𝒅𝒚′are the coordinates 

along and perpendicular to the sheet while 𝒖′𝒂𝒏𝒅 𝒗′are 

the velocity components in the 𝒙′𝒂𝒏𝒅 𝒚′ directions 
respectively and a is a constant. The effective density 
(ρnf), effective dynamic viscosity (μnf), heat capacitance 

(ρCp)nf and the effective  thermal conductivity (knf) of the 
nanofluid, in that order, are given as 

 
𝝆𝒏𝒇= (𝟏−𝑨)𝝆𝒇+𝑨𝝆𝒔

 

𝝁
𝒏𝒇= 

𝝁𝒇

(𝟏−𝑨)𝟐.𝟓

 

(𝝆𝑪𝒑)𝒏𝒇= (𝟏−𝑨)(𝝆𝑪𝒑)𝒇+𝑨(𝝆𝑪𝒑)𝒔
 

𝒌
𝒏𝒇=𝒌𝒇 (

𝒌𝒔+𝟐𝒌𝒇−𝟐𝑨(𝒌𝒇−𝒌𝒔)

𝒌𝒔+𝟐𝒌𝒇+𝟐𝑨(𝒌𝒇−𝒌𝒔)
)
  

 
Where A is the solid volume fraction (A ≠ 1), μf  is 

the dynamic viscosity of the base fluid, while ρf and ρs are 
the densities of the pure fluid and the nanoparticle 
respectively. The constants kf and ks are the thermal 
conductivities of the base fluid and the nanoparticle 

respectively. Using Rosseland approximation given by 

𝒒𝒓 =
𝟒𝝈′

𝟑𝒌′

𝝏𝑻′𝟒

𝝏𝒚′
  with Taylor’s series expansion and 

differentiation, Eq. (8) becomes 
 

(𝝆𝒄𝒑)𝒏𝒇 [𝒖′
𝝏𝑻′

𝝏𝒙′
+ 𝒗′

𝝏𝑻′

𝝏𝒚′
] = 𝑲𝒏𝒇

𝝏𝟐𝑻′

𝝏𝒚′𝟐
+

𝟏𝟔𝑻∞
𝟑 𝝈′

𝟑𝒌′

𝝏𝟐𝑻′

𝝏𝒚′𝟐
     (𝟏𝟏)  

 
The following variables are used for transformation 

 

𝒖 =
𝒖′

√𝒂𝒗𝒇
𝒗 =

𝒗′

√𝒂𝒗𝒇
, 𝜽 =

𝑻′−𝑻∞
′

𝑻𝒘
′ −𝑻∞

′ , 𝒙 =
𝒙′

√
𝒗𝒇

𝒂

 . 𝒚 =

𝒚′

√
𝒗𝒇

𝒂

    (𝟏𝟐)  

 
Eq. (12) transforms Eq. (6), (7) and (11) into the 

following 
𝝏𝒖

𝝏𝒙
+

𝝏𝒗

𝝏𝒚
= 𝟎  

 

𝒖
𝝏𝒖

𝝏𝒙
+ 𝒗

𝝏𝒗

𝝏𝒚
=

𝟏

(𝟏−𝑨)𝝆𝒇+𝝆𝒔
[

𝟏

(𝟏−𝑨)𝟐.𝟓

𝝏𝟐𝒖

𝝏𝒚𝟐
− 𝑴𝒖 + 𝑮𝒓𝜽]  

𝒖
𝝏𝜽

𝝏𝒙
+ 𝒗

𝝏𝜽

𝝏𝒚
=

𝟏

𝑷𝒓

𝟏

(𝟏−𝑨)(𝝆𝒄𝒑)𝒇+𝑨(𝝆𝒄𝒑)𝒔
[

𝒌𝒏𝒇

𝒌𝒇
+ 𝑹𝒅]

𝝏𝟐𝜽 

𝝏𝒚𝟐
   

 

Where 𝑴 =
𝝈𝜷𝟎

𝒂
  is the magnetic field parameter,  

𝒑𝒓 =
𝒗𝒇

𝝁𝒏𝒇
   is the Prandtl number, 𝑹𝒅 =

𝟏𝟔𝝈′𝑻∞
′𝟑

𝟑𝑲∗𝝁𝒏𝒇
  is the 

radiation parameter, 𝑮𝒓 =
𝒈𝜷𝒕(𝑻𝒘

′ −𝑻∞
; )𝒙

𝒂
   is the Grashof 

number and the corresponding boundary conditions are 

𝒖 = 𝒙, 𝒗 = 𝟎, 𝜽 = 𝟏 𝒂𝒕 𝒚 = 𝟎 

𝒖 → 𝟎, 𝜽 → 𝟎 𝒂𝒔 𝒚 → ∞ 

To satisfy Eq. (7) we apply the stream function   𝒖 =
𝝏𝝍

𝝏𝒚
, 𝒗 = −

𝝏𝝍

𝝏𝒙
, 𝜼 = 𝒚, 𝝍 = 𝒙𝒇(𝜼). 𝜽 = 𝜽(𝜼) our 

equations reduce to  

𝒇′′′ + (𝟏 − 𝑨)𝟐.𝟓[𝒇𝒇′′ − (𝒇′)𝟐][(𝟏 − 𝑨)(𝝆𝒇 + 𝝆𝒔)

− (𝑴𝒇′ + 𝑮𝒓𝜽)] = 𝟎               (𝟏𝟕) 

 
𝟏

𝑷𝒓

𝟏

(𝟏−𝑨)(𝝆𝑪𝒑)
𝒔

[
𝒌𝒏𝒇

𝒌𝒇
+ 𝑹𝒅] 𝜽′′(𝜼) + 𝒇(𝜼)𝜽′(𝜼) = 𝟎   (𝟏𝟖)  

 

 𝒇(𝟎) =  𝟎, 𝒇,(𝟎) = 𝟏, 𝜽(𝟎) = 𝟎 𝒂𝒕 𝜼 = 𝟎 

𝒇 → 𝟎, 𝜽 → 𝟎 𝒂𝒔 𝜼 → 𝟎                                               (𝟏𝟗) 

 

3. METHOD OF SOLUTION 

 
The transformed non-linear equations can be written 

as 

𝒇′′′ + 𝜶 (𝜷 (𝒇𝒇′′ − (𝒇′)
𝟐

)) − 𝒌𝒇′ + 𝑮𝒓𝜽 = 𝟎   

𝒇𝜽′ + 𝑯𝜽′′ = 𝟎   
 

Where 𝜶 = (𝟏 − 𝑨)𝟐.𝟓, 𝒌 = 𝑴, 𝜷 = (𝟏 − 𝑨)𝝆𝒇 +

𝝆𝒔, 𝑯 =
𝟏

𝑷𝒓

𝟏

(𝟏−𝑨)(𝝆𝒄𝒑)
𝒇

+𝑨(𝝆𝒄𝒑)
𝒔

(
𝒌𝒏𝒇

𝒌𝒇
+ 𝑹) 

 

We construct the homotopy of the transformed 
equations as follows 

(𝟏 − 𝒑)(𝒇′′′ − 𝒇′′′𝒖𝟎) + 𝒑 (𝒇′′′ + 𝜶 (𝜷 (𝒇𝒇′′ −

(𝒇′)
𝟐

)) − 𝒌𝒇′ + 𝑮𝒓𝜽) = 𝟎  

 
And 
 

(𝟏 − 𝒑)(𝜽′′ − 𝜽′′𝒕𝟎) + 𝒑(𝒇𝜽′ + 𝑯𝜽′′) = 𝟎  

 

We assume 𝒇 and 𝜽 in the following form 
 

𝒇 = 𝒇𝟎 + 𝒑𝒇𝟏 + 𝒑𝟐𝒇𝟐  

𝜽 = 𝜽𝟎 + 𝒑𝜽𝟏 + 𝒑𝟐𝜽𝟐  
 

and group the terms according to the order: For order 
zero, we have 
 

 
𝒅𝟑𝒇𝟎

𝒅𝜼𝟑
−

𝒅𝟑𝒗𝟎

𝒅𝜼𝟑
= 𝟎  

𝒅𝟐𝜽𝟎

𝒅𝜼𝟐
−

𝒅𝟐𝒕𝟎

𝒅𝜼𝟐
= 𝟎   

 
With boundary conditions  

 

𝒇𝟎(𝟎) = 𝟎, 𝒇𝟎
′(𝟎) = 𝟎, 𝒇𝟎

′(∞) = 𝟏, 𝜽𝟎(𝟎) =
𝟏, 𝜽𝟎(∞) = 𝟎  
 

For order one, we have 
 

𝒅𝟑𝒇𝟏

𝒅𝜼𝟑
−

𝒅𝟑𝒗𝟎

𝒅𝜼𝟑
+ 𝜶 (𝑮𝒓𝜽𝟎 − 𝒌

𝒅𝒇𝟎

𝒅𝜼
+ 𝜷 (𝒇𝟎

𝒅𝟐𝒇𝟎

𝒅𝜼𝟐
−

(
𝒅𝒇𝟎

𝒅𝜼
)

𝟐
)) = 𝟎   

(10) 

(14) 

(13) 

(15) 

(16) 
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𝒅𝟐𝜽𝟏

𝒅𝜼𝟐
+ 𝒇𝟎

𝒅𝜽𝟎

𝒅𝜼
+ (𝑯 − 𝟏)

𝒅𝟐𝜽𝟎

𝒅𝜼𝟐
+

𝒅𝟐𝒕𝟎

𝒅𝜼𝟐
= 𝟎  

With boundary conditions 

 

𝒇𝟏(𝟎) = 𝟎, 𝒇𝟏
′(𝟎) = 𝟎, 𝒇𝟏

′(∞) = 𝟎, 𝜽𝟏(𝟎) = 𝟏, 𝜽𝟏(∞)
= 𝟎 

  
For order two, we have 

 

𝒅𝟑𝒇𝟐

𝒅𝜼𝟑
+ 𝜶 (𝑮𝒓𝜽 − 𝒌

𝒅𝒇𝟏

𝒅𝜼
+ 𝜷 (𝒇𝟏

𝒅𝟐𝒇𝟏

𝒅𝜼𝟐
− (

𝒅𝒇𝟏

𝒅𝜼
)

𝟐
)) = 𝟎  

 
𝒅𝟐𝜽𝟐

𝒅𝜼𝟐
+ 𝒇𝟏

𝒅𝜽𝟏

𝒅𝜼
+ (𝑯 − 𝟏)

𝒅𝟐𝜽𝟏

𝒅𝜼𝟐
= 𝟎  

 
With boundary conditions 
 

𝒇𝟐(𝟎) = 𝟎, 𝒇𝟐
′(𝟎) = 𝟎, 𝒇𝟐

′(∞) = 𝟎, 𝜽𝟐(𝟎) =
𝟏, 𝜽𝟐(∞) = 𝟎  
 

Solving the equations with their respective boundary 
conditions, we have the following solutions 

 

𝒇𝟎 =
𝜼𝟐

𝟏𝟐
  

𝒇𝟏 =
𝒄𝟏𝜼𝟐

𝟐
− 𝜶𝑮𝒓

𝜼𝟑

𝟔
+ 𝜶(𝑮𝒓 + 𝒌)

𝜼𝟒

𝟏𝟒𝟒
+ 𝜶𝜷

𝜼𝟓

𝟒𝟑𝟐𝟎
  

𝒇𝟐 = 𝒄𝟑
𝜼𝟐

𝟐
+ 𝒈𝟖

𝜼𝟒

𝟐𝟒
+ 𝒈𝟗

𝜼𝟓

𝟔𝟎
+ 𝒈𝟏𝟎

𝜼𝟔

𝟏𝟐𝟎
+ 𝒈𝟏𝟏

𝜼𝟕

𝟐𝟏𝟎
+

𝒈𝟏𝟐
𝜼𝟖

𝟑𝟑𝟔
+ 𝒈𝟏𝟑

𝜼𝟗

𝟓𝟎𝟒
+ 𝒈𝟏𝟒

𝜼𝟏𝟎

𝟕𝟐𝟎
+ 𝒈𝟏𝟓

𝜼𝟏𝟏

𝟗𝟗𝟎
  

𝜽𝟎 = 𝟏 −
𝜼

𝟔
  

𝜽𝟏 =
𝜼𝟒

𝟖𝟔𝟒
−

𝜼

𝟒
  

𝜽𝟐 = 𝒄𝟐𝜼 +
𝒈𝟏

𝟒
𝜼𝟒 −

𝒈𝟐

𝟓
𝜼𝟓 +

𝒈𝟑

𝟔
𝜼𝟔 +

𝒈𝟒

𝟕
𝜼𝟕 +

𝒈𝟓

𝟖
𝜼𝟖 −

𝒈𝟔

𝟗
𝜼𝟗 −

𝒈𝟕

𝟏𝟎
𝜼𝟏𝟎  

 
Where  

 

𝒄𝟏 = 𝟐𝜶𝑮𝒓 − 𝜶𝒌 −
𝜶𝜷

𝟒
 

𝒄𝟐 = −
𝟐𝟏𝟔

𝟒
𝒈𝟏 +

𝟏𝟐𝟗𝟔

𝟓
𝒈𝟐 − 𝟏𝟐𝟗𝟔𝒈𝟑 −

𝟒𝟔𝟔𝟓𝟔

𝟕
𝒈𝟒

−
𝟐𝟕𝟗𝟗𝟑𝟔

𝟖
𝒈𝟓 +

𝟏𝟔𝟕𝟗𝟔𝟏𝟔

𝟗
𝒈𝟔

+
𝟏𝟎𝟎𝟕𝟕𝟔𝟗𝟔

𝟏𝟎
𝒈𝟕 

𝒄𝟑 =  −(𝟔𝒈𝟖 + 𝟏𝟖𝒈𝟗 +
𝟏𝟐𝟗𝟔

𝟐𝟎
𝒈𝟏𝟎 +

𝟕𝟕𝟕𝟔

𝟑𝟎
𝒈𝟏𝟏

+
𝟒𝟔𝟔𝟓𝟔

𝟒𝟐
𝒈𝟏𝟐 +

𝟐𝟕𝟗𝟗𝟑𝟔

𝟓𝟔
𝒈𝟏𝟑

+
𝟏𝟔𝟕𝟗𝟔𝟏𝟔

𝟕𝟐
𝒈𝟏𝟒

+
𝟏𝟎𝟎𝟕𝟕𝟔𝟗𝟔

𝟗𝟎
𝒈𝟏𝟓) 

𝒈𝟏 =
𝒄𝟏

𝟒
−

(𝑯 − 𝟏)

𝟕𝟐
 

𝒈𝟐 =
𝜶𝑮𝒓

𝟐𝟒
 

𝒈𝟑 =
𝜶(𝑮𝒓 + 𝒌)

𝟓𝟕𝟔
 

𝒈𝟒 =
𝜶𝜷

𝟏𝟕𝟐𝟖𝟎
−

𝒄𝟏

𝟒𝟑𝟐
 

𝒈𝟓 =
𝜶𝑮𝒓

𝟏𝟐𝟗𝟔
 

𝒈𝟔 =
𝜶(𝑮𝒓 + 𝒌)

𝟏𝟒𝟒
 

𝒈𝟕 =
𝜶𝜷

𝟗𝟑𝟑𝟏𝟐𝟎
 

𝒈𝟖 = 𝒄𝟏𝜶𝒌 +
𝜶𝑮𝒓

𝟒
 

𝒈𝟗 = 𝒄𝟏𝜶𝜷 −
𝜶𝟐𝑮𝒓𝑲

𝟐
−

𝜶𝜷 𝑪𝟏
𝟐

𝟐
 

𝒈𝟏𝟎 =
𝜶𝟐𝑲(𝑮𝒓 + 𝑲)

𝟑𝟔
−

𝜶𝟐𝑪𝟏 𝜷 𝑮𝒓

𝟑
 

𝒈𝟏𝟏

=
𝜶𝟐𝑲 𝜷 − 𝜶𝑮𝒓

𝟖𝟔𝟒
+ 𝜶𝜷 (

𝒄𝟏𝜶(𝑮𝒓 + 𝒌) + 𝟏𝟐𝜶𝟐𝑮𝒓𝟐

𝟏𝟒𝟒
) 

𝒈𝟏𝟐 = 𝜶𝜷 (
𝟒𝑪𝟏𝜶𝜷

𝟐𝟏𝟔𝟎
−

𝜶𝟐𝑮𝒓(𝑮𝒓 + 𝑲)

𝟏𝟒𝟒
) 

𝒈𝟏𝟑 = 𝜶𝜷 (
𝜶𝟐(𝑮𝒓 + 𝑲)𝟐

𝟓𝟏𝟖𝟒
+

𝜶𝟐𝑮𝒓𝜷

𝟐𝟕𝟎
) 

𝒈𝟏𝟒 = 𝜶𝜷 (
𝜶𝟐𝜷(𝑮𝒓 + 𝑲)

𝟕𝟕𝟕𝟔𝟎
) 

𝒈𝟏𝟓 =
𝜶𝟑𝜷𝟑

𝟕𝟒𝟔𝟒𝟗𝟔
 

 

We can calculate the value of the constant 
coefficients using the boundary conditions. Following 

standard practice, we replace the boundary condition 𝜂 =
∞ with 𝜂 = 6. 

 

4. DISCUSSION AND RESULTS 
 

Numerical evaluation of the solutions was performed 
with mathematical software “Matlab” and the results are 
presented in tabular form. This was done to illustrate 
effect of some governing parameters involved. The rate 
of heat transfer for different value of volume fraction (A), 

magnetic parameter(M) and Grashof number(Gr) are 
obtained as shown in table 2. We notice that an increase 
in the values of A, M and Gr led to an increase in the 
values of the heat transfer coefficient –θ(0).  

The therrmophysical properties of nanoparticles used 
in the evaluation as given by Hamad (2011) are shown 
below. 
 
Table 1. Thermo physical properties of water and 

nanoparticles. Hamad (2011) 
 

Compound 
ρ 

(kg/m3) 

Cp 

(J/kgK) 

k 

(W/mK) 

Pure water 997.1 4179 0.613 

Copper (Cu) 8933 385 401 

Alumina 

(Al2O3 ) 
3970 765 40 

Silver (Ag) 10500 235 429 

Titanium Oxide 
(TiO2) 

4250 686.2 8.9538 

 

These values where used together with the solutions 
to obtain the following table showing the effects of 
varying different flow parameters on the heat transfer of 
the nanofluid. 
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Table 2. Effects of variation of A, Gr and M on the rate of heat transfer 

   
−𝜽(𝟎) −𝜽(𝟎) −𝜽(𝟎) −𝜽(𝟎) 

𝑨 𝑴 𝑮𝒓 𝑪𝒖 𝑨𝒍𝟐𝒐𝟑
 𝑨𝒈 𝑻𝒊𝑶𝟐

 

0.2 0.5 0.2 −𝟔. 𝟑𝟓𝟗𝟗 × 𝟏𝟎𝟑 −𝟐. 𝟖𝟓𝟑𝟑 × 𝟏𝟎𝟑 −𝟕. 𝟒𝟔𝟕𝟏 × 𝟏𝟎𝟑 −𝟑. 𝟎𝟓𝟏𝟏 × 𝟏𝟎𝟑 

0.3 0.5 0.2 −𝟒. 𝟓𝟎𝟒𝟗 × 𝟏𝟎𝟑 −𝟏. 𝟗𝟗𝟑𝟑 × 𝟏𝟎𝟑 −𝟓. 𝟐𝟗𝟕𝟔 × 𝟏𝟎𝟑 −𝟐. 𝟏𝟑𝟓𝟎 × 𝟏𝟎𝟑 

0.4 0.5 0.2 −𝟑. 𝟎𝟑𝟎𝟏 × 𝟏𝟎𝟑 −𝟏. 𝟑𝟐𝟏𝟗 × 𝟏𝟎𝟑 −𝟑. 𝟓𝟔𝟗𝟓 × 𝟏𝟎𝟑 −𝟏. 𝟒𝟏𝟖𝟑 × 𝟏𝟎𝟑 

0.5 0.5 0.2 −𝟏. 𝟖𝟗𝟗𝟔 × 𝟏𝟎𝟑 -𝟖. 𝟏𝟔𝟕𝟖 × 𝟏𝟎𝟑 
−𝟐. 𝟐𝟒𝟏𝟓 × 𝟏𝟎𝟑 -𝟖. 𝟕𝟕𝟕𝟖 × 𝟏𝟎𝟑 

0.6 0.5 0.2 −𝟏. 𝟎𝟕𝟓𝟒 × 𝟏𝟎𝟑 -𝟒. 𝟓𝟓𝟓𝟒 × 𝟏𝟎𝟑 
−𝟏. 𝟐𝟕𝟏𝟏 × 𝟏𝟎𝟑 -𝟒. 𝟗𝟎𝟓𝟏 × 𝟏𝟎𝟑 

0.1 0.6 0.2 −𝟖. 𝟓𝟑𝟐𝟒 × 𝟏𝟎𝟑 −𝟑. 𝟖𝟐𝟓𝟐 × 𝟏𝟎𝟑 −𝟏. 𝟎𝟎𝟏𝟗 × 𝟏𝟎𝟒 −𝟒. 𝟎𝟗𝟎𝟖 × 𝟏𝟎𝟑 

0.1 0.7 0.2 −𝟖. 𝟒𝟑𝟑𝟐 × 𝟏𝟎𝟑 −𝟑. 𝟕𝟐𝟓𝟗 × 𝟏𝟎𝟑 −𝟗. 𝟗𝟏𝟗𝟒 × 𝟏𝟎𝟑 −𝟑. 𝟗𝟗𝟏𝟓 × 𝟏𝟎𝟑 

0.1 0.8 0.2 −𝟖. 𝟑𝟑𝟑𝟗 × 𝟏𝟎𝟑 −𝟑. 𝟔𝟐𝟔𝟔 × 𝟏𝟎𝟑 −𝟗. 𝟖𝟐𝟎𝟏 × 𝟏𝟎𝟑 −𝟑. 𝟖𝟗𝟐𝟐 × 𝟏𝟎𝟑 

0.1 0.9 0.2 −𝟖. 𝟐𝟑𝟒𝟔 × 𝟏𝟎𝟑 −𝟑. 𝟓𝟐𝟕𝟒 × 𝟏𝟎𝟑 −𝟗. 𝟕𝟐𝟎𝟗 × 𝟏𝟎𝟑 −𝟑. 𝟕𝟗𝟐𝟗 × 𝟏𝟎𝟑 

0.1 1.0 0.2 −𝟖. 𝟏𝟑𝟓𝟑 × 𝟏𝟎𝟑 −𝟑. 𝟒𝟐𝟖𝟏 × 𝟏𝟎𝟑 −𝟗. 𝟔𝟐𝟏𝟔 × 𝟏𝟎𝟑 −𝟑. 𝟔𝟗𝟑𝟕 × 𝟏𝟎𝟑 

0.1 0.5 0.3 −𝟖. 𝟓𝟑𝟑𝟐 × 𝟏𝟎𝟑 −𝟑. 𝟖𝟐𝟔𝟎 × 𝟏𝟎𝟑 −𝟏. 𝟎𝟎𝟏𝟗 × 𝟏𝟎𝟒 −𝟒. 𝟎𝟗𝟏𝟔 × 𝟏𝟎𝟑 

0.1 0.5 0.4 −𝟖. 𝟒𝟑𝟒𝟖 × 𝟏𝟎𝟑 −𝟑. 𝟕𝟐𝟕𝟓 × 𝟏𝟎𝟑 −𝟗. 𝟗𝟐𝟏𝟎 × 𝟏𝟎𝟑 −𝟑. 𝟗𝟗𝟑𝟏 × 𝟏𝟎𝟑 

0.1 0.5 0.5 −𝟖. 𝟑𝟑𝟔𝟑 × 𝟏𝟎𝟑 −𝟑. 𝟔𝟐𝟗𝟎 × 𝟏𝟎𝟑 −𝟗. 𝟖𝟐𝟐𝟓 × 𝟏𝟎𝟑 −𝟑. 𝟖𝟗𝟒𝟔 × 𝟏𝟎𝟑 

0.1 0.5 0.6 −𝟖. 𝟐𝟑𝟕𝟖 × 𝟏𝟎𝟑 −𝟑. 𝟓𝟑𝟎𝟔 × 𝟏𝟎𝟑 −𝟗. 𝟕𝟐𝟒𝟏 × 𝟏𝟎𝟑 −𝟑. 𝟕𝟗𝟔𝟏 × 𝟏𝟎𝟑 

0.1 0.5 0.7 −𝟖. 𝟏𝟑𝟗𝟑 × 𝟏𝟎𝟑 −𝟑. 𝟒𝟑𝟐𝟏 × 𝟏𝟎𝟑 −𝟗. 𝟔𝟐𝟓𝟔 × 𝟏𝟎𝟑 −𝟑. 𝟔𝟗𝟕𝟕 × 𝟏𝟎𝟑 

 

 

5. CONCLUSION 

 
In this work, the dimensionless equations of the 

governing equations were solved with HPM and the 

effects of 𝑀, 𝐺𝑟 and 𝐴 on heat transfer are presented in 

Table 2. And we notice that increasing the values of 𝑀, 

𝐺𝑟 and 𝐴 leads to a corresponding increase in the rate of 
heat transfer in all of the nanoparticles considered. This is 
in agreement with the solutions gotten using the Runge-
Kutta-Fehlberg method by Oahimire et al. (2016). This 
shows that He’s Homotopy Pertubation method is an 
effective method for solving similar flow problems. 
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