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Abstract: Considering the harmful effects of pesticides, it is necessary to apply them very precisely. 
The selection of nozzle in pesticide applications is a matter of particular attention. The size of the 
droplet is very important for fighting with disease and pest. Coarser droplets run-off from the plant 
while finer droplets are prone to drift. For this reason, it is necessary to determine the droplet diameter 
in order to reduce drift. Volume median diameter is commonly used for understanding droplet size in 
the spray pattern.  
Due to the direct effect of the size of the droplet, a large number of studies have been conducted on 
the nozzles. But there are still some missing parts. For this reason, every year the nozzle 
manufacturers put a new type of nozzle on the market.  
In this study, the volume median diameter of different sized (0.8 and 1.0) hollow cone nozzles widely 
used in Turkey at different pressures (6, 9, 12 bar) in constant temperature and relative humidity were 
determined by Oxford Visisizer-PDIA (Particle Droplet Image Analysis). It has been determined that the 
volume median diameter of these two sizes of nozzles, which are tested at lower pressures, is very 
close to each other. 
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1 
INTRODUCTION 

Spray drift of pesticide is a dangerous issue for the 
environment. Therefore, it is a direct threat to human 
health (Damalas and Eleftherohorinos, 2011; 
Anonymous, 2009). Human-beings, wildlife and the 
environment are negatively affected by display to spray 
drift. Also organic farmers are at risk of losing their 
certification when pesticides drifts on to their field 
(Immig, 2009). The reduction of this problem is possible 
but cannot be completely removed. With adjustments 
on the sprayer, it is possible dramatically to reduce the 
drift. In this matter, nozzle selection becomes very 
important issue on this subject.  

Droplet size plays an important role depending on 
the nozzle selection. Understanding the droplet size of 
the nozzle is an important criterion on decreasing drift. 
Drift reduction equipment such as nozzles are the 
easiest way of reducing spray drift at application area. 
Nozzles on the boom influence the droplet size and 
correspondingly the potential to drift (Dolarmes, 2009; 
Harasta, 2009). Understanding the droplet size is 

important to reduce drift. The smaller the droplet size, 
means greater the spray drift (Anonymous, 2017d). 
When operation pressure increases the droplets in the 
spray pattern becomes finer and the risk of drift tends 
to increase (Nuyttens et al., 2006). 

When applying plant protection products, 
agricultural nozzles play a vital role in spray pattern. For 
improving application success operator must pay 
attention for nozzle selection. Nozzle determines the 
application rate with pressure, travel speed, and nozzle 
spacing (Johnson et al. 2000; Grisso et al., 2013; 
Anonymous, 2002). 

The fan nozzles are the most common type of 
nozzle which is used in a pesticide application 
technique. These nozzles are used both for the band 
and broadcast applications. Hollow cone nozzles which 
are generally used in orchards to apply insecticides or 
fungicides are also used when penetration and full 
coverage are important for field crops (Wilson et al., 
2008; Johnson and Awetnam, 2000; Grisso et al., 
2013).  
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The nozzle produces a range of droplet sizes in 
spray pattern that can often be grouped by a single 
number. This number is called Volume Median Diameter 
(VMD) (Anonymous, 2017a). VMD is the droplet size in 
microns at which half the volume released from the 
nozzle tip will exist as droplets larger than this size and 
half the volume will exist as droplets smaller than this 
size (Schick, 1997; Anonymous, 2017a; 2017b; 2017c). 

There are different ways to measure the VMD.  
Using water sensitive papers is the basic method for 
especially in field experiments, and more sophisticated 
methods can be used such as real-time spray droplet 
and particle size measurements. After spraying water 
sensitive papers are scanned at a high resolution and 
saved to the computer. After then with the help of 
image analyzing program the droplets are measured 
(Guler et al., 2007; Caner, 2007; Urkan, 2012). Another 
measuring method is optical imaging analyzers. These 
methods consist of a light or laser source, a video 
camera and computer system. The light or laser 
brightens the spray and it is recorded by a video 
camera. The image on the camera is scanned and the 
drops are measured with specific formulations (Schick, 
1997). 

The drift potential of a nozzle is related to the 
proportion of small droplets in the spray pattern. 
Droplets, which are smaller than 150–200 μm are easy 
to move off-target area and in applications, it must be 
eliminated (Anonymous, 2001). Derksen et al. (1997) 
and Gordon (2017) suggested that droplets less than 
100 μm diameter are highly drift prone droplets and 
therefore they are difficult to reach to the target. 

In particular, optical imaging analyzing 
measurement method can give more accurate results in 
laboratory conditions far away from external influences. 
In this study Oxford Visisizer-PDIA (Particle Droplet 
Image Analysis) was used to determine the droplet 
characteristics of hollow cone nozzle which are widely 
used in Turkey. In the results of the study, important 
information on the droplet size and hence the 
performance of the spray parameters for hollow cone 
nozzles had been shown. This information is useful for 
operators or farmers who are responsible for using 
better parameters in field conditions. 
 
MATERIAL and METHODS 

In this research, 2 hollow cone nozzles were tested 
at 3 different spray pressures. The flow rates, number 

of counting droplets and spraying times are in Table 1. 
Each nozzle was tested three times and the spray 
direction was vertically on the measuring system. 
During the tests water with a temperature of spraying 
liquid and testing room’s temperature was about 22°C 
and relative humidity was between 60% to 75%. The 
nozzle was fixed 50 cm height from the measuring line 
of the Oxford Visisizer-PDIA (Particle Droplet Image 
Analysis) and mounted on a fully automated system. 

 
Table 1. Nozzle sizes, working pressures, number of 

counted droplets and spraying time during the 
experiments 

Nozzle 
Size 

Working 
Pressure(

bar) 

Flow Rate,  
(Lmin-1) 

In-
focus 
Count 
(No) 

Spraying 
Time  (s) 

 6 890 10657 231 
0.8 9 1080 10887 236 

 12 1160 13718 241 
 6 1360 11332 421 

1.0 9 1680 11727 421 
 12 1740 19923 421 

 
All the tests were held in Julius Kühn-Institut, 

Federal Research Centre for Cultivated Plants Institute 
for Application Techniques in Plant Protection-
Braunschweig-Germany. Measurement system and 
model was Oxford VisiSizer DP 6401 and software 
version was VisiSize 6.206. During the experiments the 
scanning trajectory had a rectangular shape.  All tests 
were carried out through the long axis of the spray 
pattern with a constant scanning speed of 0.02 m s-1. In 
the system, there were 3 lens options with different 
magnification settings. During the measurements the 
lens option was set to 2 and magnification was set to 1. 
With this lens and magnification settings the field of 
view was 9072, the nominal µm/pixel rate was 8.99 and 
measurement range was from 30 to 2016 µm. This kind 
of setup was used for measuring spray droplet size 
measurements and also droplet velocities (Zande et al., 
2002; Nuyttens et al., 2009; Guler et al., 2007). Before 
the experiments were conducted, the water flow rates 
of each nozzle size were checked at specific working 
pressures. 

A schematic view of the Oxford Visisizer-PDIA laser‐
based measurement setup is seen in Figure 1. This 
setup was included a spray system, 2D automated 
positioning system, digital camera, laser beam, control 
unit and computer. 
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Table 2. DV0.1, DV0.5, DV0.9 and relative span factor of nozzles during the experiments 

Nozzle Size Working Pressure  (bar) DV0.1    (µm) DV0.5 (µm) DV0.9 (µm) Relative Span Factor 

 6 93 156 230 0.88 

0.8 9 88 147 219 0.89 
 12 83 143 203 0.84 
 6 99 159 269 1.07 

1.0 9 90 154 244 1.00 
 12 85 145 208 0.85 

 
Table 3. Volume and coefficient of variation of the droplets less than 100, 150 and 200 µm during the 

experiments 

Nozzle Size Working Pressure, bar 
Volume  

%<100 µm   
Volume,  

%<150 µm   
Volume,  

%<200 µm  
CV of 

100 µm, % 
CV of 

150 µm, % 
CV of 

200 µm, % 
 6 13.7 61.4 89.4 1.39 1.16 2.44 

0.8 9 17.2 71.3 90.4 4.09 7.42 4.87 
 12 19.7 74.0 94.5 5.14 5.73 3.72 
 
 

1.0 

6 10.1 54.7 81.6 0.79 1.85 1.63 
9 12.9 67.4 85.6 0.24 1.30 0.97 
12 13.8 71.2 89.4 0.29 0.99 1.15 

 
The American Society of Agricultural and Biological 

Engineers ASABE S-572.1 is a standard established by 
the ASABE that categories the spray from the nozzles 
into spray size categories fit to the droplet size produced, 
using a sample reference graph developed from 
measurements averaged from three laser instruments.  

The latest standard ASABE S572.1 was issued March 
2009. It is for measuring and understanding spray 
quality from nozzles were shown on Table 4. 

 
Table 4. ASABE S572.1 Droplet size classification 

Spray Quality 
Size of 

Droplets 
VMD Range*, 

(µm) 
Color 
Code 

Extremely Fine  <60  Purple 

Very Fine  61-105  Red 

Fine from  106-235  Orange 

Medium Small 236-340 Yellow 

Coarse to 341-403 Blue 

Very Coarse Large 404-502 Green 
Extremely 

Coarse  503-665 White 

Ultra Coarse  >665 Black 
*Estimated from sample reference graph in 

ASABE/ANSI/ASAE Standard S572.1 

 
Finer sprays provide better deposit on the target 

such as foliar-acting and contact-acting pesticides. When 
droplet size is not specified by the label, medium sprays 

are the most widely used. Coarse sprays are used with 
systemic, soil-applied herbicides and liquid fertilizer 
(Anonymous, 2017i). It is known that a systemic 
pesticide may have better success with a medium, 
coarse and very coarse droplet while a contact pesticide 
need fine droplet spectrum for better leaf coverage (Wolf 
and Brettbauer, 2009). When the result evaluated all 
VMD results of both nozzles at specific working pressures  
were in “Fine” spray quality group according to ASABE 
S572.1.  

CONCLUSIONS 
Droplet sizing charts are essential for not only the 

operators but also for the manufacturers. These charts 
are important also for pesticide manufacturers. The 
spray quality ratings are used by chemical manufacturers 
on their labels. These ratings are also used by nozzle 
manufacturers to rate their nozzles, so that the nozzle 
operator chooses at a specific rate and pressure, can be 
matched up with what the chemical label demands. 

In this study it is understood that the nozzle which 
are very close in size have the same spray quality rating. 
Conversely, when evaluating less than percentage of 100 
µm droplets in spray pattern which were produced by 
0.8 size nozzle, it is measured that nearly 20% of 
droplets are less than 100 µm. This value is important to 
increase spray drift. Although the spray quality is “Fine” 
for testing both nozzles the 0.8 size nozzle produced 
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more drift prone droplets than 1.0 in 6, 9 and 12 bar 
working conditions. 
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