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C-symmetric Toeplitz operators on Hardy spaces

CHING-ON LO* AND ANTHONY WAI-KEUNG LOH

ABSTRACT. We characterize all the Toeplitz operators that are complex symmetric with respect to a class of conju-
gations induced by a permutation. Our results provide an affirmative answer to a conjecture from a paper of Chat-
topadhyay et al. (2023) [1].
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1. INTRODUCTION

Let D be the unit disk {z ∈ C : |z| < 1} in the complex plane C and T be the unit circle
{z ∈ C : |z| = 1}. The Hardy space H2 of D consists of all analytic functions f on D such that

sup
0≤r<1

∫ 2π

0

|f(reiθ)|2dm < ∞,

where m is the normalized Lebesgue measure on T, i.e., dm := dθ/2π. If f ∈ H2, its radial limit

f∗(eiθ) := lim
r→1−

f(reiθ)

exists m-a.e. on T and the mapping f 7→ f∗ is an isometry of H2 onto a closed subspace of
L2(T, dm). The extension of f to D := {z ∈ C : |z| ≤ 1}, also denoted by f , is defined such that
f |T = f∗. It is known that H2 is a Hilbert space with the inner product ⟨·, ·⟩ given by

⟨f, g⟩H2 :=

∫ 2π

0

f(eiθ)g(eiθ) dm for all f, g ∈ H2.

The standard orthonormal basis for H2 is {1, z, z2, . . . }. Given ϕ ∈ L∞(T), the Toeplitz operator
Tϕ : H2 → H2 is defined by

Tϕf = P (ϕf) for every f ∈ H2,

where P is the orthogonal projection from L2(T, dm) onto H2. A more detailed introduction of
Toeplitz operators is available in [2, 18]. These operators have also been studied extensively in
the literature, for example in [3, 4, 10, 11].

Let H be a separable complex Hilbert space. A mapping A : H → H is said to be a conjuga-
tion if it satisfies the following conditions:

(i) anti-linear (or conjugate-linear), i.e., A(ax + by) = aAx + bAy for all x, y ∈ H and
a, b ∈ C,
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(ii) involutive, i.e., A2 = I , the identity operator, and
(iii) isometric, i.e., ∥Ax∥ = ∥x∥ for each x ∈ H.

The adjoint A∗ of a bounded and anti-linear operator A is defined to satisfy the property that

⟨Ax, y⟩ = ⟨x,A∗y⟩ = ⟨A∗y, x⟩ for all x, y ∈ H.

In view of (ii) and (iii), we also have A∗ = A, i.e., A is self-adjoint.
A bounded linear operator T : H → H is said to be complex symmetric if there exists a

conjugation C : H → H such that CTC = T ∗ (or equivalently, CT ∗ = TC). In this case, we
say T is C-symmetric (or complex symmetric with respect to C). The study of complex sym-
metric operators was initiated by Garcia et al. in [5, 6, 7, 8]. These operators play a significant
role in control theory, signal processing and non-Hermitian quantum mechanics. Examples of
complex symmetric maps include normal operators, Hankel operators, Volterra operators and
truncated Toeplitz operators.

Investigation of the complex symmetry of Toeplitz operators on Hilbert spaces of analytic
functions was motivated by [9], in which the question of characterizing complex symmetric
Toeplitz operators on H2 was posed. Ko and Lee provided a necessary and sufficient condi-
tion for Tϕ to be complex symmetric with respect to a special class of conjugations on H2 [12,
Theorem 2.4]. This result, together with [13, Theorem 2.11(a)] and [16, Theorem 3.6], was gener-
alized by the authors in [17, Theorem 3.4]. Complex symmetric Toeplitz operators on Bergman
and Dirichlet spaces have been studied in [14] and [15], respectively.

Let p be a fixed positive integer. In [1], Chattopadhyay et al. introduced the conjugation
Cσ : H2 → H2 defined as

Cσ

( ∞∑
l=0

p−1∑
r=0

apl+rz
pl+r

)
=

∞∑
l=0

p−1∑
r=0

σ(apl+r)z
pl+r,

where
(i)
∑∞

l=0

∑p−1
r=0 apl+rz

pl+r ∈ H2,
(ii) σ is a permutation on the set {apl, apl+1, . . . , apl+p−1} for l = 0, 1, . . . , and

(iii) the order of σ is 2.
A special case of Cσ is the operator Ci,j

p : H2 → H2 given by

Ci,j
p

( ∞∑
l=0

p−1∑
r=0

apl+rz
pl+r

)
=

∞∑
l=0

apl+jz
pl+i +

∞∑
l=0

apl+iz
pl+j +

∞∑
l=0

p−1∑
r=0
r ̸=i,j

apl+rz
pl+r,

where i, j are any fixed integers such that 0 ≤ i < j < p. They characterized all Ci,j
p -symmetric

Toeplitz operators on H2 with additional assumptions on i, j and p [1, Theorem 2.2]. In the next
section, we provide an affirmative answer to Remark 2.3 therein that these characterizations are
valid whenever 0 ≤ i < j < p.

2. MAIN RESULTS

We will characterize all the Toeplitz operators Tϕ on H2 that are complex symmetric with
respect to Ci,j

p in terms of the Fourier coefficients of ϕ.

Theorem 2.1. Let ϕ(z) =
∑∞

n=−∞ ϕ̂(n)zn ∈ L∞(T) and i, j, p be integers such that 0 ≤ i < j < p.
Then the operator Tϕ is Ci,j

p -symmetric if and only if

ϕ̂(pl) = ϕ̂(−pl)
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and

ϕ̂(pl + r) = 0

for every integer l and r = 1, 2, . . . , p− 1.

Proof. Suppose ϕ̂(pl) = ϕ̂(−pl) and ϕ̂(pl + r) = 0 for all integers l and r = 1, 2, . . . , p− 1. Let l′

be any fixed non-negative integer. Then,

TϕC
i,j
p zpl

′+i = Tϕz
pl′+j

= P

(
ϕ̂(0)zpl

′+j +

∞∑
l=1

ϕ̂(pl)(zp(l+l′)+j + zplzpl
′+j)

)

=

{
ϕ̂(0)zpl

′+j +
∑∞

l=1 ϕ̂(pl)z
p(l+l′)+j if l′ = 0;

ϕ̂(0)zpl
′+j +

∑∞
l=1 ϕ̂(pl)z

p(l+l′)+j +
∑l′

l=1 ϕ̂(pl)z
p(l′−l)+j if l′ ≥ 1;

and

Ci,j
p T ∗

ϕz
pl′+i = Ci,j

p Tϕz
pl′+i

= Ci,j
p P

(
ϕ̂(0)zpl

′+i +

∞∑
l=1

ϕ̂(pl)(zp(l+l′)+i + zplzpl
′+i)

)

=

 Ci,j
p

(
ϕ̂(0)zpl

′+i +
∑∞

l=1 ϕ̂(pl)z
p(l+l′)+i

)
if l′ = 0;

Ci,j
p

(
ϕ̂(0)zpl

′+i +
∑∞

l=1 ϕ̂(pl)z
p(l+l′)+i +

∑l′

l=1 ϕ̂(pl)z
p(l′−l)+i

)
if l′ ≥ 1;

=

{
ϕ̂(0)zpl

′+j +
∑∞

l=1 ϕ̂(pl)z
p(l+l′)+j if l′ = 0;

ϕ̂(0)zpl
′+j +

∑∞
l=1 ϕ̂(pl)z

p(l+l′)+j +
∑l′

l=1 ϕ̂(pl)z
p(l′−l)+j if l′ ≥ 1.

Similarly,

TϕC
i,j
p zpl

′+j = Ci,j
p T ∗

ϕz
pl′+j .

When r = 0, 1, . . . , p− 1 with r ̸= i, j, we have

TϕC
i,j
p zpl

′+r = Ci,j
p T ∗

ϕz
pl′+r

=

{
ϕ̂(0)zpl

′+r +
∑∞

l=1 ϕ̂(pl)z
p(l+l′)+r if l′ = 0;

ϕ̂(0)zpl
′+r +

∑∞
l=1 ϕ̂(pl)z

p(l+l′)+r +
∑l′

l=1 ϕ̂(pl)z
p(l′−l)+r if l′ ≥ 1.

Thus, TϕC
i,j
p = Ci,j

p T ∗
ϕ .

Conversely, assume Tϕ is Ci,j
p -symmetric. Let l,m be any non-negative integers. We first

show that ϕ̂(n) = 0 for |n| = pl + i, . . . , pl + j. Since〈
P (ϕzpl+i), Ci,j

p zm
〉
H2 =

〈
Tϕz

pl+i, Ci,j
p zm

〉
H2

=
〈
zm, Ci,j

p T ∗
ϕz

pl+i
〉
H2

=
〈
zm, TϕC

i,j
p zpl+i

〉
H2 =

〈
Tϕz

m, Ci,j
p zpl+i

〉
H2

= ⟨ϕzm, zpl+j⟩H2 =

〈 ∞∑
n=−∞

ϕ̂(n)zm−n, zpl+j

〉
H2

= ϕ(m− pl − j)
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and {Ci,j
p zm}∞m=0 is an orthonormal basis for H2, it follows that

∥∥P (ϕzpl+i)
∥∥2 =

∞∑
m=0

∣∣∣〈P (ϕzpl+i), Ci,j
p zm

〉
H2

∣∣∣2 =

∞∑
m=0

|ϕ̂(m− pl − j)|2 =

∞∑
n=−pl−j

|ϕ̂(n)|2.

On the other hand,

P (ϕzpl+i) = P

( ∞∑
n=−∞

ϕ̂(n)zpl+i−n

)
=

pl+i∑
n=−∞

ϕ̂(n)zpl+i−n

and so, ∥∥P (ϕzpl+i)
∥∥2 =

pl+i∑
n=−∞

|ϕ̂(n)|2.

Thus,

(2.1)
∞∑

n=−pl−j

|ϕ̂(n)|2 =

pl+i∑
n=−∞

|ϕ̂(n)|2.

By considering P (ϕzpl+j), we obtain

(2.2)
∞∑

n=−pl−i

|ϕ̂(n)|2 =

pl+j∑
n=−∞

|ϕ̂(n)|2

in a similar fashion. From (2.1) and (2.2),
−pl−i−1∑
n=−pl−j

|ϕ̂(n)|2 = −
pl+j∑

n=pl+i+1

|ϕ̂(n)|2

which implies

(2.3) ϕ̂(n) = 0 for |n| = pl + i+ 1, . . . , pl + j.

Note that

TϕC
i,j
p zpl+i = Tϕz

pl+j = P

( ∞∑
n=−∞

ϕ̂(n)zpl+j+n

)

=

∞∑
n=−pl−j

ϕ̂(n)zpl+j+n =

∞∑
n=0

ϕ̂(n− pl − j)zn(2.4)

and

Ci,j
p T ∗

ϕz
pl+i = Ci,j

p P

( ∞∑
n=−∞

ϕ̂(n)zpl+i−n

)

= Ci,j
p

(
pl+i∑

n=−∞
ϕ̂(n)zpl+i−n

)

= Ci,j
p

( ∞∑
n=0

ϕ̂(pl + i− n)zn

)
.(2.5)
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Similarly,

(2.6) TϕC
i,j
p zpl+j =

∞∑
n=0

ϕ̂(n− pl − i)zn

and

(2.7) Ci,j
p T ∗

ϕz
pl+j = Ci,j

p

( ∞∑
n=0

ϕ̂(pl + j − n)zn

)
.

Suppose i ̸= 0 and k is any integer such that 0 ≤ k ≤ i − 1. We claim that ϕ̂(n) = 0 for
|n| = pl+ i− k. Comparing the coefficients of zk in the right most expressions of (2.4) and (2.5)
as well as those of zk in (2.6) and (2.7), we have

(2.8) ϕ̂(k − pl − j) = ϕ̂(pl + i− k) and ϕ̂(k − pl − i) = ϕ̂(pl + j − k),

respectively. Since i < j, we also have

(2.9) pl + i− k ≤ pl + j − 1− k ≤ pl + j.

When k = 0, it follows from (2.8) and the fact ϕ̂(−pl − j) = 0 = ϕ̂(pl + j) that ϕ̂(n) = 0

for |n| = pl + i. Assume there exists an integer k′ such that 0 ≤ k′ < i − 1 and ϕ̂(n) = 0 if
|n| = pl + i − k′, . . . , pl + i. By taking k = k′ + 1 and k = k′ in (2.8) and (2.9) respectively, it
follows from the induction assumption and (2.3) that ϕ̂(pl+ i− k′ − 1) = 0 = ϕ̂(k′ +1− pl− i).
Therefore,

(2.10) ϕ̂(n) = 0 for |n| = pl + 1, . . . , pl + j

(if i = 0, then (2.10) is also true in light of (2.3)).
It remains to show that ϕ̂(n) = 0 for |n| = pl + k, where k is any integer with j + 1 ≤ k ≤

p − 1. Since p does not divide 2pl + k, we have 2pl + i + k ̸= pl′ + i for all l′ ∈ N. Moreover,
2pl + i+ k ̸= pl′ + j for every l′ ∈ N. Otherwise, i− j + k = p(l′ − 2l). This equality is absurd,
because i+ 1 ≤ i− j + k ≤ p− 1 + i− j ≤ p− 2 < p. Comparing the coefficients of z2pl+i+k in
the right most expressions of (2.4) and (2.5) as well as those of z2pl+i+k in (2.6) and (2.7) gives

(2.11) ϕ̂(pl + i− j + k) = ϕ̂(−pl − k) and ϕ̂(pl + k) = ϕ̂(−pl − i+ j − k),

respectively. Furthermore,

(2.12) pl + i+ 1 ≤ pl + i− j + k ≤ pl + k − 1.

When k = j + 1, it follows from (2.11) and the fact ϕ̂(pl + i + 1) = 0 = ϕ̂(−pl − i − 1) that
ϕ̂(n) = 0 for |n| = pl + j + 1. Assume there is an integer k′ for which j + 1 ≤ k′ < p − 1 and
ϕ̂(n) = 0 for |n| = pl + j + 1, . . . , pl + k′. Taking k = k′ + 1 in (2.11) and (2.12), it follows from
the induction assumption, (2.3), (2.11) and (2.12) that ϕ̂(n) = 0 for |n| = pl + k′ + 1.

Hence ϕ̂(pl + r) = 0 for all integers l and r = 1, . . . , p − 1. Comparing the coefficients of zj

in the right most expressions of (2.4) and (2.5), we have

ϕ̂(−pl) = ϕ̂(pl)

for all non-negative integers l. The proof of the theorem is now complete. □

Chattopadhyaya et al. introduced another special case of Cσ in [1], namely the operator
Cn : H2 → H2 defined by

Cn

( ∞∑
l=0

n−1∑
r=0

anl+rz
nl+r

)
=

∞∑
l=0

n−1∑
r=0

anl+n−r−1z
nl+r,
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where
∑∞

l=0

∑n−1
r=0 anl+rz

nl+r ∈ H2 and n is any fixed positive integer. They also obtained the
following characterizations for Tϕ to be Cn-symmetric.

Theorem 2.2. [1, Theorem 3.1] Let ϕ(z) =
∑∞

k=−∞ ϕ̂(k)zk ∈ L∞(T). Then the operator Tϕ is
Cn-symmetric if and only if

ϕ̂(nl) = ϕ̂(−nl)

and

ϕ̂(nl + r) = 0

for every integer l and r = 1, 2, . . . , n− 1.

The method adopted in proving Theorem 2.1 furnishes an alternative proof to the necessity
part of Theorem 2.2: Assume Tϕ is Cn-symmetric. Since Cnz

nl = znl+n−1, we have

⟨P (ϕznl), Cnz
m⟩H2 = ϕ̂(m− nl − n+ 1)

for all non-negative integers l and m. The fact that {Cnz
m}∞m=0 is an orthonormal basis for H2

implies ∥∥P (ϕznl)
∥∥2 =

∞∑
m=0

|ϕ̂(m− nl − n+ 1)|2 =

∞∑
k=−nl−n+1

|ϕ̂(k)|2.

Moreover, ∥∥P (ϕznl)
∥∥2 =

nl∑
k=−∞

|ϕ̂(k)|2.

Thus,

(2.13)
∞∑

k=−nl−n+1

|ϕ̂(k)|2 =

nl∑
k=−∞

|ϕ̂(k)|2.

Considering P (ϕznl+n−1) likewise, we obtain

(2.14)
∞∑

k=−nl

|ϕ̂(k)|2 =

nl+n−1∑
k=−∞

|ϕ̂(k)|2.

Now, it follows from (2.13) and (2.14) that

−nl−1∑
k=−nl−n+1

|ϕ̂(k)|2 = −
nl+n−1∑
k=nl+1

|ϕ̂(k)|2,

i.e., ϕ̂(k) = 0 for |k| = nl + 1, . . . , nl + n− 1. Furthermore,

TϕCnz
nl+n−1 = Tϕz

nl = P

( ∞∑
k=−∞

ϕ̂(k)znl+k

)

=

∞∑
k=−nl

ϕ̂(k)znl+k =

∞∑
k=0

ϕ̂(k − nl)zk(2.15)
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and

CnT
∗
ϕz

nl+n−1 = CnP

( ∞∑
k=−∞

ϕ̂(k)znl+n−1−k

)

= Cn

(
nl+n−1∑
k=−∞

ϕ̂(k)znl+n−1−k

)

= Cn

( ∞∑
k=0

ϕ̂(nl + n− 1− k)zk

)
.(2.16)

Upon comparing the constant terms in the right most expressions of (2.15) and (2.16), we have

ϕ̂(−nl) = ϕ̂(nl).
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