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Abstract 

In this study, the validity of imputation techniques for deep learning methods in time series analysis is investigated using 
datasets based on daily closing data in the stock market. Datasets of daily closing stock prices for Turkish Airlines, Deutsche 
Lufthansa AG, and Delta Airlines, as well as a simulated dataset, are used. LSTM, GRU, RNN, and Transformer models, which 
are deep learning models, are employed. The original dataset and datasets with 5%, 15% and 25% missing data are analyzed 
imputing linear, spline, Stineman, mean and random imputation techniques. The results show that model performance varies 
depending on the imputation technique and the rate of missing data. GRU and Transformer models are favored for their 
robustness and excellent performance. For handling missing data, using spline and Stineman imputations is advisable to 
maintain high model accuracy. This study emphasizes the usability of various imputation techniques and deep learning 
models in time series analysis. It assesses model performance using both MAPE and RMSE to gain a comprehensive 
understanding of predictive accuracy and reliability, aiming to guide future research by comparing these methods. 
Keywords: Missing Data, Synthetic Data, Transformer Model, RNN, Simulation, Airline Stocks. 

 

I. INTRODUCTION  
Financial markets are characterized by their complex and dynamic nature. Time series analysis is a tool for 

identifying historical trends and patterns in financial data, aiding in the prediction of future movements. In 

financial markets, time series analysis and panel analysis are used for a variety of data types, including exchange 

rates, stock prices, etc. These analyses provide insights to make investment decisions, overcome risk management 
problems, and develop market strategies [1]. On the other hand, panel data analysis, which includes both cross-

sectional and time dimensions, can also be applied [2]. 

Time series analysis employs a range of methods, from traditional statistical techniques, such as ARIMA, 

SARIMA, and Exponential Smoothing, to modern deep learning models (DLMs) like long short-term memory 

(LSTM), Gated recurrent unit (GRU), recurrent neural network (RNN), and Transformer model (TM). In 

particular, the widespread use of TM [3], which is a relatively new method, shows the speed of development in 

this field. On the other hand, the Box-Jenkins (BJ) method, which is traditionally used in time series analysis, and 

the Artificial Neural Networks (ANNs) method are compared for demand forecasting [4]. The time series data on 
Rwanda's and Brazil’s GDP per capita are modeled using the conventional BJ approach and the innovative ANNs, 

respectively [5-6]. While ANNs and DLMs have advantages over traditional methods, it should not be overlooked 

that they also pose challenges such as hyperparameter tuning [7]. 

One of the significant challenges in time series analysis is the problem of missing data. Missing data can arise for 

various reasons and negatively impact analysis accuracy, reducing model prediction reliability and potentially 

leading to incorrect decisions. Various imputation techniques, such as linear, spline, Stineman, mean, and random 

imputation, have been used to estimate missing values and reconstruct the time series. The performance of these 
techniques varies with the nature and the proportion of missing values. The choice of imputation method is crucial 

to improve the accuracy and reliability of time series analysis [8-9].  

In literature, the performance of three machine learning models (ARIMA, LSTM, GRU) is compared for time 

series forecasting using a Bitcoin price dataset, finding ARIMA to be superior to deep learning-based regression 

models [10]. The effectiveness of ARIMA and GRU models is assessed in predicting high-frequency stock prices, 
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demonstrating that the GRU model outperformed the 

ARIMA model in accuracy [11]. In a comprehensive 

literature review comparing ARIMA and machine 

learning algorithms for time series forecasting, as well 

as their integration in hybrid models, artificial 

intelligence algorithms exhibit superior predictive 

performance in most applications, hybrid statistical-

artificial intelligence models outperform individual 
methods by leveraging the best features of both [12]. 

On the other hand, providing an overview of utilizing 

Transformer architecture in time series analysis, the 

study details core components such as self-attention 

mechanism, positional encoding, multi-head, and 

encoder/decoder, along with various enhancements and 

best practices for addressing time series tasks, 

showcasing the effectiveness of TM [13]. 

Systematically investigating the usage of TM in time 

series analysis, the study examines adaptations from 

both network structure and application perspectives, 
emphasizing empirical analyses, model size 

evaluations, and seasonal-trend decomposition to 

showcase TM's performance and potential for future 

research [14]. The importance of imputation techniques 

in handling missing data alongside time series analysis 

is a separate topic, and has been addressed in [15], 

investigating imputation of missing values in time 

series data using deep learning methods [15].  The 

effects of various imputation methods—including 

linear, spline, and Stineman interpolation, as well as 

mean and random sample imputation—on the goodness 
of fit of statistical models, using synthetic data to 

control for missing data rate and dataset size has been 

investigated [16]. 

The rest of this article is organised as follows. The 

second section of the study presents the methodologies 

employed. The third section shares the findings 

obtained from the analysis. The final section 

comprehensively assesses and discusses the results. 

 

II. METHOD 

2.1. Estimation Techniques 
In this section, the modeling techniques and imputation 

methods utilized in the research are presented. Time 

series modeling techniques includes the traditional 

approach of ARIMA, while deep learning methods 

such as LSTM, GRU, RNN, and Transformer models 

are discussed. As for imputation techniques, commonly 

used methods in the literature are discussed, and 

presented, including Linear, Spline, Stineman, Mean, 

and Random imputation techniques. 

The ARIMA model, characterized by the parameters (p, 

d, q), integrates the autoregressive (AR) component of 

order p, differencing of order d, and moving average 

(MA) component of order q. Specifically, the AR 

component involves lagged values of the time series up 

to p periods, with coefficients denoted as 𝛼𝑖 for 𝑖 =
1, 2, … , 𝑝. The MA component incorporates q lagged 

forecast errors, with coefficients 𝜃𝑗 for 𝑗 = 1, 2, … , 𝑞. 

The differencing parameter d indicates the number of 

times the time series is differenced to ensure 

stationarity. The ARIMA model is represented as in 

Equation (1): 

(1 − ∑ 𝛼𝑖𝐿
𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 − ∑ 𝜃𝑗𝐿𝑗

𝑞

𝑖=1

) 𝜀𝑡  

      (1) 

where 𝑋𝑡 represents the time series value at time t, 𝜀𝑡  is 

the error term at time t, capturing any residual variation 

not explained by the ARIMA model, and L denotes 

backshift (lag) operator such that 𝐿𝑘𝑋𝑡 = 𝑋𝑡−𝑘. 

While traditional methods like ARIMA are still useful, 

especially for simpler, linear time series problems and 

for their interpretability, the flexibility, scalability, and 

performance of deep learning models make them 

increasingly preferable for more complex and large-
scale time series forecasting tasks. Deep learning 

approaches like RNN, LSTM, and TM are gaining 

popularity because they can handle complex, non-

linear relationships and long-term dependencies in time 

series data more effectively than traditional methods 

like ARIMA. Additionally, they require less manual 

feature engineering, scale well with large datasets, and 

can adapt more easily to changes in data patterns. 

RNNs update their hidden state based on the input at 

the current time step and the hidden state from the 

previous time step. The hidden state update and output 

calculation are presented in Eq. 2, respectively. 

ℎ𝑡 = 𝜎ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ) 

𝑦𝑡 = 𝜎𝑦(𝑊𝑦ℎ𝑡 + 𝑏𝑦)   (2) 

where ℎ𝑡 and 𝑥𝑡 denote the hidden state and input at 
time step 𝑡,  respectively, and ℎ𝑡−1 is the hidden state 
at the previous time step 𝑡 − 1. Here 𝑊ℎ, 𝑈ℎ, 𝑏ℎ  and 

𝜎ℎ represent the weight matrix for the input 𝑥𝑡, the 
weight matrix for the hidden state ℎ𝑡−1, the bias term, 
and the activation function for the input layer, 

respectively, while 𝑦𝑡, 𝑊𝑦, 𝑏𝑦, and 𝜎𝑦 denote the output 

at time step 𝑡, the weight matrix for the output, the bias 

term for the output, and the activation function for the 

output layer, respectively. 

The LSTM model can capture long-term dependencies 

in sequential data and is presented through five 
equations: the forget gate, input gate, cell state update, 

output gate and hidden state update. Among these five 

steps, the forget gate step, presented in Eq.3, is often 

considered the most significant. 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)             (3) 

where 𝑓𝑡  and 𝑥𝑡 represent the forget gate activation 

vector at time step 𝑡 and the current input, 
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respectively; 𝑊𝐹  and 𝑏𝑓 denote the weight matrix and 

bias vector for the forget gate, respectively; 𝜎 is the 

sigmoid activation function; and [ℎ𝑡−1, 𝑥𝑡] denotes the 

concatenation of the previous hidden state ℎ𝑡−1. 

GRU networks simplify the LSTM architecture by 

combining the forget and input gates into a single 

update gate and merging the cell state and hidden state. 

The hidden state update equation is as presented in 

Eq.4. 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ�̃�    (4) 
 

where ℎ𝑡, 𝑧𝑡, and  ℎ�̃� represent the hidden state, the 
update gate, and the candidate hidden state at time 
step 𝑡, respectively; ℎ𝑡−1 is the hidden state at time at 
the previous time step 𝑡 − 1, and ⊙ denotes matrix 

multiplication. 

The TM is a type of neural network architecture that 

utilizes self-attention mechanisms to capture 

dependencies between different time steps in the data 

[3]. The key equation in the Transformer model is the 

self-attention mechanism, which computes the 

weighted sum of values based on the similarities with 

keys. This mechanism is as presented in Eq.5: 

𝑜𝑢𝑡𝑝𝑢𝑡(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉            (5) 

 

𝑄, 𝐾, 𝑉 represent the query, key, and value matrices, 

respectively. 𝑑𝑘 denotes the dimensionality of the key 

vectors. 

2.2. Imputation Techniques 

Information about the commonly used imputation 

techniques used in the study is briefly presented below: 

 Linear Imputation: This method fills missing 

values with a linear interpolation between adjacent 

known data points. It assumes a linear relationship 

between consecutive observations [8]. 

 Spline Imputation: Spline interpolation is a non-

linear method that fits a series of polynomial 
functions between data points to create a smooth 

curve, providing a smooth estimation of missing 

values [17]. 

 Stineman Imputation: Stineman imputation could 

theoretically refer to using the Stineman 

interpolation method to estimate missing values in 

a dataset. The Stineman interpolation method aims 

to preserve the data's monotonicity and 

convexity/concavity [18]. 

 Mean Imputation: In mean imputation, missing 

values are replaced with the mean of the available 

data. It is a simple and commonly used method but 
may not capture the underlying patterns in the data 

[19]. 

 

 Random Imputation: This technique fills missing 

values with randomly selected values from the 

observed data. While it is easy to implement, 

random imputation may introduce noise into the 

dataset and distort the original distribution [8]. 

Each imputation method has its advantages and 

limitations, and the choice depends on the nature of the 

data and the specific objectives of the analysis. 

III. FINDINGS 

3.1. Simulation 

A synthetic dataset of 4,500 units is produced for the 

years 2006-2024. The stock price is modeled with a 

linear trend, starting from 50 Turkish Liras and 

reaching 150 Turkish Liras. Normally distributed 

random variables are used to create random noise in 

price changes, with the dataset representing end-of-day 

data and daily fluctuations in stock prices. The seasonal 
component of prices is modeled with a sine function 

[𝑓(. ) = 𝑠𝑖𝑛(. )] repeated at certain intervals. To 

increase the realism of the simulation, outliers with 

high volatility are added to randomly selected time 

periods to represent the impact of unexpected market 

events or news. 

For time series analysis, deep learning approaches such 

as RNN, LSTM, GRU, and Transformer models are 
used. Various data imputation techniques, including 

linear, spline, Stineman, mean, and random imputation 

methods, are employed. The models are tested with 0% 

(complete data), 5%, 15%, and 25% missing data. The 

uniform distribution is used to reduce the data [20]. The 

Python programming language is used for the analysis, 

and the results are presented in Table 1. 

For non-imputation (0%), TM performs the best in 

terms of the mean absolute percentage error (MAPE) 

and R² but has a higher the root mean square error 

(RMSE) compared to RNN, LSTM, and GRU. Linear, 

spline, and Stineman imputations maintain high 

accuracy with moderate increases in errors as 

imputation rates increase. Mean and random 

imputations result in significant errors and a decrease 

in prediction accuracy.   TM generally provides the best 

accuracy (lowest MAPE and highest R²), making it the 

preferred choice when imputation rates are low to 

moderate. GRU and TM perform better with higher 
imputation rates compared to LSTM and RNN. Linear, 

spline, and Stineman imputations are preferred for 

maintaining model performance across all estimators. 

Mean and random imputations result in significant 

errors and should be avoided if possible. 

3.2. Analysis of stock market data 

End-of-day data for the stock prices of Turkish Airlines 

(THYAO), Lufthansa (LHA.DE), and Delta Airlines 
(DAL) are analyzed. These three airlines, which are 

among the top 10 leading airlines in the world, are 

included in the study. The same stages applied in the 
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simulation are used in this analysis as well. Our goal is 

to compare the results from the synthetic data with 

those from real data applications [21]. The analysis of 

the stock prices of these three airline companies from 

2006 to 2024 is presented in Tables 2-4 for THYAO, 

LHA.DE, and DAL, respectively. 

For the THYAO dataset, TM and GRU exhibit the best 

performance with low MAPE and RMSE, and high R², 

indicating accurate and reliable predictions without 

missing data under non-imputation (0%). Linear and 

spline imputations are more effective, with spline being 

slightly better. Stineman imputation is also effective, 

but mean and random imputations lead to poor 

performance. GRU and TM are the most robust and 

accurate, especially with the appropriate imputation 
methods. GRU and Transformer models also show the 

best overall performance, particularly when using 

spline and Stineman imputations.  

For the LHA.DE dataset, GRU exhibits the best 

performance with the lowest RMSE and relatively low 

MAPE, indicating accurate and reliable predictions 

without missing data. TM also shows strong 

performance under non-imputation (0%) since it 
produces smallest MAPE. Linear and spline 

imputations are more effective, with spline being 

slightly better. Stineman imputation is also effective, 

but mean and random imputations lead to poor 

performance. GRU and Transformer models show the 

best overall performance, particularly when using 

spline and Stineman imputations. 

For the DAL dataset, the results are similar to those 

obtained for other datasets when imputation is 

employed. GRU and TM outperform the other methods 

considered in this study when combined with the spline 

and Stineman imputation techniques, particularly as the 

imputation rate increases. 

IV. CONCLUSION 

The comparison of traditional and deep learning 

methods on both original and imputed data has not been 

extensively explored in the literature as far as we know. 

This study investigates the imputation of missing data 

and evaluates the performance of deep learning 
techniques, utilizing datasets from Turkish Airlines, 

Lufthansa, Delta Airlines, and simulated synthetic data. 

The study employs RNN, LSTM, GRU, and TM. The 

datasets are imputed to include 5%, 15%, and 25% 

missing data, which are then imputed using Linear, 

Spline, Stineman, Mean, and Random imputation 

methods. The analysis of the four tables for datasets 

THYAO, LHA.DE, DAL, and Synthetic datasets across 

various imputation techniques provides a 

comprehensive overview of model performance under 

different conditions.  

 

Performance without missing data (0% imputation): 

Across all datasets, TM consistently shows the lowest 

MAPE and RMSE, indicating superior accuracy and 

reliability. GRU and LSTM models also perform well, 

with RNN exhibiting slightly higher error rates. The 

high R² values for all models across datasets indicate 

that the models explain a significant proportion of the 

variance in the data without any missing values. 

Impact of imputation techniques: Linear and Spline 

Imputations generally result in moderate increases in 

MAPE and RMSE across all models and datasets, with 

spline imputation showing slightly better performance 

than linear imputation. RNN models exhibit a more 

significant increase in errors compared to LSTM, GRU, 

and Transformer models. Stineman imputation 
maintains low and stable MAPE and RMSE values, 

particularly for GRU and Transformer models, 

indicating effective handling of missing data. Mean and 

random imputations led to significant increases in 

MAPE and RMSE across all models and datasets, with 

random imputation resulting in the most drastic 

deterioration in performance. This indicates that these 

methods are ineffective for handling missing data in 

time series forecasting. 

While performing adequately without missing data, 

RNNs struggle significantly with higher rates of 

imputation, particularly with mean and random 

methods. LSTM models demonstrate robust 

performance, handling linear and spline imputations 

well but showing moderate increases in errors with 

higher rates of mean and random imputations. GRU 

models consistently show the best overall performance 

across all imputation techniques and datasets, 

maintaining low error rates and high R² values. TM 
models excel particularly with spline and Stineman 

imputations, maintaining very low MAPE and RMSE 

values. However, they also exhibit increased sensitivity 

to mean and random imputations, similar to other 

models. 

The comprehensive analysis of the THYAO, LHA.DE, 

DAL, and Synthetic datasets under various imputation 

scenarios reveals several key conclusions.  

For model performance: TM and GRU models 

consistently outperform RNN and LSTM models, 

particularly in the presence of missing data. This is 

evident from their lower MAPE and RMSE values 

across different imputation techniques. 

For effective imputation techniques: Spline and 

Stineman imputations are more effective in maintaining 

model performance, while mean and random 

imputations lead to significant performance 

degradation. This underscores the importance of 

selecting the appropriate right imputation technique in 

time series forecasting. 
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For robustness to missing data: GRU and TM exhibit 

greater robustness to missing data, maintaining 

accuracy and low error rates across different imputation 

methods and missing data rates. 

For metric correlation: The correlation between MAPE 

and RMSE suggests that both metrics should be 

considered for a comprehensive evaluation of model 
performance. Although they generally align, their 

different sensitivities to outliers provide 

complementary insights into model accuracy. 

For practitioners in the field of time series forecasting, 

GRU and Transformer models are recommended due to 

their robustness and superior performance. When 

dealing with missing data, spline and Stineman 
imputations should be preferred to ensure minimal 

degradation in model accuracy. Avoid using mean and 

random imputations, as they significantly impair model 

performance. Finally, always evaluate model 

performance using both MAPE and RMSE to capture a 

complete picture of the model's predictive accuracy and 

reliability. 

Future research can further expand on the findings of 
this study by examining additional deep learning 

architectures and prediction techniques to assess their 

effectiveness in handling missing data. Extending this 

to include not only time series prediction but also other 

types of data, such as health and environmental science 

datasets, would increase the generalizability of the 

results. 
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APPENDICES 
Table 1. Results for synthetic dataset 

SYNTHETIC    Lin. Imp. Spl. Imp. Sti. Imp. Mea. Imp. Ran. Imp. 

0% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 

RNN MAPE 0.90 1.24 1.27 1.60 1.12 1.16 1.84 1.01 1.10 1.63 4.24 5.09 13.62 5.83 11.92 28.67 

R2 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.81 0.77 0.26 0.70 0.32 0.24 

RMSE 0.57 1.61 1.73 2.02 1.45 1.51 2.40 1.31 1.45 2.09 9.24 10.19 19.95 12.40 22.43 33.92 

LSTM MAPE 0.85 1.79 1.83 1.91 1.60 1.64 1.66 1.42 1.52 1.81 4.65 3.59 10.13 4.29 10.15 12.12 

R2 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.82 0.83 0.40 0.73 0.35 0.22 

RMSE 0.53 2.30 2.33 2.42 2.10 2.12 2.13 1.91 1.97 2.32 8.91 8.71 17.99 11.65 21.95 26.72 

GRU MAPE 0.86 0.91 0.94 0.99 0.90 0.91 1.10 0.88 0.90 0.96 3.74 3.55 13.12 4.31 11.08 14.91 

R2 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.82 0.83 0.39 0.73 0.33 0.23 

RMSE 0.53 1.19 1.24 1.31 1.15 1.18 1.45 1.15 1.17 1.23 8.82 8.73 18.11 11.71 22.21 26.53 

TM MAPE 0.15 0.17 0.21 0.27 0.19 0.20 0.22 0.18 0.19 0.21 8.90 3.13 10.66 4.10 10.90 16.10 

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.50 0.60 0.45 0.41 0.38 0.22 

RMSE 1.76 1.96 2.13 2.50 1.96 2.01 2.48 1.98 2.07 2.13 6.10 2.60 6.90 3.60 8.60 10.14 
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Table 2. Results for Turkish Airlines stocks’ dataset 

THYAO   Lin. Imp. Spl. Imp. Sti. Imp. Mea. Imp. Ran. Imp. 

0% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 

RNN MAPE 2.71 7.18 8.24 10.09 6.11 7.85 9.52 6.35 7.86 12.55 24.30 52.82 34.52 46.83 96.7 176.24 

R2 0.99 0.94 0.90 0.87 0.95 0.95 0.92 0.94 0.93 0.81 0.51 0.28 0.16 0.43 0.31 0.11 

RMSE 3.64 17.41 21.38 25.74 14.04 15.48 17.91 17.01 17.72 31.37 48.96 57.53 59.13 89.17 87.53 84.14 

LSTM MAPE 3.24 4.10 4.40 4.44 2.86 3.41 3.95 2.92 3.47 4.60 24.61 33.54 42.84 49.74 81.76 122.00 

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.69 0.70 0.51 0.35 0.26 0.22 

RMSE 3.77 4.74 6.09 6.78 3.35 3.98 4.02 5.18 6.23 5.80 38.60 36.79 45.17 85.57 86.04 88.21 

GRU MAPE 2.05 2.52 2.75 2.94 2.45 2.55 2.72 2.65 2.82 2.98 24.42 39.76 48.62 36.46 79.11 130.58 

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.89 0.72 0.66 0.10 0.24 0.21 

RMSE 2.71 3.12 3.19 3.36 3.08 3.60 3.82 4.35 4.62 4.78 23.21 35.60 37.57 75.27 85.09 87.71 

TM MAPE 0.41 0.68 1.08 1.43 0.46 0.47 0.54 0.44 0.50 0.58 25.47 49.42 57.53 94.03 122.60 179.70 

R2 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.86 0.66 0.45 0.51 0.22 0.22 

RMSE 2.25 2.43 2.58 4.38 2.41 2.47 3.34 2.45 2.58 3.88 28.76 43.65 54.36 55.59 84.75 85.42 
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Table 3. Results for Deutsche Lufthansa AG stocks’ dataset 

LHA.DE   Lin. Imp. Spl. Imp. Sti. Imp. Mea. Imp. Ran. Imp. 

0% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 

RNN MAPE 1.91 1.93 2.03 2.99 1.93 2.01 2.08 1.9 2.03 2.04 6.12 8.18 19.95 18.38 16.02 26.04 

R2 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.78 0.53 0.59 0.43 0.25 

RMSE 0.21 0.22 0.23 0.31 0.22 0.23 0.24 0.21 0.22 0.22 0.82 1.25 1.77 2.01 2.64 3.47 

LSTM MAPE 1.72 2.03 1.94 4.18 1.85 1.90 2.03 1.88 1.90 1.94 6.20 9.52 12.38 9.31 15.23 25.07 

R2 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.80 0.69 0.69 0.45 0.25 

RMSE 0.20 0.23 0.22 0.46 0.21 0.21 0.23 0.21 0.21 0.22 0.82 1.20 1.44 1.76 2.60 3.46 

GRU MAPE 1.65 1.88 1.89 2.38 1.80 1.78 1.86 1.78 1.86 1.87 5.57 9.84 11.95 9.49 12.96 22.28 

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.80 0.68 0.69 0.45 0.29 

RMSE 0.19 0.20 0.21 0.27 0.20 0.21 0.22 0.21 0.21 0.21 0.83 1.20 1.46 1.75 2.59 3.38 

TM MAPE 0.38 0.39 0.44 0.51 0.39 0.40 0.45 0.48 0.45 0.50 9.30 8.71 10.88 7.00 10.85 17.97 

R2 0.99 0.99 0.99 0.91 0.99 0.99 0.97 0.97 0.96 0.97 0.42 0.53 0.34 0.47 0.23 0.22 

RMSE 0.34 0.35 0.43 0.72 0.35 0.39 0.62 0.53 0.47 0.53 0.92 0.83 0.99 0.99 1.51 85.43 
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Table 4. Results for Delta Airlines stocks’ dataset 

DAL    Lin. Imp. Spl. Imp. Sti. Imp. Mea. Imp. Ran. Imp. 

0% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 5% 15% 25% 

RNN MAPE 1.86 2.07 2.65 2.94 2.01 2.08 2.63 2.05 2.10 2.60 8.66 13.23 16.21 13.13 22.88 36.33 

R2 0.99 0.98 0.97 0.97 0.99 0.99 0.96 0.99 0.98 0.97 0.78 0.54 0.36 0.68 0.38 0.22 

RMSE 1.01 1.10 1.43 1.49 1.07 1.10 1.76 1.09 1.13 1.35 4.59 6.55 7.52 5.94 9.01 11.11 

LSTM MAPE 1.82 2.01 2.27 4.16 1.95 2.01 2.93 1.98 2.03 3.87 7.06 11.15 13.38 13.64 25.88 35.13 

R2 0.99 0.98 0.98 0.95 0.99 0.99 0.94 0.99 0.98 0.95 0.81 0.59 0.48 0.67 0.35 0.21 

RMSE 0.99 1.09 1.18 2.19 1.06 1.09 1.95 1.07 1.09 2.03 4.23 6.13 6.79 5.99 9.29 11.10 

GRU MAPE 1.78 1.96 2.16 2.24 1.92 2.00 2.73 1.95 1.98 2.36 6.41 13.41 17.68 14.31 23.59 35.20 

R2 0.99 0.99 0.99 0.98 0.99 0.99 0.97 0.99 0.99 0.99 0.92 0.77 0.66 0.82 0.61 0.46 

RMSE 0.99 1.09 1.14 1.17 1.05 1.07 1.49 1.06 1.08 0.62 2.24 3.38 3.96 3.28 4.91 5.96 

TM MAPE 0.37 0.44 0.47 0.48 0.39 0.4 0.44 0.41 0.44 0.46 7.83 13.59 18.32 9.06 20.49 29.94 

R2 0.99 0.98 0.98 0.97 0.99 0.98 0.97 0.97 0.97 0.97 0.92 0.79 0.67 0.89 0.71 0.50 

RMSE 0.98 1.28 1.44 1.47 1.16 1.21 1.41 1.24 1.27 1.44 2.30 3.67 4.34 2.76 4.52 5.75 
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