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Abstract 
 

ABA-type block copolymers consisting of 2-hydroxypropyl acrylate (HPA) and ethylene glycol (EG) segments 
were prepared by the RAFT polymerization method using two different lengths of macro-RAFT agents based 
on commercial poly(ethylene glycol)s with average molar masses of 400 and 1450 gmol-1 (PEG400 and 
PEG1450). By extending the difunctional ends of PEG400 and PEG1450 vertebrate macro-RAFT agents with 
HPA units, it was aimed to synthesize three ABA type block copolymers of different lengths from each agent. 
Structural characterization of the copolymers was performed using FTIR and 1H-NMR spectroscopy. In 
addition to confirming the chemical structures, signal integrations in the 1H-NMR spectrum provided 
information about the relative proportions of individual repeating units in each copolymer. Six block 
copolymers were examined for critical dissolution temperatures based on the relative lengths of the blocks 
and their PEG content. It was determined that all block copolymer systems examined exhibited lower critical 
solution temperature (LCST) in the range of 17.2-23.9 oC, and as the ratio of EG units in the copolymers 
increased, the CST of the copolymers increased. 
 

Keywords: RAFT polymerization, ABA type-block copolymer, phase transition, lower critical solution 
temperature 
 
 

2-Hidroksipropil Akrilat ve Poli (Etilen Glikol)’den Oluşan ABA Tipi Blok 
Kopolimerlerin Faz Davranışlarının İncelenmesi 

 

Öz 
 

2-hidroksipropil akrilat (HPA) ve etilen glikol (EG) segmentlerinden oluşan ABA tipi blok kopolimerleri, 400 ve 
1450 gmol-1 ortalama mol kütlesine sahip ticari poli(etilen glikol)’lerden (PEG400 ve PEG1450) elde edilen iki 
farklı uzunlukta makro-RAFT ajanı kullanılarak RAFT polimerizasyon yöntemiyle hazırlandı. PEG400 ve 
PEG1450 omurgalı makro-RAFT ajanlarının difonksiyonel uçları HPA birimleri ile uzatılarak her ajandan üçer 
tane farklı uzunlukta ABA tipi blok kopolimer sentezlenmesi hedeflendi. Kopolimerlerin yapısal 
karakterizasyonu FTIR ve 1H-NMR spektroskopisi kullanılarak yapıldı. Kimyasal yapıların doğrulanmasına ek 
olarak, 1H-NMR spektrumundaki sinyal entegrasyonları, her bir kopolimerdeki ayrı ayrı tekrar eden birimlerin 
göreceli oranları hakkında bilgi verdi. Blokların bağıl uzunluklarına ve PEG içeriklerine bağlı olarak altı blok 
kopolimer kritik çözünme sıcaklıkları açısından incelendi. İncelenen tüm blok kopolimer sistemlerinin 17.2-
23.9 oC aralığında düşük kritik çözelti sıcaklığı (LCST) sergilediği ve kopolimerlerdeki EG birimlerinin oranı 
arttıkça kopolimerlerin CST'sinin arttığı belirlendi. 
 

Anahtar Kelimeler: RAFT polimerizasyonu, ABA-tipi blok kopolimer, faz geçişi, düşük kritik çözünme sıcaklığı 
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Introduction  

Stimuli-responsive polymers are a type of polymer that exhibit changes in their chemical and/or 
physical properties in response to changes such as pH (Kocak et al., 2017), temperature (Kim & 
Matsunaga, 2017), light (Lam et al., 2022; Stoychev et al., 2019), and redox reaction (Levit et al., 
2020). Polymeric systems that are sensitive to any two of these factors have also often been reported 
(Babić et al., 2016; González et al., 2005; Huang et al., 2016; Kanazawa & Okano, 2011; Twal et al., 
2024). Thermo-responsive polymers, main part of the class of stimuli-responsive polymers, undergo a 
reversible phase transition as a function of temperature. They are of great interest in 
biotechnological applications such as drug delivery systems (Yadav et al., 2019), polymer-drug 
conjugates (Fergie et al., 2024), and tissue engineering (Doberenz et al., 2020). 

Thermoresponsive materials have a sharp transition temperature at which they become either 
soluble or insoluble. The temperature at which the phase transition occurs in solution is called the 
critical solution temperature. Polymers that become soluble with increasing temperature have an 
upper critical solution temperature (UCST) and those that become insoluble with increasing 
temperature have a lower critical solution temperature (LCST). Examples of polymers that exhibit 
LCST include PNIPAM, poly(N,N-diethyl acrylamide), poly(N-acryloylpyrrolidine), poly(2-isopropyl-2-
oxazoline) and poly(vinyl methyl ether). Although PNIPAM is the most studied thermoresponsive 
polymer, it has the disadvantage of an irreversible phase transition. In addition, the presence of the 
tertiary amide function in PNIPAM can cause H-bonding interactions with peptide bonds in proteins. 
Such behaviour complicates the use of PNIPAM in some biotechnological applications. 

Poly(2-hydroxypropyl acrylate) (PHPA) is one of the most common polymers exhibiting lower critical 
solution temperature (LCST)(Eggenhuisen et al., 2008; C. D. Vo et al., 2010) in water, i.e. it 
precipitates  upon  heating  and  dissolves if it is cooled.  Many works (Eggenhuisen et al., 2008; C.-D. 
Vo et al., 2010) have been reported on the polymer since critical solution temperature of its 10% of 
solution has been first time reported as 16 oC (Taylor & Cerankowski, 1975). Since then, not only 
PHPA but also many copolymers of HPA (Babić et al., 2015; Chen et al., 2022; Christova et al., 2003; 
Eggenhuisen et al., 2008; Hoogenboom et al., 2009; Perera & Shanks, 1995; Topham et al., 2008; 
Zhao et al., 2012)has been investigated in the aspect of Tc. Because of the low LCST of PHPA, 
copolymerization with a more hydrophilic monomer is expected to lead to a library that covers a 
broad range of transition temperatures. 

Another type of polymeric systems  exhibiting LCST is the graft copolymers bearing PEG analogues as 
branches (Lutz, 2008; Vancoillie et al., 2014).  The non-linear PEG analogues can be insoluble in 
water, readily soluble up to 100oC, or thermo-responsive. In fact, the balance between hydrophilic 
and hydrophobic moieties in the molecular structure of the polymers is the key-parameter that 
determines their solution properties. In a study (Vancoillie et al., 2019), a polymer system based on 
HPA and non-linear PEG analogues has been reported as LCST exhibiting thermo-responsive polymer. 
Since the phase transition temperature is directly related to the hydrophilic/hydrophobic balance in 
a random copolymer, controlling the polymer composition provides a very effective way of tuning 
the LCST. By creating systematical libraries of random copolymers, the relationship between 
monomer composition and LCST can be studied in detail (Fournier et al., 2007).  

In this study, a series of ABA-type block copolymers comprising PEG and HPA units with different 
PEG/HPA ratios were synthesized and investigated as a potential thermo-responsive copolymer 
system.  

Material and Method 

Material 

2-Hydroxypropyl acrylate (HPA), which was bought from Aldrich, is an isomeric mixture of 
approximately 80% 2-hydroxypropyl   acrylate and 20%   1-methyl-2-hydroxyethyl acrylate. HPA was 
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passed through a column filled with neutral alumina to remove inhibitors. THF and 1,4-dioxane were 
redistilled from sodium benzophenone ketyl to remove inhibitor and moisture. 2,2’-
azoisobutyronitrile (AIBN) was   recrystallized from   methanol before use. PEG1450 (Sigma-Aldrich), 
PEG400 (Sigma-Aldrich), potassium ethyl xanthate (Sigma-Aldrich), P-toluenesulfonyl chloride (Sigma-
Aldrich), Dichloromethane (Riedel-de Haёn) and diethyleter (Riedel-de Haёn) were used as 
purchased without further purification.  

Method 

Synthesis of Macro-RAFT agents 

Terminally di-xanthate PEG1450 and PEG400 (α-Xanthate-ω-Xanthate PEG1450 and α-Xanthate-ω-
Xanthate PEG400) were synthesized as difunctional macro-RAFT agents according to the literature 
(Raposo et al., 2020; Zalipsky et al., 1987). The two-step reaction to obtain the macro-RAFT agent 
was given in Figure 1. The procedure for the RAFT agent based on PEG1450 (PEG1450 -RAFT) was 
outlined. Triethylamine (1.6 mL, 11.0 mmol) and tosyl chloride (4.8 g, 25.0 mmol) were added to the 
PEG1450 (7.25 g, 5 mmol) dissolved in DCM (50 mL) under a nitrogen atmosphere and the reaction 
mixture refluxed for 36 h. After cooling to room temperature, the mixture was washed with 1.0 N HCl 
(2x40 mL), water, and brine. The organic layer was dried over anhydrous NaSO4, concentrated under 
vacuum, and purified by column chromatography (DCM to 9:1 DCM/MeOH gradient) afforded the 
tosylate (8.63 g, 98%) as pale-yellow wax.  

Potassium ethyl xanthate (2.3 g, 14 mmol) was added in one portion to the tosylate (8.4 g, 4.8 mmol) 
dissolved in deionized water (35 mL) and the reaction stirred for 15 hours at room temperature 
under nitrogen atmosphere. The mixture is diluted with water (25 mL) and extracted with 
dichloromethane (3x50 mL) and brine. The organic layer was dried over anhydrous NaSO4, 
concentrated under vacuo. The crude product was dissolved in a few mL of DCM and poured into 
cold stirring ether (100 mL). The provided white precipitate was filtered off and dried in vacuum. (7.0 
g, 88% yield) 

 

Figure 1. Reaction Pathway for the Synthesis ABA-Type PEG-HPA Block Copolymers 

Polymerization 

RAFT polymerization of 2-HPA was performed using the PEG-based difunctional RAFT agent as shown 
in Figure 1. The polymerization parameters outlined in Table 1 were applied to obtain a series of 
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ABA-type block copolymers with different lengths as coded in Table 1. The reaction mixtures were 
poured into 50 mL of cold diethyl ether to precipitate block copolymers. The yields of the 
polymerizations were calculated based on the weights of the diethyl ether-insoluble fractions for 
each copolymer.  

Table 1. Polymerization Parameters 

Code 
Macro RAFT agent 

(g) 
2-HPA 

(x103 mol) 
AIBN 
(mg) 

Yield 
(%) 

Experimental  
ratio1 

PEG1450-HPA-1 0.50 3.84 2 69 PEG33HPA36 

PEG1450-HPA-2 0.50 7.68 2 78 PEG33HPA88 
PEG1450-HPA-3 0.50 15.36 2 82 PEG33HPA125 
PEG400-HPA-1 0.50 3.84 5 75 PEG9HPA21 
PEG400-HPA-2 0.50 7.68 5 81 PEG9HPA32 
PEG400-HPA-3 0.50 15.36 5 86 PEG9HPA40 

Note. 1Obtained from integrations in the 1H-NMR spectra, Temperature: 70 Oc, Duration: 16 H, Solvent: 4 Ml 
1,4-Dioxane 

Characterization 

FTIR spectra of PEG400, PEG1450, PEG400-RAFT, PEG1450-RAFT, and the copolymers (PEG400-HPA-1 
and PEG1450-HPA-1) were recorded at ATR mode by using Shimadzu IR Affinity in the range of 600-
4000 cm-1. 1H-NMR spectra of PEG1450-RAFT and the copolymers were received from 
Bruker AVANCE III 400 MHz NMR Spectrometer. MALDI-MS spectrum of the PEG1450-RAFT was 
attained using a Bruker Rapiflex MALDI- TOF/TOF mass spectrometer. The data were acquired in 
positive ion mode and DHB as the matrix.The copolymers prepared in 1.0 % solutions were heated 
and cooled in a controlled manner and their dissolution and precipitation temperatures were 
recorded (Güner & Ataman, 1994; Zhang et al., 2017). The isothermal environment required for the 
determination of precipitation (clouding) temperatures was provided by a water bath. Dissolution-
precipitation cycles of the solutions prepared in the air jacketed tube were performed. 
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Results and Discussion 

FTIR Spectroscopy 

 
Figure 2. FTIR Spectra of PEG400, PEG400-RAFT and PEG400-HPA-1 

FTIR spectra of pristine PEG400, PEG400-RAFT, and PEG400-HPA-1 were given in Figure 2 to easily 
compare the changes in the characteristic bands due to the chemical modifications. The full 
disappearance of the wide O-H stretching band at about 3449 cm-1 in the spectrum of PEG400 and 
the formation of the strong S-C-S bands at 1211 and 1041 cm-1 (Vorobyev et al., 2019) in the 
spectrum of the PEG400-RAFT are the basic indications of the RAFT-agent formation. The FTIR 
spectrum of PEG400-HPA-1 exhibited extra bands at about 3410, 1728, and 1165 cm-1 corresponding 
to the O-H, C=O, and C-O vibrations at HPA units, respectively.  
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Figure 3. FTIR Spectra of PEG1450, PEG1450 RAFT and PEG1450-HPA-1 

FTIR spectra of pristine PEG1450, PEG1450-RAFT and PEG1450-HPA-1 in Figure 3 were observed to 
be so like those for the PEG400 in Figure 2.  The main differences between the corresponding spectra 
are due to the differences in the lengths of the PEG chains. Some examples are the longer PEG the 
weaker O-H (3387 cm-1) and xanthate (1216 cm-1) bands, the sharper bands of ethylene glycol units 
due to the self-crystallization of them.   

MALDI Mass Spectrometry 

MALDI mass spectrum of the PEG1450-RAFT sample in Figure 4 was recorded to assure that the end-
group modification has been succeeded.   The spectrum has well-distributed signals separated by 44 
Da masses centered at about 1650 Da. The shift of the mass distribution of PEG1450 to the higher 
mass region at a degree of about 200 Da is a sign of successful end-group modification. Moreover, 
the signal with 1701.343 m/z completely corresponds to the structure of [XM32CH2CH2XNa]+. Here, X 
abbreviates the ethyl xanthate (C2H5O-CS-S-) group. 

 

Figure 4. MALDI-MS TOF Spectrum of PEG1450-RAFT 

Proton NMR Spectroscopy 
1H-NMR spectrum of the PEG1450-RAFT in Figure 5 has the split signals belonging to the protons at 
the end-groups and the huge signal belonging to the repeating units of ethylene glycol. As easily 
seen, the values of the integration and the chemical shift corresponding to each proton are 
consistent with the structure in Figure 5. 
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Figure 5. NMR Spectrum of The PEG1450-RAFT 
1H-NMR spectra of PEG400-HPA-1 was recorded both to confirm the structure, and to determine the 
HPA/EG ratio by mole in the block copolymer. As seen in Figure 6, the spectrum has signals belonging 
to the ethylene glycol and the HPA units. The integrations of the signals are consistent with the intra-
structure stoichiometry.  The minor signals at 1.43, 3.35, 3.82 and 4.65 ppm belonging to the 
xanthate protons show the live character of the block copolymer. Because PEG400 has about average 
9 repeating units, the intensity of the PEG signals at 3.65 and 3.70 ppm may be attributed to 36 
protons to compare with the signal at 1.18 ppm belonging to the CH3 protons of HPA. Since each 
repeating unit of HPA has only one CH3 group the average number of HPA units may be estimated by 
dividing the intensity of CH3 protons by three. As a result, the average number of HPA units was 
calculated as about 21 for the PEG400-HPA-1. Briefly, the copolymer may be defined as PEG9-HPA21 
as given in Table 1.   
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Figure 6. 1H-NMR Spectra of PEG400-HPA-1 
1H-NMR spectra of PEG1450-HPA-1 was given in Figure 7. Evaluation of the spectrum is almost same 
as in the previous one. Briefly, the signals are consistent with the chemical structures of the 
repeating units with respect to chemical shifts and relative intensities. The spectrum has also trace 
signals of ethyl xanthate. Assuming that the PEG1450 has 33 repeating units, the signal at 3.59 ppm 
was attributed to 132 protons to compare with the signal of CH3 protons in HPA units. The average 
number of repeating units of HPA in PEG1450-HPA-1 was found to be 36 using the approach above. 
As a result, the copolymer was defined as PEG33HPA36 as given in Table 1. The other copolymers were 
also defined in the same way and given in Table 1.  

 

Figure 7. 1H-NMR Spectra of PEG1450-HPA-1 

Determination of Cloud-point Temperatures 

The ABA-type PEG-HPA copolymers with different compositions were investigated in the aspect of 
their cloud-point temperatures. For this purpose, the 1.0 % (w/v) aqueous solutions of each 
copolymer were prepared, and heat-cool circle was applied to determine the cloud-point 
temperatures of the copolymers using the apparatus given in Figure 8.  
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Figure 8. The Heat-Cool Circle Apparatus with Integrated Air-Jacket Tube and a Contact Thermometer 
(A and C). PEG1450-HPA-1 Sample above the Cloud-Point Temperature (B) and PEG1450-HPA-1 
Sample below the Cloud-Point Temperature (D) 

For the all copolymers, cloud-point temperature was measured values higher than that of HPA 
homopolymer, which was reported as 16 oC (Eggenhuisen et al., 2008).  Moreover, the linear 
relationship between the PEG ratio and the cloud-point temperature is clearly seen for both polymer 
classes as shown in Figure 9. As well-known, thermo-responsive polymers in aqueous solution have 
strong intermolecular hydrogen-bond interactions at temperatures below the LCST. When the 
solutions are heated the intermolecular hydrogen bonds weaken and phase separation occurs. Since 
the phase transition temperature is related to the hydrogen bond capacity of this type of copolymer 
system, it seems that tuning the polymer composition causes the changes in the cloud-point 
temperature.  
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Figure 9. Cloud-Point Temperatures of the HPA-PEG Copolymers with Different Compositions. 

Conclusion  

PEG based difunctional macro-RAFT agents were successfully synthesized, characterized and used to 
prepare a series of ABA-type block copolymers of 2-hydroxypropyl acrylate.  The copolymers and 
their compositions were determined through peak integration technique in 1H-NMR analysis. Phase 
transition behavior of the copolymers in aqueous solution was conducted. The study shows that it is 
possible to tune the cloud-point temperature of the HPA based polymers by modifying the HPA 
chains with PEG moieties.  
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