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Abstract 
 

Pressure drop in pipes can be calculated by using the Darcy-Weisbach formula. In order to use this 
formula, the Darcy friction factor should be known. The best approximation to the Darcy friction factor 
for turbulent flow is given by the Colebrook-White equation. This equation can only be solved by 
numerical root finding methods. There are several other approximate correlations to the Darcy friction 
factor with some relative error compared to the Colebrook-White equation. It was found that in some of 
these correlations, the percentage error is so small that they can be used directly in place of the 
Colebrook equation. In this study, a review of several friction factor correlations is performed. Relative 
error of these correlations is re-evaluated against the Reynolds number for a different value of relative 
pipe roughness. Also statistical analyses will be given for each correlation. 
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1. Introduction 

 

The pressure loss in pipe flow is calculated by using the 
Darcy-Weisbach equation. The equation is given as: 
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In equation (1) ΔP is the pressure drop, f is the Darcy 
friction factor, ρ is the density of the fluid, D is the 
hydraulic diameter of the pipe and V is the average 
velocity. The Darcy friction factor (f) depends on the flow 
regime. For a fully developed laminar flow (Reynolds 
number Re < 2300) the friction factor can be determined 
from the Hagen-Poiseuille equation as: 
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Where, Re is the Reynolds number. The definition of 
the Re number can be given as follows: 
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Where ρ is the density and µ is the dynamic viscosity 
of the fluid. In equation (2) the friction factor changes 
inversely with the Reynolds number. For the transition 
region (2300 ≤ Re ≤ 4000) and the turbulent region (Re ≥ 
4000) in smooth as well as rough pipe the friction factor 
can be described by Colebrook-White equation (White 
1998). Some researchers have made alternative 
correlations to estimate the friction factor in pipes. 
Clamond (2009) presented a strong, fast and accurate 
algorithm for solving the Colebrook-like equations. He 
used the Lambert W-function algorithm which was 
efficient for the whole range of parameters involved in 
the Colebrook equation. A review for some explicit 
approximation of the Colebrook’s equation was made by 
(Genić et al. 2011). They found that the equation of 
Zigrang & Sylvester (1982) provides the most accurate  

 
 

value of the friction factor. Ghanbari et al. (2011) 
developed a friction factor correlation based on the 
nonlinear multi variable surface fitting tool in MATLAB. 
The equation correlates the friction factor to the 
Reynolds number and the relative roughness by means of 
simple logarithmic and exponential functions. They used 
statistical analysis to test and validate their model.  
Samadianfard (2012) used the potential of a genetic 
programming based technique to calculate the friction 
factor in turbulent flow. He compared his model with 
commonly used explicit models for the Colebrook-White 
equation. He revealed that by using genetic expression 
programming the friction factor can be identified 
precisely. Winning & Coole (2013) compared the 
accuracy and computation efficiency of  twelve explicit 
friction factor equations. 

The aim of this work is to make a comprehensive 
review of several friction factor correlations and 
compare the relative error of these correlations in order 
to used them directly in the place of the Colebrook-White 
equation during the calculation of pressure drop in pipes. 
 
2. Friction Factor Correlations  

 

2.1. Colebrook-White equation  
 

The Colebrook-White equation can be defined as follows 
(Colebrook & White 1937). 
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Where ɛ/D is the relative roughness which is the ratio 
of the mean height of roughness of the pipe to the pipe 
diameter. As seen from equation (4) the friction factor is 
a function of the Reynolds number and pipe roughness 
(є). The Colebrook-White equation cannot be solved 
directly due to its implicit form as the value of  f  appears 
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on both side of the equation. In order to solve equation 
(4) a numerical root finding method, for example the 
Newton-Raphson method can be used.  
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Equation (8) is required to be solved iteratively. In 
order to solve the equation, an initial guess is needed. If 
the value of the first guess diverges from the exact value, 
the equation may converge very slowly or may not 
converge at all. In order to find the first guess value, one 
of the approximate formulas given below can be used. In 
this work the Haaland (1983) equation is used to guess 
the first estimation value for the Colebrook-White 
equation. The result of some of the approximation 
equations listed is very close to the result obtained from 
the Colebrook-White equation. When the error level of 
the new equation is relatively small, the requirement of 
using the Colebrook-White equation can be eliminated 
altogether. A similar equation can be easily computed by 
using a simpler computational environment such as 
programmable calculators or spreadsheet programs such 
as MS Excel. Some of the Colebrook-White equation 
approximation formulas are listed below according to 
their years. 
 

2.2.  Moody correlation  
 

Moody (1947) developed a relationship that is valid for 
all ranges of the Reynolds numbers and the relative 
roughness’ as follows. 
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2.3. Altshul correlation  

 

Altshul (1952) which is cited in Genić et al. (2011) gave a 
friction factor correlation presented as Eq. (10). 
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2.4. Wood correlation  
 

Correlation proposed by Wood (1966). Its validation 

region extends for Re >10000 and 10-5<  D/  < 0.04. 
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2.5. Churchill correlation 
 

Correlation proposed by Churchill (1973) which is valid 
only for the turbulent regime and it is similar to the 
Swamee & Jain correlation (1976). 
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2.6. Eck correlation 
 

Correlation proposed by Eck (1973) defined as 
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2.7. Jain correlation  
 

Correlation proposed by Jain (1976) described as  
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2.8. Swamee-Jain correlation    
 

Swamee & Jain (1976) has developed the following 
equation to the Darcy friction factor correlation. Its 
validation region extends for 5000 >Re >107 and 0.00004<

 D/
<0.05.   
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where 
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2.9. Churchill correlation (1977) 
 

Correlation proposed by Churchill (1977) which is valid 
for all ranges of the Reynolds numbers.  
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2.10. Chen correlation   
 

Chen (1979) proposed the following equation for the 
friction factor covering all the ranges of the Reynolds 
number and the relative roughness’. 
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2.11. Round correlation   
 

Correlation proposed by Round (1980). Its validation 
region extends for 4×103<Re <4×108, and ɛ between 0 and 
0.05. 
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2.12. Shacham correlation 
 

Correlation proposed by Shacham (1980) as: 
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2.13. Barr correlation  
 

Barr (1981) gave a friction factor correlation as 
presented in equation (27). 
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2.14. Zigrang & Sylvester correlation 
  

Zigrang & Sylvester (1982) developed a relationship that 
is valid for all ranges of the Reynolds numbers and the 
relative roughness as follows. 
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2.15. Haaland correlation   
 

An approximate equation is shown by Haaland (1983). It 
is valid for turbulent flow (Re>2300). 
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2.16. Serghides correlation 
 

Serghides (1984) equation is an approximation of the 
implicit Colebrook–White equation. It is valid for all 
ranges of the Reynolds numbers and the relative 
roughness’ as follows.  
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2.17. Tsal correlation  
 

Tsal (1989) developed a relationship that is valid for 
4×103<Re <4×108, and ɛ between 0 and 0.05. 
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2.18. Manadilli correlation 
 

Manadilli (1997) developed a correlation that is valid for 
the Reynolds number range that extends from 4×103 to 
4×108 and ɛ between 0 and 0.05. 
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2.19. Monzon-Romeo-Royo correlation  
 

Monzon et al. (2002) developed a relationship that is 
valid for all ranges of the Reynolds numbers and the 
relative roughness’ as follows. 
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2.20. Goudar-Sonnad correlation  
 

Goudar & Sonnad (2006) developed the following 
relationship. 
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 2.21. Buzzelli correlation 
 

Buzelli (2008) developed a relationship as presented in 
Eq. (44). 
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2.22. Goudar- Sonnad correlation  
 

Goudar & Sonnad (2008) equation is an approximation of 
the implicit Colebrook–White equation. This equation is 
valid for all ranges of the Reynolds numbers and the 
relative roughness’.  
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2.23. Avci and Karagoz correlation 
  

Correlation proposed by Avci & Karagoz (2009) is 
described as. 
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2.24. Papaevangelou correlation 
 

Papaevangelou et al. (2010) developed the following 
relationship as presented in equation (58)  
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2.25. Brkic correlation  
 

Brkic (2011) developed two types of relationships to 
calculate the friction factor as follows. 
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2.26. Fang correlation  
 

Fang et al. (2011) developed a relationship that is valid 
for 3×103<Re <4×108, and ɛ between 0 and 0.05. 
Presented as Eq. (62).  
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2.27 Ghanbari–Farshad–Rieke’s correlation 
 

Correlation proposed by Ghanbari et al. (2011) is based 
on data collected from the Moody diagram. The range of 
applicability of their equation is between the relative 
roughness of  ε/D = 0.0 to 0.05 and the Reynolds numbers 
ranging from 2100 to 108. 
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3. Statistical analysis 
 

In the analysis procedure, the existing correlations are 
compared with the Colebrook-White equation. Five 
statistical methods are introduced to test the 
effectiveness of the correlations for each selected relative 
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statistical comparison are given in Tables 1-4.  In order to 
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formulas, relative error of each equation with respect to 
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following equation. 
 

 
Relative error 100

Colebrook White pred

Colebrook White

f f

f






 

       (64) 
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comparison can be expressed as follows: 
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Maxerror

f


 

   
                                      (69) 
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4. Results  
 

In this work a comprehensive review 
for many friction factor correlations 
that is used in the calculation of 
pressure drop in pipes are conducted. 
The variation of relative error against 
the Reynolds number for different 
relative roughness (ɛ/D=1e-2, ɛ/D=1e-
4, ɛ/D=1e-6 and ɛ/D=1e-8) are 
examined. In addition, the statistical 
comparison for each friction factor 
correlated with the Colebrook’s 
equation for the mentioned relative 
roughnesses are implemented and 
reported in Tables 1-4. 

Figure 1 depicts the relative error of 
the Goudar & Sonnad (2008) 
correlation against the Reynolds 
number for different relative 
roughnesses. It is observed that, as the 
Reynolds number increase, the relative 
error remains below 1e-9 for the 
relative roughness of ɛ/D=1e-2, 
ɛ/D=1e-4, ɛ/D=1e-6 and ɛ/D=1e-8 so 
that it’s very convenient to utilize this 
correlation instead of the Colebrook- 
White equation.    
 

 
Figure 1. The amount of relative error 
comparison between the Goudar-Sonnad and 
Colebrook White equations. 
 

The relative error of the Serghides 
(1984) and Zigrang & Sylvester (1982) 
correlations against the Reynolds 
number for different relative roughness 
are shown in Figures 2-3 respectively.  
 

 
Figure 2. The amount of relative error 
comparison between the Serghides and 
Colebrook White equations. 

 
 

Table 1 provides the statistical analyses for the relative roughness of 1e-8. It is 
seen that the best results are performed by the Goudar & Sonnad (2008), 
Serghides (1984) and Buzzelli (2008) correlations while the Wood (1966), Altshul 
(1952) and Tsal (1989) correlations give the worst results with a standard 
deviation of 2.3426% , 1.4659% and 0.3079%  respectively. 

 

Table 1. Statistical comparison for ε/D = 1e-8 
 

Correlation 
 

% 
Average 
deviation 

% 
Standard 
deviation 

% 
Mean 
deviation 

MNE MPE 

Moody (1947) -0.9894 0.1300 2.0927 0.0247 0.0561 
Altshul (1952) -28.493 1.4659 28.508 0.0228 0.3564 
Wood (1966) -46.7391 2.3426 46.7391 -0.4372 0.7086 
Churchill (1973) 0.4943 0.0298 0.5470 0.0085 0.0061 
Eck(1973) -7.8183 0.3921 7.8259 0.0151 0.0819 
Jain(1976) 0.3821 0.0258 0.4682 0.0075 0.0078 
Swamee-Jain (1976) 0.3916 0.0257 0.4664 0.0076 0.0070 
Churchill (1977) -0.0480 0.0010 0.0480 -4.4e-4 7.13e-4 
Chen (1979) -0.0116 0.0014 0.0244 8.827e-4 6.2e-4 
Round (1980) -0.6038 0.0367 0.6038 -0.0014 0.0217 
Shacham(1980) 0.7833 0.01753 0.7834 0.0081 7.03e-4 
Barr (1981) -0.03873 0.0023 0.0440 7.10e-4 6.73e-4 
Zigrang–Sylvester (1982) -0.0737 0.0037 0.0737 -6.478e-4 0.0011 
Haaland (1983) 0.2364 0.0207 0.3686 0.0061 0.0091 
Serghides (1984) -0.0023 1.185e-4 0.0023 -1.390e-5 3.13e-5 
Tsal (1989) -5.998 0.3079 6.0126 0.0228 0.0719 
Manadilli (1997) 0.1262 0.0065 0.1262 0.0016 8.25e-6 
Monzon et al.  (2002) 0.0484 0.0024 0.0484 5.071e-4 -4.36e-4 
Goudar- Sonnad (2006) -0.9235 0.0463 0.9235 -0.0085 0.0171 
Buzzelli (2008) 0.0173 8.654e-4 0.0173 2.657e-4 -1.67e-4 
Goudar- Sonnad (2008) -1.9270e-9 2.588e-9 4.446e-8 9.750e-10 9.48e-10 
Avci and Karagöz(2009) 0.1752 0.0144 0.1812 0.0098 2.48e-4 
Papaevangelou (2010) -0.0469 0.0051 0.0810 8.328e-4 0.0021 
Brkic1 (2011) 0.1722 0.0087 0.1722 0.0048 -0.0015 
Brkic2 (2011) -2.1046 0.1054 2.1046 -0.0198 0.0315 
Fang (2011) 0.3912 0.019 0.3912 0.0041 -0.0028 
Ghanbari et al. (2011) 1.8018 0.0405 1.8018 0.0195 -0.0052 

 

    Table 2 provides the statistical analyses for the relative roughness of 1e-6. It is 
seen that Goudar & Sonnad (2008) Serghides (1984) and Buzzelli 
(2008)correlations with a standard deviation of 2.42e-9%, 8.08e-5% and 6.07e-
4% correspondingly agrees with the results of the Colebrook-White correlation. 
On the other hand, the Wood (1966), Altshul (1952) and Tsal (1989) correlations 
do not give accurate results for the mentioned relative roughness value.  
 

Table 2. Statistical comparison for ε/D = 1e-6 
 

Correlation 
 

% 
Average 
deviation 

% 
Standard 
deviation 

% 
Mean 
deviation 

 
MNE 

 
MPE 

Moody (1947) -0.4494 0.1321 2.2083 0.0324 0.0552 
Altshul (1952) -27.100 1.3902 27.115 0.0228 0.3301 
Wood (1966) -8.8311 0.4523 8.8311 -0.0695 0.2372 
Churchill (1973) 0.4943 0.0298 0.5470 0.0085 0.0061 
Eck(1973) -7.8183 0.3921 7.8259 0.0151 0.0819 
Jain(1976) 0.3821 0.0258 0.4682 0.0075 0.0078 
Swamee-Jain (1976) 0.4398 0.0278 0.5085 0.0081 0.0070 
Churchill (1977) 0.0427 0.0013 0.0526 7.08e-4 0.0010 
Chen (1979) 0.0515 0.0026 0.0518 9.06e-4 6.1787 
Round (1980) 0.6458 0.0624 1.0786 0.0216 0.021 
Shacham(1980) 0.6422 0.01449 0.6421 7.04e-4 0.0079 
Barr (1981) -0.0653 0.0034 0.0672 5.599e-4 7.82e-4 
Zigrang- Sylvester (1982) -0.0566 0.0029 0.0566 -3.72e-4 0.0011 
Haaland (1983) -0.0780 0.0115 0.1467 0.0011 0.0093 
Serghides (1984) -0.0015 8.08e-5 0.0015 -8.004e-6 3.09e-5 
Tsal (1989) -5.2685 0.2688 5.2829 0.0228 0.0586 
Manadilli (1997) 0.2058 0.0108 0.2058 0.0028 6.85e-7 
Monzon et al. (2002) 0.0442 0.0022 0.0442 5.061e-4 -3.89e-4 
Goudar-Sonnad (2006) -0.9319 0.0467 0.9319 -0.0087 0.0171 
Buzzelli (2008) 0.0118 6.07e-4 0.0118 2.798e-4 -7.87e-5 
Goudar-Sonnad (2008) 1.727e-9 2.42e-9 4.097e-9 9.39e-10 9.63e-10 
Avci and Karagöz(2009) 0.1752 0.0144 0.1812 0.0098 2.48e-4 
Papaevangelou (2010) 0.0088 0.0054 0.0938 0.0015 0.002 
Brkic1 (2011) 0.2469 0.0123 0.2469 0.0048 -0.002 
Brkic2 (2011) -1.8513 0.0933 1.8513 -0.0154 0.0315 
Fang (2011) 0.10854 0.0070 0.1096 0.0030 1.332e-4 
Ghanbari et al. (2011) 1.5568 0.0348 1.5568 0.0162 -0.0052 
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Figure 3. The amount of relative error 
comparison between the Zigrang- Sylvester 
and Colebrook White equations. 

 
It is seen that although both graphs 

have similar trends, the Serghides 
(1984) correlation with a relative error 
below 1e-5 is more accurate than the 
Zigrang & Sylvester (1982) correlation 
which has a relative error below 1e-4.  

Figure 4 illustrates the relative error 
comparisons for the Buzzeli (2008) 
correlation which can be considered to 
be another good alternative to the 
Colebrook-White equation. There is a 
sharp fall in relative error for ɛ/D=1e-4, 
ɛ/D=1e-6 and ɛ/D=1e-8 as the 
Reynolds number approaches the value 
of 0.056e7 and then there is a slight 
change. For ɛ/D=1e-2, the relative error 
remains constant as the Reynolds 
number increases. 
 

 
Figure 4. The amount of relative error 
comparison between the Buzzelli and 
Colebrook White equations. 

 
Figure 5 shows the relative error of 

Wood (1966) correlation. For the 
relative roughness values ɛ/D=1e-2, 
ɛ/D=1e-4, ɛ/D=1e-6 and ɛ/D=1e-8. The 
relative error starts to increase linearly 
until the Reynolds number value of 
0.061e7. After that point, there is a 
slight increase for ɛ/D=1e-6 and 
ɛ/D=1e-8 as the Reynolds number 
increases, while for ɛ/D=1e-4, there is a 
slight decrease. For ɛ/D=1e-2 it 
continues with the constant Reynolds 
number value. 
 

    Table 3 provides the statistical analyses for the relative roughness of 1e-
4. It is shown that, while the Goudar-Sonnad (2008), Serghides (1984), 
Zigrang-Sylvester (1979) and Buzzelli (2008) correlations which have a 
standard deviation of 1.686e-9%, 7.844e-6%, 4.32e-4 and 1.351e-4% 
correspondingly yield reliable results, Altshul (1952) gives the worst 
predicted values.  
 

Table 3. Statistical comparison for ε/D = 1e-4 
 
 

Correlation 
 

% 
Average 
deviation 

% 
Standard 
deviation 

% 
Mean  
deviation 

 
MNE 

 
MPE 

Moody (1947) 2.640 0.1437 2.7673 0.0341 0.0242 
Altshul (1952) -7.8292 0.3945 7.8437 0.0214 0.0813 
Wood (1966) 4.077 0.2084 4.0783 0.0561 0.0016 
Churchill (1973) 0.3614 0.0191 0.3652 0.0057 0.0030 
Eck(1973) -0.8879 0.0609 0.8957 0.0156 0.0438 
Jain(1976) 0.3169 0.0170 0.3242 0.0051 0.0047 
Swamee-Jain (1976) 0.3939 0.0206 0.3991 0.0059 0.0039 
Churchill (1977) 0.3243 0.0078 0.3243 0.0060 1.98e-4 
Chen (1979) 0.092 0.0059 0.0930 0.0028 2.7e-4 
Round (1980) 7.2818 0.3725 7.304 0.0824 0.0154 
Shacham(1980) 0.0262 0.0016 0.0263 0.0050 7.93e-4 
Barr (1981) -0.0127 0.0014 0.0257 4.191e-4 0.0018 

 Zigrang-Sylvester (1982) -0.001 4.32e-4 0.0019 -5.07e-8 8.58e-4 
Haaland (1983) -0.1230 0.0162 0.1796 9.429e-4 0.0136 
Serghides (1984) -2.48e-5 7.844e-6 2.486e-5 5.82e-10 1.84e-5 
Tsal (1989) 0.9897 0.0531 1.0148 0.0214 0.0100 
Manadilli (1997) 0.389 0.0206 0.3890 0.0068 -7.4e-4 
Monzon et al. (2002) -0.018 0.0011 0.0222 4.822e-4 2.85e-4 
Goudar-Sonnad (2006) -1.1196 0.0560 1.1196 -0.0109 0.0172 
Buzzelli (2008) 0.0015 1.351e-4 0.0015 3.9278 -1.63e-8 
Goudar-Sonnad (2008) -1.447e-9 1.686e-9 2.92e-8 5.88e-10 5.961e-10 
Avci and Karagöz(2009) -0.4401 0.0224 0.4463 0.0041 0.0046 
Papaevangelou (2010) 0.0339 0.007 0.1218 0.0036 0.0014 
Brkic1 (2011) 0.3619 0.0198 0.3619 0.0074 -0.0017 
Brkic2 (2011) -0.0444 0.0161 0.1234 5.85e-4 0.0303 
Fang (2011) 0.0121 0.0067 0.1081 0.0013 0.0038 
Ghanbari et al. (2011) 0.4292 0.0109 0.4292 0.0104 -0.0017 

 

    Table 4 provides the information corresponding to ε/D = 1e-2. The 
Goudar & Sonnad (2008), Serghides (1984), Buzzelli (2008) and Zigrang & 
Sylvester (1979) correlations resulted with satisfactory results and can be 
utilized instead of the Colebrook-White equation for this relative roughness 
value. Results obtained for the lower relative roughness of ε/D =1e-2 are 
more accurate than the results for the higher relative roughness of ε/D =1e-
8, with ε/D =1e-6 and ε/D = 1e-4 being the values for all correlations. 
 

Table 4. Statistical comparison for ε/D = 1e-2 
 

Correlation 
 

% 
Average  
deviation 

% 
Standard  
deviation 

% 
Mean  
deviation 

 
MNE 

 
MPE 

Moody (1947) -0.6558 0.0329 0.6558 -0.0064 0.0188 
Altshul (1952) -8.225 0.4112 8.225 -0.0812 0.0822 
Wood (1966) 1.9757 0.0989 1.9789 0.0198 0.0179 
Churchill (1973) -0.0408 0.0068 0.0758 0.0210 7.987e-4 
Eck(1973) -0.0761 0.0077 0.0922 0.0257 8.988e-4 
Jain(1976) -0.0923 0.0077 0.1158 0.0197 0.0012 
Swamee-Jain (1976) 0.0444 0.0066 0.0444 0.0212 -1.124e-4 
Churchill (1977) -0.0226 0.0017 0.0471 0.01011 4.982e-4 
Chen (1979) -0.056 0.0029 0.0575 0.0016 5.896e-4 
Round (1980) -1.1257 0.0563 1.125 -0.0112 0.0175 
Shacham(1980) -1.08e-4 6.36e-5 1.08e-4 3.5e-10 0.0012 
Barr (1981) -0.0172 0.0012 0.0179 0.0013 9.53e-4 
Zigrang- Sylvester (1982) 6.495e-6 6.473e-6 6.536e-6 2.589e-5 7.604e-10 
Haaland (1983) 0.1956 0.0098 0.1965 0.0019 0.0018 
Serghides (1984) -2.52e-9 2.217e-9 3.84e-8 7.6696e-10 7.604e-10 
Tsal (1989) -8.2253 0.4112 8.225 -0.0812 0.0822 
Manadilli (1997) 0.0448 0.0066 0.0448 0.020 -1.047e-4 
Monzon et al. (2002) -0.0587 0.0029 0.0587 4.10e-5 5.926e-4 
Goudar-Sonnad (2006) -1.9046 0.0952 1.9046 -0.019 0.0207 
Buzzelli (2008) 3.6797e-5 9.97e-6 3.679e-5 2.897e-5 -1.28e-8 
Goudar-Sonnad (2008) -2.487e-9 2.218e-9 3.85e-8 7.669e-10 7.604e-10 
Avci and Karagöz (2009) -1.20237 0.0601 1.2023 -0.0119 4.98e-4 
Papaevangelou (2010) -0.0241 0.0019 0.0349 0.0021 4.51e-4 
Brkic1 (2011) -0.0449 0.0071 0.0780 0.0214 8.073e-4 
Brkic2 (2011) -0.0604 0.0043 0.0747 0.0063 8.325e-4 
Fang (2011) 0.06443 0.0032 0.0645 9.63e-4 2.96e-4 
Ghanbari et al. (2011) -0.2109 0.0048 0.2145 0.0053 0.0023 
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Figure 5.  The amount of relative error comparison between the 
Wood and Colebrook White equations. 

 
Figure 6 shows the relative error of the Altshul (1947) 

correlation. Relative error decreases for ɛ/D=1e-4, 
ɛ/D=1e-6 and ɛ/D=1e-8 with the increase of the 
Reynolds number. However, for ɛ/D=1e-2, the relative 
error value stays constant with increasing Reynolds 
number. 

 

 
Figure 6. The amount of relative error comparison between the 
Altshul and Colebrook White equations. 

 
Figure 7 shows the relative error of the Tsal (1989) 

correlation. Relative error decreases for ɛ/D=1e-6 and 
ɛ/D=1e-8 with the increase of the Reynolds number 
while for ɛ/D=1e-4 it increases slightly. However, for 
ɛ/D=1e-2, the relative error value stays constant with the 
increasing Reynolds number. 

 

 
Figure 7. The amount of relative error comparison between the 
Tsal and Colebrook White equations. 
 

 

5. Conclusion 
 

Results gained from error analysis are briefly explained 
below. If the approximation formulas are scaled in the 
order of relative error, best results are obtained from the 
Goudar & Sonnad (2008) and Serghides (1984) 
correlations. The worst results are gained from the 
Altshul (1952) and Wood (1966) correlations.  

When a comparison is made according to the degree 
of the relative error, the Goudar & Sonnad (2008) 
correlation with an error percentage 10-9 % is very close 
to the result obtained from the Colebrook-White 
equation. Then the next best equation is achieved by the 
Serghides (1984) correlation with an error percentage  of 
10-4 % which can also be used practically.   

Because of the high precision of the selected 
correlations, the need for using the Colebrook-White 
iterative solution seems to be eliminated. 
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