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Abstract 
 

Previously, the effect of compressibility on the  nonlinear buckling  behaviour of  thin, polyurethane, simply-
supported  spherical  shells  subjected  to  apical  loads has  been  presented without  considering  the  orders 
of  the  thickness  and  height of  the spherical shells. In  the  meantime; it  has  been  observed  that  although  
the  variations  of  the  thickness  and  height  of  the  spherical  shells  do  not  affect  the  comments  made  for  
the  effect  of  the compressibility  on  the  buckling  loads, they  do  affect  the  comments  made  for  the  effect  
of  the   compressibility on  the  buckling  deflections  considerably. In  this  study;  combined  effect  of  the  
compressibility, height  and  thickness  on  the  buckling  loads,  buckling  deflections  and  the  apical  load–
apical  deflection  diagrams of  polyurethane,  thin,  simply-supported  spherical  shells  subjected  to  apical  
loads  is  investigated. Comparing  the  force–deflection  diagrams  corresponding  to  various  values  of  the  
parameters  pertaining  to  the  compressibility  of  the  material  used,  the  height and the  thickness of the 
shell; the variations of  the buckling  loads, buckling  deflections  and  forms  of  the  force–deflection  
diagrams  corresponding  to  the  various  combinations  of  the  mentioned  parameters  are  discussed. 
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1. Introduction 

 

Rubber-like materials, which are capable of making  very  
large  elastic  deformations  (Treolar 1975),  have  been  
dealt  in  various  areas  of  science  and  technology. 
Although  rubber-like  materials  have  generally  been  
assumed  to  be  incompressible, the  volume  change  due  
to  deformation should  be  considered  for  some  of  the  
rubber-like materials (Blatz & Ko 1962; Simmonds 
1987). 

There  have  been  many analytical, numerical  and  
experimental studies on the behaviour of  
incompressible, rubber-like  spherical  shells  under  
apical loads; considering only the geometrical  
nonlinearity (Parnell 1984; Ranjan & Steele 1977; Taber 
1982), and  considering  both  the  geometrical  and  
physical  nonlinearities (Kocak & Yukseler 1999). On the 
other hand, the number of studies taking the 
compressibility of the materials into consideration 
(Simmonds 1987; Akyuz & Ertepinar 2001; Haddow & 
Faulkner 1974; Yukseler 1996a) has been small relative 
to those neglecting  the compressibility on the behavior 
of  the rubber-like  shells. 

Yıldırım & Yükseler (2011) have  investigated  the  
effect of  the compressibility on  the  buckling  behaviour  
of  polyurethane  spherical  shells  subjected  to  apical  
loads  considering  both  the  geometrical  and  physical  
nonlinearities. The  present  study  is  an  extension  of  
Yıldırım & Yükseler (2011) with the emphasis that  
investigating  the  effect  of  the compressibility  on  the  
force-deflection behaviour of rubber-like spherical  shells 
under apical loads without considering the  

 
 

magnitudes of height and  thickness  may  be  misleading. 
In section 2, the geometrical details of a shell element 
before and after deformation, constitutive equations of 
rubber-like shells and equations of equilibrium are given. 
The fundamental equations of a spherical  shell, made of 
polyurethane, under an apical load are presented in 
Section 3. The application of finite differences and 
Newton-Raphson method to the governing equations of 
the problem are given in Section 4. In Section 5, 
numerical experiments pertaining  to  the  behaviour of 
the apical force versus the apical deflection curves 
corresponding to the various combinations of the 
thickness, height of the spherical shell and the 
compressibility of the material used. Deductions 
corresponding to the numerical experiments are 
included in this section, as well. Concluding remarks are 
summarized in the last section, section 6. 

Although  the  theoretical  fundamentals  of  the  
present  study  coincide  with  those  in Yıldırım & 
Yükseler (2011), the theoretical  details  given  in 
Yıldırım & Yükseler (2011) have  been  presented  again 
in this study  in order  for  the  completeness  of  the  
current  presentation. 
 

2. Geometry and governing equations 

The geometry of a shell element is given in Figure 1. S

isused  to  represent  reference surface. 


is meridional 

angle and   is  parallel  central angle. r and y are  radial 
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coordinate  and  vertical  coordinate  on S , respectively.

 is parallel central angle. s is meridional arc length. z 
is transverse  coordinate.These definitions are used for 
the quantities belonging to the deformed shell.Hereafter, 

the subscript“ 0 ” is used to denote that the related 
parameter belongs to the undeformed configuration. 
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Figure 1.  The geometry of a shell element . 
 
 

2.1. Constitutive  Relations 

 
The constitutive equations can be written as:  
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Taber (1987)  where  w  is the  two  dimensional  strain  

energy  density  function, M
 and M

 are bending 

moments, N
and N

 are meridional stress resultant 
and normal stress resultant which is tangent to parallel 

circle, respectively;
Q

 is transverse shear stress

resultant (Figure 1);   and    are  the  stretchings  at  
the  directions  of  meridional  and  parallel  circle  
tangent,respectively, which  are  on  the  reference  

surface  (z0 = z =0); K
and  K

 are  curvature  change  
measures and 

0

2
  kkK 

                                                       (2) 

0

2
  kkK 

                                                       (3) 

where   kkkk ,,,
00   are  curvature  measures  of  

undeformed  and  deformed  reference  surfaces (Yıldırım 
& Yükseler 2011). The  constitutive  equations (1) are  
valid  for  both  the  incompressible  and  compressible  
rubber-like  shells  of  revolution. 
 

2.2. Equations  of  Equilibrium 
 

Force  equilibrium  and  moment  equilibrium  equations  
Taber (1987) are 

0)( 00  VprVr
 ,                                                                  (4) 

 

0)( 00  HprNHr  ,                                                       (5) 

0)(cos)( 00    QrMMr
 ,                               (6) 

means  differentiation  with  respect  to  0
s

.Here; Hp
 

and Vp
 are horizontal and vertical external forces acting 

per unit area of the reference surface of the undeformed 

shell, respectively, V is vertical stress resultant, H is 

horizontal stress resultant. N
and

Q
 can be expressed 

in terms of H  and V  from the geometry as 
 

 sincos VHN 
,                                                        (7) 

 cossin VHQ 
.                                                                    (8) 

 
3. Fundamental equations of a polyurethane spherical shell subjected to an apical load 

 

The two dimensional strain energy function w of a polyurethane material is given as: 
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where t is the thickness of the undeformed shell Simmonds (1987).


and  are  material  constants  and    is  
considered  to  be  a  measure  of  incompressibility  and 

1




p

.                                                                                                                                                                                                        (10) 

For infinitesimally  small  strains, 


 is  equal  to  the  shear  modulus, and   is  equal  to  Poisson’s  ratio, and 

)1(2/   E
,

 
                                                                                                                                                                             (11)  

where E  and 


 are modulus of elasticity and Poisson’s ratio, respectively. As   approaches to 0.5, Eq. (9) has been 
noted to become the two dimensional strain energy density function of a neo-Hookean material, which is considered 
to be incompressible (Simmonds 1987). The  governing  equations  related  with  a  polyurethane  spherical  shell  
subjected  to  an  apical  loadcan  be  written  as 

0coscos  h
                                                                                                                                                                               (12) 
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0sinsin  v
,                                                                                                                                                                                (13) 
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where 0R
 is  the  radius  of  the  undeformed  shell, h  is  the  radial  displacement Yıldırım & Yükseler (2011),  

 

0rrh 
,                                                                                                                                                                                                        (19) 

v is the  vertical  displacement , i.e. 

0yyv 
                                                                                                                                                                                                       (20) 


is  the  rotation  angle, and 
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4. Numerical Approaches 

 
Not  being  able  to  solve  the  problem  analytically; the  method  of  finite  differences is  applied  to  Eqs. (12-18), 
firstly, to  convert  them  to  algebraical  equations and, then, the  resulting  algebraical  difference  equations are 

solved  numerically by using the Newton Raphson method. A simply supported spherical shell with radius 0R

subjected to a concentrated apical load P, shown in Fig.2, is divided into m finite pieces, corresponding to m+1 nodes, 

with the step length of s . m is the meridianol angle at the support, and can be considered as a measure of the depth 
of the shell, as well. 
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Figure 2. Discretization of  the shell 
 
The following algebraical equations are obtained if the finite difference equations are applied to Eqs. (12-18) for any 
point (i) (Yıldırım & Yükseler 2011): 
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At the points i=1,2,…,m-1, Eqs. (30-36) are used. At the point m; Eqs. (30-33) and Eqs. (35,36) are written using 

0 CCh 
                                                                                                                                                                                                 (37) 

where Ch
and C  are the radial displacement  and  the  rotation  angle  at  the  apex, respectively. C


and CV

are 

removed from the unknown list. Instead  of the  concentrated  apical  load P, the  apical  vertical  deflection  Cv
 is  

given  among  the  input  data, in order to  achieve  the  convergence  of  the  iterations  during  the  application  of  the  
Newton-Raphson  method (Chapra & Canale 1994; Yıldırım 2007) in  the  vicinity  of  the  region  where  the  slope  of  
the  force-deflection  curve  is  zero. The  boundary  equations  for  the  point  1  are 

11 Mh 


01 v
                                                                                                                                                                                        (38) 

 

The  total  number  of  equations,  7m+2,  can  be  checked  to   be  equal  to  the  number  of  unknowns. The  point  load  
P  at  the  apex  can be  obtained  via 

101 ..2. rVP 
                                                                                                                                                                                             (39) 

which  can be  checked  to  be  obtained  through  the  equilibrium  of  the  vertical  forces  for  the  whole   shell. 
 

5. Numerical Analysis 
 

A Fortran program, which was prepared and mentioned in Yıldırım & Yükseler (2011),  is used in the current study. A 
test of the accuracy of the proposed approach and the corresponding Fortran program have been dealt in Yıldırım & 
Yükseler (2011), comparing the numerical results of the prepared program with the experimental results of Taber 
(1982) in the problem of a hemispherical clamped shell under an apical load. Numerical  experiments  in  order  to  
understand  the  behavior   of  the  apical  force  versus  apical  deflection  curves  and  therefore  the  corresponding  
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buckling  loads  and  buckling  deflections  of  the  simply  
supported  polyurethane  spherical  shells, subjected  to  
an  apical  load, with  various  thicknesses, depths  and  
compressibilities are performed. A nondimensional 
thickness parameter, a nondimensional apical load, and 
nondimensional apical deflection, defined as:  

             R

t


,
2/ tPp 

,
*

0/Cv v R
,                    (40) 

 

are used, respectively. The force-deflection curves 
obtained in the numerical experiments for various values 

ofthe thickness parameter  , the depth parameter m

and three different values of  ( 0.0 , 3.0 and 
5.0 ) are shown in Figures 3-11. 5.0

corresponds  to  incompressibility.  

 

Figure 3. Force–deflection curves for 10


 m

 ,  0.0  

 and  three  different  values  of   . 
 

    The  curve  corresponding  to  02.0  in  this  figure  is  
named as  form  F1, for  the  comment  made  in  the  (vi)th  
deduction, given  at  the  end  of  this  section. 
 

 

Figure 4. Force–deflection curves for 10


 m

 ,  3.0  and  

three  different  values  of   . 

 

Figure 5. Force–deflection curves for 10


 m

 ,  5.0  and  

three  different  values  of   . 

 

Figure 6. Force–deflection curves for 8


 m

 ,  0.0  and  

three  different  values  of   . 

 

Figure 7. Force–deflection  curves for 8


 m

,  3.0 and  

three  different  values  of   . 
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Figure 8. Force–deflection  curves for 8


 m

,  5.0  and  

three  different  values  of   . 

 

Figure 9. Force–deflection curves for 4


 m

,   0.0  and  

three  different  values  of   . 

 

Figure 10. Force–deflection curves for 4


 m

,   3.0

and  three  different  values  of   . 

 

    The  curve  corresponding  to  02.0  in  this  figure  
is  named as form  F2, for  the  comment  made  in  the   
(vi)th deduction, given  at  the  end  of  this  section. 

 

Figure 11. Force–deflection curves for 4


 m

,   5.0  

and  three  different  values  of   . 

 
    Knowing  that the loads and deflections  corresponding  
to  the  zero  slope  of  the  force-deflection  curves (snap-
through buckling, (Pfluger 1964), are  the  buckling  loads

crp
 and buckling deflections crv

, respectively. The 
detailed  numerical  results  of  the  nondimensional  
buckling  loads and nondimensional buckling  deflections  

corresponding  to  the  various  values  of  m ,   and     
are  tabulated  in  Table  1-2. 
 
Table 1: Nondimensional buckling loads corresponding to  

various  values  of  m ,    and   . 

10


 m

 
   
  

0.005 0.010 0.020 0.030 0.040 0.050 

0.0 0.0866 0.0881 0.0921 0.1002 0.0998 0.0990 
0.3 0.1266 0.1320 0.1434 0.1629 0.1701 0.1734 

0.5 0.1706 0.1820 0.2074 0.2456 0.2644 0.2746 
 

8


 m

 
  
  

0.005 0.010 0.020 0.030 0.040 0.050 

0.0 0.1307 0.1376 0.1383 0.1432 0.1530 0.1573 
0.3 0.1902 0.2035 0.2113 0.2240 0.2457 0.2623 
0.5 0.2550 0.2770 0.2962 0.3248 0.3679 0.4039 

 

4


 m

 

  
  

0.005 0.010 0.020 0.030 0.040 0.050 

0.0 0.4995 0.5125 0.5427 0.5601 0.5680 0.5706 
0.3 0.7110 0.7436 0.8038 0.8422 0.8658 0.8811 
0.5 0.93253 0.9900 1.0879 - - - 

 

 
From Figures 3-11 and Tables 1-2, the following  
statements  can be  deduced: 
 

(i) As  the  values  of  m  (considered  to  be  a   measure  
of  the  height  of  the  shell ) are  increased, the  values of  

crp
 (buckling  loads)  and  the  values  of  crv

 (buckling  

deflections )  are  increased  for  all  of  the  values  of   

thickness parameter) and   (measure of the 
compressibility), as  in Yıldırım & Yükseler (2011).  
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Table 2: Nondimensional buckling deflections  corresponding   

to  various  values  of  m ,   and    

 

10


 m

 
  
  

0.005 0.010 0.020 0.030 0.040 0.050 

0.0 0.0761 0.0669 0.0517 0.0395 0.0365 0.0395 
0.3 0.0761 0.0699 0.0548 0.0456 0.0395 0.0426 
0.5 0.0791 0.0699 0.0578 0.0456 0.0426 0.0456 

 

8


 m

 
  
  

0.005 0.010 0.020 0.030 0.040 0.050 

0.0 0.1247 0.1156 0.1000 0.0821 0.0699 0.0639 
0.3 0.1247 0.1186 0.1034 0.0882 0.0761 0.0669 
0.5 0.1247 0.1186 0.1065 0.0913 0.0791 0.0699 

 

4


 m

 
  
  

0.005 0.010 0.020 0.030 0.040 0.050 

0.0 0.5293 0.5110 0.4867 0.4684 0.4532 0.4380 
0.3 0.5323 0.5141 0.4958 0.4806 0.4684 0.4563 
0.5 0.5293 0.5141 0.4989 - - - 

 

 

  
(ii) As  the  values  of    are  increased, the  values  of 

crp
 are  increased  for  all  of  the  values  of  m   and  

, as  in Yıldırım & Yükseler (2011). 
 

(iii) As   the  values  of   are  increased, the  values  of  

crp
 are  increased  for  all  of  the  values  of    and  m ,  

as  in  Yıldırım & Yükseler (2011). 
 

(iv) As  the values of  are  increased,  the values of  crv
 

are decreased for 4


 m

,  8


 m

 and all of the  

values  of    and   ; but, for 10


 m

  (the  shallowest  

shell)  and  05.0 (the  thickest  shell, Novozhilov 

(1970),  the  values  of  crv
  are  increased , unexpectedly, 

for  all   of  the  values   of   .  
 

(v) As  the  values  of   are  increased, the values  of  crv
 

are increased for 8


 m

,  10


 m

and all  of the  

values of  ; but, for 4


 m

, the  values  of  crv
 are  

passing  through  a  maximum  around  3.0   for  all  

of  the  values  of    . 
 
(vi) The  forms  of  the  force-deflection  curves  can  be  
noted  to  be  changing, as  well  as the  concerning  
parameters  are  changed. If, typically, the  form  of  the  

force-deflection curve corresponding to 02.0 , 

0.0  and 10


 m

, shown in Figure 3, is  named  as  

1F  and  the  form  of  the  force-deflection  curve  

corresponding to 02.0 , 3.0  and 4


 m

, 

shown  in  Figure 10,  is  named  as 2F ;  the  forms  of  
the  force-deflection  curves  can  be  noted  to  be  

changing  from 1F  to 2F  as  (a ) m  is  increased , ( b ) 
 is  decreased, and  ( c )   is  increased. 
 
(vii) The phenomenon ofthesnap-through buckling has  

not  been observed  for 4


 m

 ,  5.0 and  03.0

, as  seen  in  Tables 1-2. 
 
6. Conclusions 
 

It has been emphasized in this study that  
 

(i) searching  the  effects  of  height, thickness  and  
compressibility of  the  shells  on  the  nonlinear  
buckling  behaviour  of  compressible  rubber-like  
shells  one  by  one, without  considering  their  
various  combinations, are  misleading; 

 

(ii) as  the  concerning  parameters are  changed,  not  
only  the  values  of  the  buckling  loads  and  buckling  
deflections   but  also  the  forms  of  the  force-
deflection  diagrams  are  changing. 
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