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Abstract 

This paper presents a robust M-estimation approach for first-order panel autoregressive models, addressing the challenges 
posed by high persistence levels of the autoregressive parameter and individual heterogeneity. Generalized method of 
moments estimators widely used in dynamic panel models exhibit substantial finite sample biases and are sensitive to weak 
instruments, particularly as the autoregressive parameter gets close to unity. Our proposed weighted M-estimator, which 
uses a power function for the scale parameter in Huber’s loss function, offers a robust alternative. By minimizing the 
variance of model parameters through an optimal tuning parameter, our method enhances the efficiency and robustness of 
parameter estimates. We demonstrate the superiority of the proposed approach through several Monte-Carlo simulations 
and an application to hydro-electric power output data, providing comprehensive comparisons with existing generalized 
method of moments estimators. 
Keywords: Panel autoregressive models, Robust estimation, M-estimation, Generalized method of moments 

 

I. INTRODUCTION
Dynamic panel data (DPD) models play a pivotal role not only in econometrics but also in engineering and the 

natural sciences, serving as fundamental analytical tools, especially when dealing with data that evolves over 

time and across individual units. These models allow us to capture the temporal dynamics of data, thus 

facilitating the understanding of various phenomena in different fields of research, such as physics, biology, 

environmental science, engineering, econometrics and so on. For instance, DPD models can be used to analyze 

the long-term effects of greenhouse gas emissions, oceanic circulation patterns, and temperature fluctuations 

over time in the field of climatology. As another example, in biology, the growth and development of organisms, 

the spread of diseases, and the interactions between species in ecosystems can be investigated via these models, 

considering both short-term and long-term dynamics. The behavior of complex systems such as electrical 

circuits, mechanical systems, or chemical processes in engineering can also be addressed with these models to 

discover hidden patterns, relationships, and trends in data that may not be evident with simpler models.  

 

The flexibility of DPD models highlights their importance as a powerful analytical tool across various 

disciplines. By incorporating the unobserved individual-specific effects, these models account for unobserved 

heterogeneity across individuals, leading to enhanced insights (cf. [1]). Additionally, the inclusion of lagged 

dependent variables as explanatory variables in DPD models is a crucial feature that distinguishes them from 

static panel data models. This feature enables them to capture both the short- and long-term dynamics of the data 

and allows for modeling of persistence within the data. 

 

Estimating DPD models involves addressing several issues stemming from endogeneity, potential correlation 

between the individual-specific effects and the explanatory variables, and unobserved heterogeneity. Using well-

known least squares (LS) techniques for dynamic models may result in obtaining inconsistent estimates of the 

parameters when dealing with panel data with a small time dimension. This inconsistency arises due to the 

presence of endogenous explanatory variables, which introduce correlation between the regressors and error 

terms. Even with large samples, LS techniques, such as fixed effects (LSDV) or random effects (GLS), may still 

exhibit bias, as noted in [2]. Furthermore, [3, 4] address the inconsistency of the the maximum likelihood 

estimator (MLE) when dealing with a large number of individuals (N) and a fixed number of time periods (T), 

which arises from the increase in parameters with the increasing number of individuals, resulting in an incidental 

parameter problem. This has prompted likelihood-based approaches aimed at addressing this issue, such as the 

conditional likelihood estimator outlined in [5], and estimators based on the the first differences, as proposed by 

[6, 7, 8]. Also, for a detailed discussion on the finite sample properties of the MLE within the scope of dynamic 
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panel data models, see [9]. More recently, likelihood-

based estimators for autoregressive panel data models, 

which are robust in the presence of heteroskedasticity, 

have been proposed by [10]. 

 

The primary focus in literature for the estimation of 

dynamic panel data models has been on a  class of 

generalized method of moments (GMM) estimators. 

GMM estimation offers a flexible approach by 

exploiting moment conditions derived from the 

sample moment counterparts of population moment 

conditions, often referred to as orthogonality 

conditions, of the data-generating model (cf. [11]). As 

pointed out by [11], the main sources leading to the 

widespread use of GMM estimators include: (i) 

Providing a simple approach for demonstrating the 

asymptotic properties of GMM estimators, and (ii) 

The capability to construct them without specifying 

the complete data generation process. For 

comprehensive discussions of GMM estimation with a 

wide range of applications, see [12, 13, 14, 15]. The 

GMM estimators based on first-difference 

transformation proposed by [16, 17, 18] have led to 

the beginning of an extensive literature. Although the 

first-difference based GMM estimators yield 

consistent estimates for large cross-sectional size, they 

exhibit substantial finite sample bias, particularly 

when dealing with strongly persistent data and weak 

instruments (cf. [1, 19,  20, 21]). In order to enhance 

the finite sample properties of standard GMM 

estimators, several alternative estimators, such as level 

GMM (LEV) estimator of [22] and system GMM 

(SYS) estimator of [19], have been developed. These 

estimators can be considered as extensions of the 

standard GMM estimators by incorporating additional 

moment conditions derived from the level equations 

for LEV estimator and from the model in first 

differences and levels for SYS estimator. Though 

exploiting many instruments, leads to an improvement 

in the efficiency of GMM estimators and addresses 

weak instrument and incidental parameter issues, as 

noted in [23], these estimators still exhibit bias. 

Moreover, the SYS estimator may result in 

increasingly biased estimates and weak instrument 

issues in the presence of a large variance ratio of the 

individual-specific effects to the idiosyncratic errors 

and/or an autoregressive coefficient that is close to 

unity (cf. [2, 24]). The finite sample biases of the SYS 

estimators have been investigated by [25]. 

Furthermore, [26] have proposed a consistent GMM 

estimator with less bias in the presence an 

autoregressive coefficient that is close to unity.  

 

The aim of this paper is to develop a robust M-

estimator when the value of the autoregressive 

parameter is near unity and/or the variance of 

individual effects differs from the variance of the error 

terms, where the class of GMM estimators is highly 

sensitive to the increasing level of persistence and 

individual heterogeneity. In this paper, we propose an 

extension of the weighted M-estimation approach 

introduced by [27] to estimate the parameters of the 

first-order autoregressive panel data models. The 

proposed robust estimator, based on Huber’s loss 

function, is obtained by weighting the M-estimator 

with a power function for the scale parameter. Also, 

the optimal value of the tuning parameter related to 

the loss function has been chosen with the aim of 

minimizing the variance of the model parameters and 

based on the data distribution, as in [28, 29]. 

 

The rest of the paper is organized as follows. In 

Section 2, we begin by presenting comprehensive 

information on first-order autoregressive panel data 

models and existing GMM estimators. Subsequently, 

we describe our approach to obtain the proposed M-

estimator, which is weighted by a power function 

applied to the scale parameter in Huber’s loss 

function. The finite sample properties of the proposed 

estimator are demonstrated through an extensive 

simulation study, and the results are compared with 

those of traditional GMM estimators in Section 3. In 

Section 4, we apply our proposed method to hydro-

electric power output data to further validate its 

applicability. Finally, a few concluding remarks are 

provided in Section 5. 

 

II. METHODOLOGY 

2.1. First-Order Autoregressive Panel Model and 

GMM Estimators 

We consider the first-order autoregressive panel 

model described as follows 

 

𝑦𝑖𝑡 = 𝜑𝑦𝑖,𝑡−1 + 𝛼𝑖 + 𝜀𝑖𝑡;   𝑖 = 1,… ,𝑁;   𝑡 = 2,… , 𝑇 (1) 

 

where 𝛼𝑖, 𝜀𝑖𝑡 and 𝑦𝑖𝑡  respectively represent 

unobserved individual-specific effects, idiosyncratic 

error terms and the response variable for an individual 

i observed at time t and 𝜑 is the autoregressive 

parameter under the stationarity assumption that |𝜑| <
1. For this simple DPD model, 𝛼𝑖’s are assumed to be 

independent and identically distributed (iid) across 

individuals, with 𝐸(𝛼𝑖) = 0, 𝑉𝑎𝑟(𝛼𝑖) = 𝜎𝛼
2, and 𝜀𝑖𝑡’s 

are iid across time and individuals, with 𝐸(𝜀𝑖𝑡) =
0, 𝑉𝑎𝑟(𝜀𝑖𝑡) = 𝜎𝜀

2 (cf. [19]). Also, for mean stationarity 

on the process, it is assumed that 𝐸(𝑦𝑖1𝜀𝑖𝑡) = 0 and 

𝐸(𝛼𝑖𝜀𝑖𝑡) = 0 (cf. [19]). An additional assumption 

developed by [30] has been imposed on initial 

observations as follows  

 

𝑦𝑖1 =
𝛼𝑖

1−𝜑
+ 𝜇𝑖1 for  𝑖 = 1,… , 𝑁  (2) 

 

where 𝜇𝑖1 = ∑ 𝜑𝑗𝜀𝑖,1−𝑗
∞
𝑗=0  is independent of 𝛼𝑖. By 

defining  𝑦𝑖 = (𝑦𝑖3, … , 𝑦𝑖𝑇)
′, 𝑦𝑖,−1 = (𝑦𝑖2, … , 𝑦𝑖,𝑇−1)

′
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and 𝑢𝑖 = (𝑢𝑖3, … , 𝑢𝑖𝑇)
′, Equation (2) can be expressed 

as  

 

𝑦𝑖 = 𝜑𝑦𝑖,−1 + 𝑢𝑖  (3) 

 

where 𝑢𝑖𝑡 = 𝛼𝑖 + 𝜀𝑖𝑡. 
 

Under the assumptions given above, we examine three 

commonly used GMM estimators: the first difference 

(DIF) GMM estimator, the LEV GMM estimator, and 

the SYS GMM estimator. The GMM estimators are 

constructed using some moment conditions, with the 

asymptotic covariance of these moment conditions as 

the weight matrix (cf. [2]). Employing two-step 

procedures improves the asymptotic efficiency of the 

standard GMM estimators. The one-step GMM 

estimate is derived using an initial positive 

semidefinite weight matrix, which is independent of 

estimated parameters (cf. [31]). Then, the weight 

matrix, which includes residuals from the one-step 

estimation, is used to obtain the two-step GMM 

estimate. Also, estimated standard errors using two-

step procedure tend to show a downward bias in small 

samples, leading to a preference for one-step estimates 

with robust standard errors as noted in [1, 18, 31]. 

Next, we briefly discuss the one-step and two-step 

DIF GMM, LEV GMM and SYS GMM estimation for 

first-order autoregregressive panel data models. 

 

2.1.1. First difference GMM estimator 

The DIF GMM estimator transforms the model, given 

in Equation (3), into a system of equations in first 

differences to address the correlation between the 

lagged endogenous variable (𝑦𝑖,−1) and the error term 

(𝑢𝑖) stemming from the individual effect (𝛼𝑖). 
Therefore, to eliminate the individual effects, [18] 

employ the first differences of Equation (3) as 

follows: 

 
∆𝑦𝑖 = 𝜑∆𝑦𝑖,−1 + ∆𝑢𝑖 

 

where ∆𝑦𝑖 = (𝑦𝑖3 − 𝑦𝑖2, … , 𝑦𝑖𝑇 − 𝑦𝑖,𝑇−1)
′
, ∆𝑦𝑖,−1 =

(𝑦𝑖2 − 𝑦𝑖1, … , 𝑦𝑖,𝑇−1 − 𝑦𝑖,𝑇−2)
′
, and ∆𝑢𝑖 =

(𝑢𝑖3 − 𝑢𝑖2, … , 𝑢𝑖𝑇 − 𝑢𝑖,𝑇−1)
′
. By exploiting 𝑚𝐷 =

(1/2)(𝑇 − 1)(𝑇 − 2) orthogonality conditions, 

𝐸(𝑍𝑖
𝐷′∆𝑢𝑖) = 0, where 𝑍𝑖

𝐷 denotes a (𝑇 − 2) × 𝑚𝐷 

instrumental variable matrix  given below, 

 

𝑍𝑖
𝐷 = (

𝑦𝑖1
0
⋮
0

0
𝑦𝑖1
⋮
0

0
𝑦𝑖2
⋮
0

…
…
…
…

0
0
⋮
𝑦𝑖1

…
…
…
…

0
0
⋮

𝑦𝑖,𝑇−2

) 

 

one-step DIF GMM estimator (DIF1) of [18] for 𝜑 is 

calculated as   
 

𝜑̂𝐷𝐼𝐹1 = (∆𝑦−1
′ 𝑍𝐷𝑊𝐷𝑍𝐷

′
∆𝑦−1)

−1
∆𝑦−1

′ 𝑍𝐷𝑊𝐷𝑍𝐷
′
∆𝑦 

 

where ∆𝑦−1 = (∆𝑦1,−1
′ , … , ∆𝑦𝑁,−1

′ )
′
, 𝑍𝐷 =

(𝑍1
𝐷′ , … , 𝑍𝑁

𝐷′)
′
, ∆𝑦 = (∆𝑦1

′ , … , ∆𝑦𝑁
′ )′, and 

 

𝑊𝐷 = (
1

𝑁
∑𝑍𝑖

𝐷′𝐷𝑍𝑖
𝐷

𝑁

𝑖=1

)

−1

 

 

where D is a (𝑇 − 2) × (𝑇 − 2) square Toeplitz 

matrix as follows 

 

𝐷 =

(

 
 

2
−1
⋮
0
0

−1
2
⋮
0
0

0
−1
⋮
0
0

…
…
…
…
…

0
0
⋮
2
−1

0
0
⋮
−1
2 )

 
 
. 

 

 

Using the residuals from DIF1, ∆𝑢̂𝑖, two-step DIF-

GMM (DIF2) estimator is obtained as 

 

𝜑̂𝐷𝐼𝐹2 = (∆𝑦−1
′ 𝑍𝐷𝑊2

𝐷𝑍𝐷
′
∆𝑦−1)

−1
∆𝑦−1

′ 𝑍𝐷𝑊2
𝐷𝑍𝐷

′
∆𝑦 

 

where 𝑊2
𝐷 denotes the weighting matrix as 𝑊2

𝐷 =

(
1

𝑁
∑ 𝑍𝑖

𝐷′∆𝑢̂𝑖∆𝑢̂𝑖
′𝑁

𝑖=1 𝑍𝑖
𝐷)

−1

.  

 

[19] demonstrate that using lagged levels as 

instruments to obtain the first difference GMM 

estimator results in weak instrumental variables, and 

the instruments become invalid when 𝜑 is close to 

unity and/or when 𝜎𝛼
2 𝜎𝜀

2⁄   increases.  

 

2.1.2. Level GMM estimator 

The primary motivation behind level GMM estimator 

developed by [22] has been to remove individual 

effects from instrumental variables to address the 

correlation problem between error terms, 𝑢𝑖 and 

lagged endogenous variables, 𝑦𝑖,−1 caused by the 

presence of individual effects, 𝛼𝑖. For consistency 

with a large N and a fixed time period T, LEV GMM 

estimator requires the mean stationarity of the process, 

which implies that the assumption on the initial 

observations is satisfied.  

 

The level model described in Equation (3) is used to 

obtain LEV GMM estimator, with the assumption that 

the 𝑚𝐿 = (1/2)(𝑇 − 1)(𝑇 − 2) moment conditions, 

𝐸(𝑍𝑖
𝐿′𝑢𝑖) = 0, hold. Here, 𝑍𝑖

𝐿  represents a (𝑇 − 2)  ×

𝑚𝐿 instrumental variable matrix as follows 

 

𝑍𝑖
𝐿 = (

∆𝑦𝑖2
0
⋮
0

0
∆𝑦𝑖2
⋮
0

0
∆𝑦𝑖3
⋮
0

…
…
…
…

0
0
⋮

∆𝑦𝑖2

…
…
…
…

0
0
⋮

∆𝑦𝑖,𝑇−1

). 

 

Using these orthogonal conditions, the matrix of 

instruments, 𝑍𝐿 = (𝑍1
𝐿′
, … , 𝑍𝑁

𝐿′
)

′

, and weighting 

matrix,  𝑊𝐿, described as,  
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𝑊𝐿 = (
1

𝑁
∑𝑍𝑖

𝐿′𝑍𝑖
𝐿

𝑁

𝑖=1

)

−1

 

 

one-step LEV GMM estimator (LEV1) of 𝜑 is 

obtained as follows 

 

𝜑̂𝐿𝐸𝑉1 = (𝑦−1
′ 𝑍𝐿𝑊𝐿𝑍𝐿

′
𝑦−1)

−1
𝑦−1
′ 𝑍𝐿𝑊𝐿𝑍𝐿

′
𝑦 

 

where 𝑦−1 = (𝑦1,−1
′ , … , 𝑦𝑁,−1

′ )
′
 and 𝑦 = (𝑦1

′ , … , 𝑦𝑁
′ )′. 

 

In the second step, the weighting matrix 𝑊2
𝐿 is 

constructed by using the instrument matrix, which is 

weighted by the fitted residuals from the LEV1 

estimator, 𝑢̂𝑖’s, as follows 

 

𝑊2
𝐿 = (

1

𝑁
∑𝑍𝑖

𝐿′𝑢̂𝑖𝑢̂𝑖
′𝑍𝑖
𝐿

𝑁

𝑖=1

)

−1

 

 

and the two-step LEV GMM estimator (LEV2) for 𝜑 

is computed as 

 

𝜑̂𝐿𝐸𝑉2 = (𝑦−1
′ 𝑍𝐿𝑊2

𝐿𝑍𝐿
′
𝑦−1)

−1
𝑦−1
′ 𝑍𝐿𝑊2

𝐿𝑍𝐿
′
𝑦 

 

2.1.3. System GMM estimator 

A System GMM estimator (SYS) introduced by [19] 

combines the moment conditions of the DIF and LEV 

approaches to handle weak instrument problem and 

enhance the efficiency of the estimator. The model 

incorporating all equations both in first differences 

and in levels can be reformulated as a system of 

equations as follows. 

 

(
∆𝑦𝑖
𝑦𝑖
) = 𝜑 (

∆𝑦𝑖,−1
𝑦𝑖,−1

) + (
∆𝑢𝑖
𝑢𝑖
) 

 

To obtain the SYS estimator, a full set of 𝑚𝑆 =
(1/2)(𝑇 + 1)(𝑇 − 2) moment conditions and a 

2(𝑇 − 2) × 𝑚𝑆 block diagonal matrix, 𝑍𝑖
𝑆, are 

described by the following equations, respectively. 

 
𝐸(𝑍𝑖

𝑆′𝑢𝑖
𝑠) = 0 where 𝑢𝑖

𝑠 = (∆𝑢𝑖
′, 𝑢𝑖

′)′ 

𝑍𝑖
𝑆 = (

𝑍𝑖
𝐷 0

0 𝑍𝑖
𝐿) 

 

Using the matrix of instruments, 𝑍𝑆 = (𝑍1
𝑆′, … , 𝑍𝑁

𝑆′)
′
, 

the one-step SYS estimator (SYS1) of 𝜑 is obtained as 

 

𝜑̂𝑆𝑌𝑆1 = (𝑦−1
𝑠′ 𝑍𝑆𝑊𝑆𝑍𝑆

′
𝑦−1
𝑠 )

−1
𝑦−1
𝑠′ 𝑍𝑆𝑊𝑆𝑍𝑆

′
𝑦𝑠 

 

where 𝑦𝑠 = [(∆𝑦1
′ , 𝑦1

′ ), … , (∆𝑦𝑁
′ , 𝑦𝑁

′ )]′, 𝑦−1
𝑠 =

[(∆𝑦1,−1
′ , 𝑦1,−1

′ ), … , (∆𝑦𝑁,−1
′ , 𝑦𝑁,−1

′ )]
′
, and 𝑊𝑆 =

(
1

𝑁
∑ 𝑍𝑖

𝑆′𝐺𝑍𝑖
𝑆𝑁

𝑖=1 )
−1

 with 𝐺 = (
𝐷 0
0 𝐼𝑇−2

). 

 

 

 

In the second step, using the residuals (𝑢̂𝑖
𝑠) from 

SYS1, a weighting matrix, 𝑊2
𝑆, and the two-step SYS 

estimator (SYS2) are calculated respectively as 

follows 

 

𝑊2
𝑆 = (

1

𝑁
∑𝑍𝑖

𝑆′𝑢̂𝑖
𝑠𝑢̂𝑖

𝑠′𝑍𝑖
𝑆

𝑁

𝑖=1

)

−1

 

𝜑̂𝑆𝑌𝑆2 = (𝑦−1
𝑠′ 𝑍𝑆𝑊2

𝑆𝑍𝑆
′
𝑦−1
𝑠 )

−1
𝑦−1
𝑠′ 𝑍𝑆𝑊2

𝑆𝑍𝑆
′
𝑦𝑠 

 

Although the SYS estimator yields more efficient 

estimates compared to the LEV estimator, the bias of 

SYS estimator significantly increases in the presence 

of high persistence level of the autoregressive 

parameter and/or when the ratio of the variance of 

individual effects to that of the error term deviates 

from unity (cf. [2]). 

 

In this study, we consider an alternative class of robust 

estimators, i.e., M-estimators, since the class of GMM 

estimators results in distorted parameter estimates in 

the presence of a high persistence level of the 

autoregressive parameter and/or when the ratio of the 

variance of the individual effects to the error term 

variance deviates from one. Next, we describe M-

estimation approach weighted by power function to 

estimate first-order autoregressive panel model. 

 

2.2. A Weighted-M Estimation Using Power 

Function for Dispersion Parameter 

The main objective of this paper is to improve 

efficiency using the robust M-estimation approach for 

processes where the weak instrument problem arises. 

M-estimation approaches involve the minimization of 

a loss function that changes slowly in the presence of 

abnormal residuals. The novelty of our approach relies 

on obtaining weighted M-estimation using a power 

function for the scale parameter and choosing the 

value of the tuning parameter in the loss function by 

minimizing the variance of the estimators, as in [27, 

28, 29]. 

 

The power function proposed by [32] for the scale 

parameter, 𝜎, can be expressed in the first-order 

autoregressive panel data model as follows: 

 

𝜎 = 𝜏|𝜑𝑦−1|
𝛾 

 

where 𝜏 is an unknown dispersion parameter with an 

unknown parameter vector 𝛾, and 𝑦−1 =

(𝑦1,−1
′ , … , 𝑦𝑁,−1

′ )
′
. For the first-order autoregressive 

panel data models, the loss function, 𝜌(∙) is defined as  

 

∑∑𝜌(
𝑦𝑖𝑡 − 𝜑𝑦𝑖,𝑡−1 − 𝛼𝑖

𝜎̂
)

𝑇

𝑡=2

𝑁

𝑖=1
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where 𝜎̂ denotes an estimated value of scale 

parameter. To obtain the robust M-estimates of the 

autoregressive parameter, 𝜑, and the individual-

specific effects, 𝛼𝑖’s, the loss function, which varies 

slowly in the presence of outliers, is minimized. One 

of the most commonly employed loss function is the 

Huber’s loss function described as follows 

 

𝜌(𝑢) =

{
 

 
𝑢2

2
if |𝑢| ≤ 𝑐 

𝑐|𝑢| −
𝑐2

2
if |𝑢| > 𝑐

 (4) 

 

where c is a tuning constant that regulates the level of 

robustness and is chosen within a range of values of 0 

to 3. The default value of c in the R package rlm is set 

to 1.345 to achieve 95% asymptotic relative efficiency 

under the assumption of a normally distributed data. 

 

Differentiating the loss function defined in Equation 

(4) results in the following estimating equations: 

 

𝑈(𝜑;𝛼𝑖) =∑∑(
𝑦𝑖,𝑡−1
𝜎̂

)𝜓 (
𝑦𝑖𝑡 − 𝜑𝑦𝑖,𝑡−1 − 𝛼𝑖

𝜎̂
)

𝑇

𝑡=2

𝑁

𝑖=1

= 0 

𝑈𝛼(𝜑; 𝛼𝑖) =∑∑(
1

𝜎̂
)𝜓 (

𝑦𝑖𝑡 − 𝜑𝑦𝑖,𝑡−1 − 𝛼𝑖
𝜎̂

)

𝑇

𝑡=2

𝑁

𝑖=1

= 0 

 

where 𝜓(𝑢) = 𝑚𝑖𝑛(𝑐,𝑚𝑎𝑥(𝑢, −𝑐)) denotes the sub-

gradient function of the Huber’s loss function. 

 

Let us consider the idiosyncratic error terms in the 

model, 𝜀𝑖𝑡 = 𝑦𝑖𝑡 − 𝜑𝑦𝑖,𝑡−1 − 𝛼𝑖. Then, the solutions of 

this estimating functions are obtained by rewriting 

𝑈(𝜑; 𝛼𝑖) and 𝑈𝛼(𝜑; 𝛼𝑖) as in the form of the weighted 

score functions as follows:  

 

𝑈(𝜑; 𝛼𝑖  ) =∑∑𝑦𝑖,𝑡−1𝑊𝑖𝑡

𝑇

𝑡=2

𝑁

𝑖=1

𝑒̅𝑖𝑡 = 0 

𝑈𝛼(𝜑; 𝛼𝑖  ) =∑∑𝑊𝑖𝑡

𝑇

𝑡=2

𝑁

𝑖=1

𝑒̅𝑖𝑡 = 0 

 

where 𝑒̅𝑖𝑡 =
(𝑦𝑖𝑡−𝜑𝑦𝑖,𝑡−1−𝛼𝑖)

𝜎̂
  and 𝑊𝑖𝑡 =

𝜓(𝑒̅𝑖𝑡)

𝑒̅𝑖𝑡
 

respectively denote the Pearson residuals and        

weights. Then, by solving the weighted score 

equations, the robust estimators of 𝜑, 𝜑̂𝑃𝑂𝑊𝐸𝑅, and 𝛼𝑖, 
𝛼̂𝑖
𝑃𝑂𝑊𝐸𝑅 , can be calculated as follows, respectively. 

 

𝜑̂𝑃𝑂𝑊𝐸𝑅

= (∑∑𝑦𝑖,𝑡−1
′

𝑇

𝑡=2

𝑁

𝑖=1

𝑊𝑖𝑡𝑦𝑖,𝑡−1)

−1

(∑∑𝑦𝑖,𝑡−1
′

𝑇

𝑡=2

𝑁

𝑖=1

𝑊𝑖𝑡𝑦𝑖𝑡) 
(5) 

𝛼̂𝑖
𝑃𝑂𝑊𝐸𝑅 =

∑ (𝑦𝑖𝑡 − 𝜑̂𝑃𝑂𝑊𝐸𝑅𝑦𝑖,𝑡−1)
𝑇
𝑡=2

𝑇 − 1
 (6) 

 

Here, an iterative method is required since 𝑊𝑖𝑡 

depends on 𝜑, 𝛼𝑖, and 𝜎. This method is based on the 

pseudolikelihood approach and entails fixing the 

model parameter 𝜑 and variance parameters (𝜏 and 𝛾) 

alternatively (cf. [27]). To estimate 𝛾, we use a robust 

estimator with a breakdown point of %50 defined as 

 

∑∑𝜒(
𝑦𝑖𝑡 − 𝜑̂𝑦𝑖,𝑡−1 − 𝛼̂𝑖

𝜏̂|𝜑̂𝑦𝑖,𝑡−1|
𝛾 )

(|𝜑̂𝑦𝑖,𝑡−1|
𝛾
)
′

|𝜑̂𝑦𝑖,𝑡−1|
𝛾

𝑇

𝑡=2

𝑁

𝑖=1

= 0 (7) 

 

where 𝜒(𝑢) = 𝑚𝑖𝑛 (
𝑢2

1.0412
, 1) − 0.5 is a bounded 

function developed by [33, 34]. Also, to estimate the 

dispersion parameter 𝜏, we employ the MAD 

estimator expressed as 

 

𝜏̂ = Median {
|𝑦𝑖𝑡 − 𝜑̂𝑦𝑖,𝑡−1 − 𝛼̂𝑖|

|𝜑̂𝑦𝑖,𝑡−1|
𝛾̂

} /0.6745 (8) 

 

In robust approaches, it is crucial to appropriately 

select the tuning parameter, c, related to the loss 

function, as it controls the level of robustness in the 

estimation. In traditional robust methods, it is 

important to pre-specify the tuning constant c in any 

chosen loss function based on the desired level of 

robustness. When the errors follow a normal 

distribution, the optimal value for this parameter is 

+∞. However, in heavy-tailed distributions, then c 

should be selected as a small positive value. The 

selection of the tuning parameter requires careful 

consideration as robustness often entails a sacrifice in 

efficiency. The value of the tuning parameter c should 

be selected based on the potential percentage of 

outliers in the data or the data distribution to maximize 

the asymptotic efficiency of the estimators. This is 

because the primary goal is to enhance the efficiency 

of the estimators while maintaining robustness.  

 

In this study, following the approach outlined by [27, 

29], the tuning parameter that minimizes the variance 

of the model parameters is referred to as the optimal 

one. Thus, it is suggested to iteratively estimate the 

tuning parameter c from the data for values ranging 

between 0 and 3 in Huber’s loss function and select 

the value that minimizes the total estimated variances 

of the estimators in the model. 

 

The algorithm below provides a summary of the entire 

estimating process. 

1. Obtain initial M-estimates φ̂0 and 𝛼̂𝑖
0 =

∑ (yit−φ̂0yi,t−1)
T
t=2

T−1
 for 𝑖 = 1,… , 𝑁 using the default 

value of c under the assumption of a constant 

variance |φyi,t−1|
γ
= 1. 

2. Calculate the residuals of this model by fixing 

φ̂ = φ̂0 and 𝛼̂𝑖 = 𝛼̂𝑖
0 for 𝑖 = 1,… , 𝑁 and obtain 

the robust estimates of the variance parameters, 
(γ̂, τ̂), using Equations (7)-(8). 

3. Update 𝜑̂ and 𝛼̂𝑖’s with the Equations (5)-(6), i.e., 

using weighted M-estimators,  by setting the 

robust estimates of variance parameters, (γ̂, τ̂),  
obtained in the previous step.  
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4. Repeat steps 2-3 till the optimal value of the 

tuning parameter, c, is obtained from a finite set 

of values ranging from 0 to 3. The best tuning 

parameter yields the smallest sum of the 

estimated variance of the model parameters.  

5. Finally calculate the robust estimates of 𝜑 and 

𝛼𝑖’s using the best tuning constant.  

 

III. NUMERICAL RESULTS 
In this section, we carry out a comprehensive 

simulation study to investigate the performance of our 

proposed estimator (referred to as “POWER” in the 

graphs), and we compare our results with the one- and 

two-step GMM estimators: DIF, LEV and SYS. Note 

that the subscripts used in the abbreviations of the 

GMM estimators indicate the number of steps applied 

in the GMM estimation. For example, DIF1 is used to 

show the performance of the one-step DIF estimator, 

while DIF2 is associated with the two-step DIF 

estimator. To assess the finite-sample properties of 

each estimator, we consider three different scenarios: 

(i) different sample sizes, (ii) varying levels of 

individual heterogeneity, and (iii) varying levels of the 

persistence. For the data generation process (DGP), 

dynamic panel autoregressive model of order one 

given in Equation (1) is considered. 

 

To assess the performance of the proposed and 

conventional GMM estimators using S = 1000 

simulations, we calculate the bias and the root mean 

squared error (RMSE) of the estimator of 

autoregressive parameter, 𝜑̂, as follows: 

 

Bias =
1

𝑆
∑(𝜑̂𝑠 − 𝜑)

𝑆

𝑠=1

 

RMSE = √
1

𝑆
∑𝑉𝑎𝑟(𝜑̂𝑠) + 𝐵𝑖𝑎𝑠2(𝜑̂𝑠)

𝑆

𝑠=1

 

 
where 𝜑̂𝑠, 𝑠 = 1,… , 𝑆 are the estimates of the 

autoregressive parameter, 𝜑, obtained from the 

simulated samples. Throughout the experiments, the 

initial observations are generated considering the 

initial conditions developed by [30] as 𝑦𝑖1 =
𝛼𝑖

1−𝜑
+

𝜇𝑖1 where 𝜇𝑖1~𝑁(0,1), independent of 𝛼𝑖 and 𝜀𝑖𝑡. 

 
3.1. Sample Sizes 

To investigate the performance of the estimators under 

different sample sizes, the individual effects and the 

errors are generated from a normal distribution with 

mean zero and equal variances of 𝜎𝛼
2 = 0.25 and 𝜎𝜀

2 =
0.25, respectively. This implies that the ratio of the 

variance of the individual effect to that of the error 

term, 𝑟 =
𝜎𝛼
2

𝜎𝜀
2, kept fixed at 𝑟 = 1. Thus, we exclude 

the examination of individual heterogeneity and focus 

solely on investigating the impact of sample sizes on 

the performance of the estimators in this subsection. 

To this end, we consider the increasing values of the 

cross-sectional dimension 𝑁 = 25, 50, 100, 200, 500, 

with a fixed time period 𝑇 = 8, and the increasing 

values of the time dimension 𝑇 = 4, 8, 12, 18, 24 

while keeping the number of cross-sectional units 

fixed at 𝑁 = 100. The RMSE and bias of the 

estimators are compared when a moderate level of 

persistence is present with an autoregressive 

parameter 𝜑 = 0.5. Figure 1 illustrates the calculated 

RMSE and bias of both the conventional GMM 

estimators and the proposed weighted M-estimator 

with a power function as the cross-sectional dimension 

increases. Figure 2 displays the simulation results for 

the increasing time periods. In general, the RMSEs 

and bias of all the methods tend to decrease with 

increasing N and T, as expected. These figures 

demonstrates that the RMSEs calculated for the one- 

and two-step LEV estimators are largest relative to the 

other estimators, while the one- and two-step DIF 

estimators have the largest negative bias values in all 

cases. Also, although our proposed weighted M-

estimator with a power function produces slightly 

increasing RMSEs and bias with increasing T, our 

proposed method (POWER) yields the lowest RMSE 

and bias values, particularly when considering small 

values of T. It is conspicious from these figures that 

our proposed weighted M-estimator outperforms all 

the conventional GMM estimators in all situations. 

 

3.2. Levels of Individual Heterogeneity 

In this subsection, we focus on the impacts of different 

values of the variance ratio,  𝑟 =
𝜎𝛼
2

𝜎𝜀
2, which indicates 

the level of individual heterogeneity, on the 

performance of the estimators because conventional 

GMM estimators result in obtaining distorted 

estimates of the parameters as heterogeneity level 

increases. Thus, we investigate the robustness against 

increasing heterogeneity for our proposed estimator, 

following the experimental design used by [1]. To 

consider the scenarios where the variance ratio is 𝑟 <
1, 𝑟 = 1, and 𝑟 > 1, we select four different pairs of 

𝜎𝛼
2 and 𝜎𝜀

2 as (𝜎𝛼
2, 𝜎𝜀

2) = (0.25,0.50),
(0.25,0.25), (2.5,0.5), (2.5,0.25) when (𝑁, 𝑇) =
(100,8). We report the results for the selected values 

of autoregressive parameter 𝜑 = 0.1, 0.3, 0.5, 0.7, 0.9, 

considering a range from weak persistence to strong 

persistence.  
 

The plots of the calculated RMSEs of the estimators 

versus the variance ratio, 𝑟 =  0.5, 1, 5, 10, are given 

in Figure 3, whereas Figure 4 presents the bias values 

of the estimators versus r. Figure 3 illustrates that 

under weak and moderate levels of persistence, all the 

estimators, including our proposed estimator, tend to 

exhibit increasing RMSEs as the variance ratio r rises.  
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Figure 1: RMSE and Bias of conventional GMM estimators and the proposed weighted M-estimator with a 

power function when N = 25, 50, 100, 200, 500 with T = 8, r = 1, and 𝜑 = 0.5. 

 

  
Figure 2: RMSE and Bias of conventional GMM estimators and the proposed weighted M-estimator with a 

power function when T = 4, 8, 12, 18, 24 with N = 100, r = 1 and 𝜑 = 0.5. 

 

For weak and moderate levels of persistence, the 

LEV-GMM estimators have the highest RMSEs 

among the other estimators. On the other hand, when 

𝜑 = 0.9, indicating strong persistence, all the methods 

except the DIF-GMM methods produce decreasing 

values of RMSEs as r increases, with the DIF-GMM 

estimators providing the largest RMSEs in that 

scenario. Our proposed weighted-M estimator with a 

power function, yields the smallest RMSE values as r 

increases for all values of the autoregressive parameter 

considered in this study. Figure 4 demonstrates that 

the DIF estimators have the largest bias values among 

all estimators and exhibit increasing bias as the level 

of heterogeneity increases. This indicates that the DIF 

estimators are more efficient than the LEV estimators 

at the weak and moderate levels of persistence when 

taking into account both performance metrics, i.e., 

RMSE and bias. The bias values obtained by the 

proposed POWER estimator are the smaller than those 

of the class of conventional GMM estimators for the 

weak and moderate level of persistence, even as the 

level of heterogeneity increases. At 𝜑 = 0.9, both 

LEV-GMM and our proposed estimator yield 

competitive results when bias values are evaluated. In 

general, our results demonstrate that that proposed 

POWER estimator outperforms conventional GMM 

estimators as the heterogeneity level increases across 

all persistence levels. 

 

3.3. Level of Persistence 

Following the same experimental design used in the 

previous subsection, we examine the finite sample 

performance of the estimators against increasing 

persistence level. To this end, we plot the RMSEs and 

bias values of the estimators versus the various levels 

of persistence in Figures 5-6.  In Figure 5, both the 

proposed and conventional GMM estimators result in 

decreasing RMSE values as the persistence level 

increases across all heterogeneity levels considered. 

Under weak heterogeneity (𝑟 = 0.5 and 𝑟 = 1), the 

one- and two-step LEV-GMM estimators have higher 

RMSEs than the other GMM estimators.
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Figure 3: RMSE of conventional GMM estimators and the proposed weighted M-estimator with a power 

function for different values of 𝜑 = 0.1, 0.3, 0.5, 0.7, 0.9 when (N, T) = (100, 8) and r = 0.5, 1, 5, 10. 
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Figure 4: Bias of conventional GMM estimators and the proposed weighted M-estimator with a power function 

for different values of 𝜑 = 0.1, 0.3, 0.5, 0.7, 0.9 when (N, T) = (100, 8) and r = 0.5, 1, 5, 10. 

 

However, their performance tends to converge closely 

with that of the DIF-GMM and SYS-GMM estimators 

as the persistence level increases (𝜑 = 0.9). 

Furthermore, as the heterogeneity level increases (𝑟 =
5 and 𝑟 = 10), LEV-GMM estimators yield 

competitive results to SYS-GMM estimators for 

moderate and strong levels of persistence (𝜑 = 0.7 

and 𝜑 = 0.9). The POWER estimator, proposed in 

this study, demonstrates superior performance overall, 

except for the case 𝑟 = 0.5 and 𝜑 = 0.1. This is 

despite the fact that the two-step SYS estimator 

achieves the lowest RMSEs among all GMM 

estimators, particularly with higher values of the 

autoregressive parameter. Based on Figure 6, it can be 

observed that the largest negative bias values are 

obtained by the one-step DIF-GMM estimator. 
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Figure 5: RMSE of conventional GMM estimators and the proposed weighted M-estimator with a power 

function for different levels of variance ratio r = 0.5, 1, 5, 10 when (N, T) = (100, 8). 

 

  
Figure 6: Bias of conventional GMM estimators and the proposed weighted M-estimator with a power function 

for different levels of variance ratio r = 0.5, 1, 5, 10 when (N, T) = (100, 8). 
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Figure 7: 3D-scatterplots of RMSE and Bias for conventional GMM estimators and the proposed weighted M-

estimator with a power function across 𝜑 = 0.1, 0.3, 0.5, 0.7, 0.9 and r = 0.5, 1, 5, 10 when (N, T) = (100, 8). 

 

For all GMM estimators, the absolute bias values 

increase until a moderate level of persistence. 

However, they tend to produce decreasing bias in 

absolute value when 𝜑 = 0.7 and 𝜑 = 0.9. Indeed, the 

autoregressive parameter value of 0.5 acts as a critical 

threshold for all methods. In all scenarios, our 

proposed POWER estimator demonstrates improved 

performance over conventional GMM estimators 

based on both performance metrics, except for cases 

of weak persistence and weak heterogeneity level 

(𝜑 = 0.1 and 𝑟 = 0.5). 

 

The simulation results for different levels of 

heterogeneity and persistence are depicted by a three 

dimensional scatter plot (3D-scatter plot) in Figure 7. 

Figure 7 presents that the RMSE and bias of the 

estimators plotted as functions of the autoregressive 

parameter  𝜑 and variance ratio 𝑟. An increase in the 

variance ratio r have a more significant impact on 

RMSE compared to an increase in the autoregressive 

parameter 𝜑. The larger RMSE values are obtained for 

higher values of r when the level of persistence is 

weak and moderate. The bias values of the GMM 

estimators are often negative, whereas the proposed 

estimator yields bias values that are closest to zero. In 

summary, our proposed POWER estimator is 

considerably less affected by increasing level of 

heterogeneity and/or persistence. 

 

IV. CASE STUDY  
In this section, we employ the proposed robust 

procedure to examine the monthly hydro-electric 

power output data (100 million kwh), available from 

the National Bureau of Statistics of China at 

https://data.stats.gov.cn/english/easyquery.htm. This 

dataset includes 220 observations (N = 22, T = 10), 

representing a cross section of 22 regions across China 

from March 2023 to December 2023. Table 1 presents 

the regions of China included in this study. Figure 8 

displays the marginal distributions of the hydro-

electric power output across 22 regions of China 

throughout different months. This figure suggests that 

there is heterogeneity in the hydro-electric power 

output among different regions of China, with some 

regions including outliers in their hydro-electric power 

output. 

 

A first-order panel autoregressive model, given in 

Equation (1), is fitted to the data. For this data, 𝑦𝑖𝑡  
represents the hydro-electric power output, and the 

indices 𝑖 = 1,… ,22 and 𝑡 = 1,… ,10 denote the 

regions of China and months, respectively.

  

https://data.stats.gov.cn/english/easyquery.htm
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Table 1: List of regions of China 
Beijing Jilin Fujian Hainan Qinghai 

Hebei Heilongjiang Jiangxi Chongqing Ningxia 

Shanxi Jiangsu Shandong Tibet  

Inner 
Mongolia 

Zhejiang Henan Shaanxi  

Liaoning Anhui Guangxi Gansu  

 

Figure 8: Boxplots of the hydro-electric power output 

across 22 regions of China 

 

 

To assess the predictive performance of all estimators, 

we calculate the trimmed mean prediction errors due 

to the lack of prior knowledge about outliers in 

empirical data analysis. To this end, a specified 

percentage (e.g., p%) of observations is trimmed by 

considering those with the highest squared prediction 

errors, followed by computing the mean prediction 

error for the remaining portion of the dataset. The 

mean prediction error (MPE), excluding outliers, is 

calculated as defined below 

 

MPE =
1

22 × 10 −𝑚
∑∑(1− Ι𝑖𝑡)(𝑦𝑖𝑡 − 𝑦̂𝑖𝑡)

2

10

𝑡=1

22

𝑖=1

 

 

where 𝑦𝑖𝑡 and 𝑦̂𝑖𝑡 respectively denote the observed and 

predicted values of the hydro-electric power output, 

and 𝑚 =
𝑝

100
× 22 × 10 represents the number of 

outliers in the dataset. Here, Ι𝑖𝑡 represents an indicator 

variable that takes the value 1 if 𝑦𝑖𝑡 is an outlying 

observation, and 0 otherwise. The estimates of the 

autoregressive parameter and trimmed MPEs are 

reported in Table 2. 

 

Table 2: The estimates of autoregressive parameter 𝜑 obtained by the conventional GMM estimators and the 

proposed weighted M-estimator with a power function, along with MPEs for various trimming percentages, p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We consider trimming percentages as 𝑝 =
5%, 10%, 15%, and 20%, with the value zero 

representing the full dataset. From Table 2, it is 

evident that the estimated value of the autoregressive 

parameter is considerably high, approaching unity, for 

the proposed POWER estimator. Additionally, the 

GMM estimators, with the exception of the DIF-

GMM estimators, have estimated the autoregressive 

parameter to be greater than 0.9, indicating strong 

persistence within the dataset. The strong persistence 

is evident since the DIF-GMM estimators result in the 

largest MPEs with estimated values of the 

autoregressive parameter near the moderate level of 

0.5. As the trimming percentages increase, all 

estimators exhibit improved predictive performance 

with decreasing MPEs. The proposed POWER 

Estimator 

Full Data 
MPE 

p = 5% 

MPE 

p = 10% 

MPE 

p = 15% 

MPE 

p = 20% 
𝝋̂ 

MPE 

p = 0% 

POWER 0.9946 10.7786 5.2866 2.9803 1.8708 1.2068 

DIF1 0.4749 61.9876 38.7937 26.0449 17.6564 12.5514 

DIF2 0.4738 62.2326 38.9658 26.1661 17.7376 12.6114 

LEV1 0.9535 10.8289 5.5147 3.0137 1.9170 1.2982 

LEV2 0.9535 10.8296 5.5145 3.0136 1.9169 1.2982 

SYS1 0.9357 11.0653 5.7130 3.1685 1.9643 1.3014 

SYS2 0.9356 11.0666 5.7141 3.1694 1.9645 1.3015 
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estimator produces the lowest MPE among all 

estimators considered across all trimming percentages. 

Although the smallest MPEs are provided by the 

LEV-GMM estimators among the GMM estimators, 

our proposed POWER estimator yields better 

predictions, ranging from 0.47% to 7.57% across 

various trimming percentages, compared to the LEV-

GMM estimators. Moreover, the proposed estimator 

produces more accurate predictions, ranging from 

2.65% to 8.08, compared to SYS-GMM estimators. 

All empirical findings clearly indicate that the 

proposed POWER estimator is robust in the presence 

of strong persistence and heterogeneity, demonstrating 

substantially improved predictive ability compared to 

conventional GMM methods. 

 

V. CONCLUSION  
In this study, we propose a robust weighted M-

estimation approach for first-order dynamic panel 

autoregressive model, which considerably enhances 

the precision and robustness of parameter estimates 

under challenging conditions of high persistence and 

individual heterogeneity. The proposed estimator is 

constructed by weighting the M-estimator with a 

power function for the scale parameter used in the 

Huber’s loss function, with optimization of the tuning 

parameter by minimizing the variance of the model 

parameters. Through extensive simulations and 

empirical data analysis, we have demonstrated that our 

method outperforms traditional GMM estimators, 

particularly in the presence of weak instruments and 

near-unity autoregressive parameters. This robust 

estimator provides a valuable tool for researchers 

across various fields, including econometrics, biology, 

and engineering, facilitating more accurate analysis of 

dynamic panel data. 
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