
Vol: 2, Issue: 1, 2024
ISSN: 2980-3152
Pages:60-85
c⃝ 2024 Karabük University

CURRENT TRENDS IN COMPUTING
https://dergipark.org.tr/en/pub/ctc

RESEARCH ARTICLE

ANOMALY DETECTION WITH API CALLS BY USING MACHINE LEARNING:
SYSTEMATIC LITERATURE REVIEW
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ABSTRACT. API, in other words system calls are critical data sources for monitoring the operation
of systems and applications, and the data obtained from these calls provides a wealth of information
for anomaly detection. API calls are the basic building blocks of the interaction between the oper-
ating system and user applications, and analysis of these calls provides important data for securing
the system. Anomaly detection is crucial for system security and performance. ML models learn nor-
mal and abnormal behaviors by processing large amounts of data and use this information to detect
anomalies in new data. When anomaly detection using system calls is combined with ML algorithms,
it can make more precise and accurate detections. In this paper, we focus on anomaly detection with
machine learning methods using API calls. We present a SLR on the topic as well as a SoK by provid-
ing basic knowledge. The main goal is to describe, synthesize, and compare security advancements in
anomaly detection using API calls with ML algorithms by examining them through the lens of vari-
ous research questions. More than 30 research papers were retrieved using search phrases identified
from common and reputable databases, and those relevant to the topic were included in the SLR us-
ing different screening criteria. In addition, the reviewed studies were compared in terms of different
metrics such as dataset, platform, success parameter, used ML method, and features.

1. INTRODUCTION

Smartphones, computers and other electronic devices are involved in every aspect of our daily lives.
With the Internet becoming an indispensable element, system security has become an indispensable re-
quirement in both personal and corporate organizations. A system is a set of components that interact
with each other and usually form a complex whole. Alternatively, a system can be defined by the func-
tions and behaviors it contains. The interactions between systems, their interconnections, environmental
conditions and human governing factors make questions about system safety complex. for instance,

E-mail address: ferhat.arat@samsun.edu.tr (∗).
Key words and phrases. API call, system call, anomaly detection, machine learning.

https://dergipark.org.tr/en/pub/ctc
https://orcid.org/0009-0000-3000-9899
https://orcid.org/0000-0002-4347-0016
https://orcid.org/0000-0001-7005-6489


the need for monitoring, measurement and control are critical elements to consider in system intercon-
nections. System security is an important issue not only at the individual and organizational level, but
also at the societal level. Keeping up with rapidly growing and evolving technological developments is
inevitable in this context.

Today, information security has become even more crucial with the increase in cyber threats. Cyber
attacks can cause a wide range of damages at the user and system level, from the theft of personal data
to the collapse of corporate systems. Therefore, security measures need to be handled with a proactive
approach, not just a reactive one. Advanced monitoring and intrusion detection systems, artificial intel-
ligence and machine learning techniques are used to identify and prevent potential threats in advance.
In addition, user training and awareness is also considered an important component of system security.
Human error is one of the fundamental causes of many security breaches. Therefore, making users aware
of security protocols and teaching them the necessary applications and systems will improve the over-
all security posture. Anomaly detection is a critical area that aims to detect security threats in advance
by identifying unusual behavior of systems. Anomaly detection is also a technique used to detect data
samples that do not fit the data model and is an important research area that is being studied for many
applications [1], [2]. The main purpose of anomaly detection is to distinguish between normal and ab-
normal data. This method is very significant in data analysis as it enables the identification of emerging
patterns, trends and anomalies in the data [3].

Anomaly detection is critical for various applications such as security, health, network monitoring [4].
In this context, cybersecurity is an emerging and important research domain with applications across
various domains such as healthcare, building management, weather forecasting, etc. [4]. Anomalies
were considered important because they can point to very important and rare events, enabling critical
measures to be taken in a wide range of application areas.

Anomaly detection using system calls, also known as Application Programming Interface (API) calls,
provides a detailed analysis of the internal dynamics and behavior of systems. System calls are the
basic building blocks that enable the interaction between the operating system and user applications, and
analysis of these calls provides important data to ensure the security of the system. An API is an interface
that a software program provides to other programs, users, and in the case of web APIs, to the world via
the internet [5].

The accuracy and reliability of the methods used in anomaly detection are directly related to the
datasets used and the training of the model. The datasets used in the training process are required to
adequately represent normal and abnormal behaviors. In this context, the datasets include various types
of attacks and system behaviors and provide ideal test environments to evaluate the performance of
anomaly detection models. Various features, such as API calls or system calls, registry modification and
network activity, constitute the behavior of malware. API calls and various information related to these
calls extracted by dynamic analysis are considered as one of the most important features of behavior-
based detection systems. Each API call in the sequence is associated with the previous or next API call.
These and similar relationships may contain patterns of destructive functions of malware. Many anomaly
detection systems, including ML and deep learning models, have been proposed that use various informa-
tion about API and system calls as features. In particular, ML methods and deep learning algorithms are
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used to improve the performance of such anomaly detection systems. for instance, deep learning models
can achieve high accuracy rates on complex datasets and can be effectively used in malware detection.
In this context, the integration of MLand deep learning methods is of great importance to improve sys-
tem security and detect malware effectively. There are three anomaly detection techniques: supervised,
unsupervised and semi-supervised.

This paper presents a comprehensive Systematic Literature Review (SLR) focusing on anomaly detec-
tion with API calls using ML techniques, utilizing the Systematization of Knowledge (SoK) approach. In
addition to ML fundamentals and principles, we offer an expansive framework with a specific emphasis
on api calls in anomaly detection, contributing to the systematic organization of information. wUnlike
existing reviews, our focus is explicitly directed towards using anomaly detection with API calls. We
have initiated a comprehensive literature search methodology. The objective is to describe, synthesize,
and compare security developments in terms of anomaly detection with API calls.

TABLE 1. Abbreviations and definitions

Abbreviation Definition Abbreviation Definition
API Application Programming Interface ML Machine Learning
KNN K-Nearest Neighbors SVM Support Vector Machine
LSTM Long Short-Term Memory CNN Convolutional Neural Network
ADFA-LD Australian Defence Force Academy Linux Dataset DARPA Defense Advanced Research Projects Agency
UNM University of New Mexico IDS Intrusion Detection System
DDoS Distributed Denial of Service TCP Transmission Control Protocol
URI Uniform Resource Identifier HTTP Hypertext Transfer Protocol
LR Logistic Regression NB Naive Bayes
RBF Radial Basis Function WoS Web of Science
CPS Cyber Physical System

1.1. Motivation and Contribution.
In this section, we give our motivation as well as summarize the main contributions of the paper. With

the rapid advancement of today’s technological developments, the use of interconnected systems and
applications by individuals and corporate organizations to facilitate operations, increase productivity and
provide a seamless experience to users is increasing in parallel.These systems and applications are made
possible by APIs that act as a bridge by enabling communication and data exchange between different
software components. The increasing use of APIs also increases the need for security measures to protect
against potential threats.

The fact that Internet technologies have been adopted and become an integral part of daily life has
brought with it disadvantages such as misuse and vulnerability to abuse. The increasing complexity of
large amounts of data circulating on the Internet increases the risk of anomalies, unexpected patterns
or behaviors.Anomaly identification through API requests is particularly crucial in this context. Espe-
cially monitoring an application’s API calls to understand its behavior and logic. As they facilitate data
transmission and communication between applications, API calls are critical for functionality.
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Anomaly detection helps identify unusual behaviors in the system, enabling timely responses before
they cause any damage to the application or the system. It detects abnormal requests and intrusion at-
tempts and in this way it helps to protect the system and reduce the costs of deployment and maintenance.

Anomaly detection gives vital information regarding both operations and security. Differences from
standard API behavior might indicate problems. Early identification of anomalies allows applications
to run more smoothly and efficiently. For example, if an API call is unusually slow, anomaly detection
ensures that the issue is identified and resolved before it negatively impact the user experience. Anomaly
detection also help protect against financial losses by identifying illegal activities that produces unusual
API requests patterns. Detecting such unusual activities early protects businesses from financial harm.
As the number of users and systems increase, the volume of API requests also grows. Anomaly detection
helps to monitor these large quantities of requests and identify anomalies, reducing the need for manual
monitoring and minimize the human intervention. In this regard, our contributions are as follows:

• Our Systematic Literature Review (SLR) offers guidelines enabling researchers to analyze and
address specific questions, presenting a Systematization of Knowledge (SoK) approach focused
on anomaly detection methods involving API calls from a ML perspective.

• We only consider anomaly detection approaches with API calls using ML techniques.
• We examine ML methods to detect anomalies in the system which use API call sequences as data

features.
• We present a detailed comparison for literature based on technique, used data, peformance metric,

and other parameters.
1.2. Research Methodology.

A Systematic Literature Review (SLR) is a research method that involves systematically collecting,
critically assessing, and synthesising existing studies on a clearly defined topic. SLR provides a me-
thodical, repeatable, and reliable framework for reviewing literature. This approach aims to reduce the
complexity of research, improve transparency, and offer a thorough understanding of the current state of
knowledge in a specific field. In this paper, we aims to extract anomaly detection approaches which uti-
lize API calls in ML concepts to highlight differences, algorithmic design, data features, environmental
requirements of the existing studies. Therefore, our primary key is to prepare literature summation as
well as presenting compact, collective, and well-constrained SoK. In this Systematic Literature Review
(SLR), we employ a set of key terms pertinent to anomaly detection involving API calls. To conduct the
research and gather relevant studies, keywords such as ”anomaly detection,” ”API calls,” and ”Machine
Learning” are used to create meaningful and consistent search queries. Additionally, an advanced search
mode is utilized across five prominent databases: Scopus, Web of Science (WoS), ACM Digital Library,
Science Direct, and IEEE Xplore. Then, we apply three-stage research model defined as bellows:

(1) Definition: In this step, we create different combinations of essential keywords to ensure a reliable
and consistent search in databases. We also develop research questions that consider our research
focus and key factors, preparing for the SLR.

(2) Determination: In this stage, we determine searching filters and used sentences for advanced
search.
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(3) Elimination: In the last step, we eliminate obtained studies regarding elimination metrics and
main purpose of the SLR. Therefore, we create inclusion and exclusion methodologies as shown
in Table 2. And we apply the determined manual filters such as ”research article” and ”computer
science research area”.

1.3. Research questions and planning the review.
To outline the review’s future direction, defining the primary objectives is essential. We set these goals

to provide a comprehensive and practical viewpoint. Our SLR results aim to deliver conclusions that are
applicable, realistic, and easy for researchers to understand. We review the papers using various criteria,
including the datasets used, ML methods employed, performance metrics, and data features. To achieve
our objectives, we develop research questions that break the research into sub-phases. We outline the
generated research questions as follows:

(1) What datasets and data features are most commonly used in ML methods for anomaly detection
utilizing API calls?

(2) How is the performance of ML methods for anomaly detection using API calls evaluated, and
which metrics are most commonly utilized?

(3) Which ML methods for anomaly detection using API calls are the most effective, and what char-
acteristics make these methods stand out?

We expand our research by considering the research questions defined above. For each research ques-
tion, we identify the points of description, comparison, and summarizing that we consider important
when reviewing the research papers within the scope of our study. In this context, the first question aims
to identify the datasets and data features that are frequently employed in ML methods for anomaly detec-
tion using API calls. Understanding which data sources and features are preferred and yield successful
results is the goal. The second one focuses on the performance evaluation of studies. Analyzing the
performance metrics used helps compare different methods and identify the most commonly preferred
metrics. The final question aims to determine the effectiveness of different ML methods. Comparing
various methods and analyzing which ones yield better results will be one of the key findings of our
study. Figure 2 shows research methodology applied throughout paper.

64



FIGURE 1. Applied research methodology of the paper

1.4. Determining and performing of the investigation.
In this section, we address the planning process for selecting studies to be reviewed, following the

stages of formulating research questions defined to better specify the focus areas by expanding the SLR
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and creating search phrases using keywords. The selection of studies is carried out manually and by using
the filtering methods of search engines. In this context, the initial results are subjected to several logical
filters to form a study set appropriate for the research. Table 2 shows inclusion and exclusion metrics
applied during determining and eliminating the articles.

TABLE 2. Applied research criterion

Exclusion criteria Inclusion criteria
The study must focus on anomaly detection using
API calls.

Duplicated papers.

The study must be published in English. Published in any language other than English.
The study must be related with research fields of
computer science or computer engineering.

Review article, conference paper, or another types
except research article.

The study should use ML techniques considering
API calls for anomaly detection.

Studies using different datasets other than API
calls for anomaly detection.

Table 2 outlines the exclusion and inclusion criteria employed in the selection of studies pertinent to
anomaly detection using API calls. The exclusion criteria specify that eligible studies must be published
in English, ensuring they are accessible to an international audience. Additionally, the studies must be
relevant to the fields of computer science or computer engineering, thereby maintaining technical rele-
vance. Methodologically, the studies must utilize ML techniques specifically focusing on API calls for
anomaly detection, ensuring consistency with the research objective. Conversely, the inclusion criteria
exclude duplicated papers, those published in languages other than English, and studies that are not orig-
inal research articles, such as review articles or conference papers. Furthermore, studies using datasets
other than API calls for anomaly detection are also excluded. These stringent criteria ensure that the
selected studies are both methodologically relevant and focused on the specified research area, thereby
enhancing the reliability and validity of the research findings.
1.5. Organization.

The paper is organized as follows: In Section 1, we explain general definitions of the paper, describing
research questions, research structure, and investigation purposes. In Section 2, we give the basics of
the topic defining API calls and importance of the anomaly detection using API calls. In Section 3, we
present ML concepts giving fundamentals, definitions, and classifications. In Section 4, we highlight and
summarize obtained studies in terms of varying research parameters. In addition we compare literature
considering specified metrics. In Section 5, we conclude the paper defining open problems and challenges
for focused research problems.

2. ANOMALY DETECTION

In this section, we address the topic of anomaly detection, providing general information as well as
discussing its significance, the role of API calls in anomaly detection, detection techniques, and the use
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of ML methods in anomaly detection. By systematically presenting this framework, we establish the
foundational background necessary for the subsequent literature review.

A vital technique in the field of data analytics, anomaly detection plays an important role in various
applications such as security, health and network monitoring [4]. Anomalies can indicate critical and
often rare events that needs immediate attention. In the rapidly evolving field of cybersecurity, where it
is vital for maintaining system integrity and preventing hostile activities, anomaly detection is of a great
importance. Anomaly detection is a fundamental component of IDS in cyber security. These systems
are able to monitor network traffic and system activity to identify unusual actions that may indicate
a security breach. For example, an unexpected increase in data traffic might indicate a DDoS attack,
where an attacker overwhelms a network with excessive traffic to disrupt services. Similarly, unusual
login attempts from unfamiliar locations or devices could signal potential unauthorized access, requiring
further investigation to prevent data theft or system vulnerabilities.

Anomaly detection is a highly important technology with diverse applications across various indus-
tries. Its ability to identify unusual events allows for the implementation of preventive measures, thereby
it enhences safety, reliability, and efficiency in different sectors. As researches in this field enhences, the
integration of advanced machine learning methods and accessible artificial intelligence techniques will
be essential for improving the accuracy, reliability, and interpretability of anomaly detection systems.
This will ensure their continued relevance and effectiveness in a world where data is essential
2.1. API calls in anomaly detection.

The API is a critical element of the operating system and encompasses a set of functions contained
in specific libraries. Users utilize these functions to communicate with the operating system reflecting
the behavior of various files [6]. In the realm of APIs, the term ”application” generally refers to any
software that performs a function. An interface, in this context, acts as a service contract that enables
two applications to communicate through requests and responses. Essentially, APIs serve as mechanisms
that facilitate communication between two software components using specific protocols. API calls are
programming interfaces utilized by applications to interact with each other [7]. During an API call, one
server sends a request to another server’s web interface via the Transmission Control Protocol (TCP).
To make a request, three primary components are necessary: the Uniform Resource Identifier (URI),
headers, and the request body. While each API may use a distinct combination of these components,
communicate in a different format, or require varying data, the request generally follows the Hypertext
Transfer Protocol (HTTP) message structure. APIs provide analysts with a critical foundation for ex-
amining a program’s behavior and functionality, particularly when direct reverse analysis is challenging.
This foundation aids in detecting anomalies within the system’s behavior. A system call, on the other
hand, is a request made by a program to the kernel for a specific service. Analyzing the trace of such
calls can reveal the behavior of the process. These traces are instrumental in classifying the process as
either normal or malicious [8].
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3. MACHINE LEARNING: FUNDAMENTALS, DEFINITIONS AND CATEGORIZATION

Anomaly detection using ML techniques with API calls is of significant importance in various do-
mains, particularly in cybersecurity, network monitoring, and application performance management. API
calls are a valuable source of data that offers detailed information into system behavior and interactions.
Unusual patterns and deviations in API call data can be identified by using ML techniques, which may
indicate potential security breaches, system problems, or performance issues. This approach simplifies
proactive measures, enhancing system reliability, security, and efficiency. Various ML techniques are
used for anomaly detection with API calls. Some of these techniques are; supervised, unsupervised,
and semi-supervised learning methods. Supervised learning models are trained on labeled datasets that
allows them to recognize known anomalies. Unlike supervised methods, unsupervised methods uncover
hidden patterns in the data to determine anomalies without labeling. Semi-supervised approaches use
both labeled and unlabeled data and improve detection performance by combining both methods. Using
these ML techniques enables the analysis of API call data, providing strong and reliable anomaly detec-
tion. This approach ensures that systems can reduce issues effectively, maintaining optimal performance
and security. Figure 2 illustrates classification of ML methods under varying learning techniques.
3.1. Logistic Legression.

Logistic regression (LR) employs the sigmoid function to calculate probability values and perform
classification tasks. The sigmoid function produces outputs ranging from 0 to 1. Samples with probability
values below 0.5 are classified as belonging to the negative class, while those with values of 0.5 or higher
are assigned to the positive class. 3.1 [9].
3.2. Support Vector Machines.

SVM are supervised learning algorithms frequently utilized for both binary and multiclass classifica-
tion tasks. SVM operates by mapping input data points into a high-dimensional space and constructing
a hyperplane that is one dimension less to distinguish between different groups of data points [9]. The
main objective of SVM is to identify a hyperplane to optimally separate the data into two distinct clusters
by maximizing the distance between them. When a linear separation is not possible, a technique known
as kernel cheating is used (Muhammad and Yan, 2015). Widely utilized kernel functions include Gauss-
ian, radial basis function (RBF) and polynomial kernels. The most significant advantage of SVM is the
ability to avoid overfitting and its non-probabilistic nature [10].
3.3. Naive Bayes.

Naive Bayes (NB) classifiers are straightforward probabilistic models [10]. The term ”naive” stems
from the assumption that all input features are independent and uncorrelated with each other. This algo-
rithm is fundamentally based on Bayes’ theorem and computes the probability of each class for a given
set of input features [11].
3.4. Random Forest.

Random Forest (RF) is an ensemble learning method composed of multiple decision trees. Each tree
in the model employs a decision tree algorithm to choose a subset of features. After the forest is formed
using the RF technique, new data is classified by passing it through each tree. The trees vote for the class
they believe the instance belongs to, and the forest selects the class with the highest number of votes. RF
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FIGURE 2. Classification of the ML methods

is particularly valued for its noise robustness and lower susceptibility to overfitting compared to other
algorithms [12].
3.5. K-Nearest Neighbor.

The K-Nearest Neighbor (KNN) algorithm is one of the most basic supervised learning techniques used
to classify data into distinct categories [10]. Being non-parametric and probabilistic, KNN is suitable
for classification tasks where there is no prior knowledge about the data distribution. The algorithm
classifies a new sample based on the majority vote of its k nearest neighbors, determined by a similarity
measure (distance). However, its computational complexity increases with data size, often necessitating
dimensionality reduction techniques to mitigate the curse of dimensionality before applying KNN [13].
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3.6. Deep Neural Network.
DNN is one of the most commonly used methods in ML. Unlike traditional ML techniques, it excels

when processing large datasets. A notable feature of DNN models is their deep architecture consisting
of multiple hidden layers [14]. The design of a DNN reflects the working logic of the human brain and
typically consists of an input layer, several hidden layers and output layers. As a result, DNN models
encompass many units, making them suitable for classifying non-linear and complex data. However,
training DNN models requires more time than other methods due to their complex model structure and
size [14].
3.7. Long Short-Term Memory).

The LSTM model enhances the capabilities of the RNN (Recurrent Neural Network) model. RNNs,
as deep learning models, encounter the vanishing gradient issue when network layers increase, which
hampers the network’s ability to learn from previous information. LSTMs address this problem with a
complex recurrent unit that employs a gating mechanism to regulate information flow. These models
incorporate memory cells with fixed weights and self-contained recurrent nodes, enabling the retention
of state values over long periods and allowing gradients to pass through numerous time steps without
diminishing [15].

Traditional RNNs process sequential data inputs with forward recursive computation, chaining neurons
together to integrate past information with current inputs, effectively functioning as a memory to handle
time sequences. However, due to their limited memory capacity, RNNs retain less historical information
while preserving more recent data. During training, information distortion occurs as it passes through
numerous iterative loops, leading to gradient fading.

In contrast, the LSTM model enhances traditional neurons with memory cells, significantly improving
the network’s information transfer and processing capacity. These memory cells effectively store histori-
cal data, and the input gates within the cells autonomously manage the retention time of values, enabling
better prediction of crucial information [16]
3.8. Convolutional Neural Network.

CNNs have become a cornerstone of deep learning, especially in visual tasks, due to their outstanding
performance in computer vision applications such as object recognition, detection, and segmentation.
These networks have not only achieved top results in various tasks but also matched human-level perfor-
mance in recognizing visual objects and in critical medical applications [17].

CNNs are a favored deep learning technique because of their ability to model complex, non-linear
relationships. They are more efficient than traditional DNNs and excel at learning abstract image features,
which makes them particularly suitable for image processing. A CNN with sparse connections and
shared weights has significantly fewer parameters compared to a fully connected network of similar
size. The architecture of CNNs consists of three main layers: convolutional layers, pooling layers, and
fully connected layers. Unlike standard ANNs where each hidden layer has distinct weights, inputs, and
outputs, CNN neurons operate on two-dimensional planes for inputs and outputs, using feature maps
(kernels) as weights. Convolutional layers extract features from the input images, organizing the outputs
into two-dimensional planes known as feature maps. Each layer’s plane is formed by combining outputs
from the previous layer. As features are passed to higher layers, their size decreases in proportion to
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the filter size used in the convolution and pooling layers, while the number of feature maps increases
to improve feature extraction and classification accuracy. Pooling layers typically follow convolution
layers. After convolution and pooling, the extracted features are converted into a vector for classification
via fully connected layers, which are recognized for their high performance [18].

CNNs, inspired by the visual processing mechanisms of the human brain, are a type of multi-layer
perceptron within the feed-forward neural networks category. They are designed to automatically and
adaptively learn spatial feature hierarchies through backpropagation using key components such as con-
volution layers, pooling layers, and fully connected layers [19]. The structure of a CNN includes an
input layer, an output layer, and several hidden layers, which can be convolutional, pooling, or fully
connected [20].

4. ANOMALY DETECTION USING API CALLS WITH ML MODELS

In this section, we systematically summarize and analyze the studies obtained in response to the re-
search questions posed earlier. This systematic review forms the core of our investigation, building on
the general concepts, fundamentals, and definitions provided in the preceding sections. By examining
the datasets and data features most commonly used in ML methods for anomaly detection utilizing API
calls, we aim to identify the prevalent data sources and attributes that drive effective anomaly detection.
Furthermore, we evaluate how the performance of these ML methods is assessed, focusing on the metrics
that are most commonly employed in the literature. Lastly, we identify the most effective ML methods for
anomaly detection using API calls and explore the characteristics that make these methods particularly
successful. Through this structured approach, we not only synthesize existing research but also provide
a comprehensive comparison and analysis, offering valuable insights into the state-of-the-art techniques
in this domain. Table 4 highlights general contributions of the investigated papers.
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TABLE 4. System Call Anomaly Detection Techniques Overview
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4.1. Prevalent Datasets and Key Features in API Call Anomaly Detection.
In this section, we will identify and describe the most commonly used datasets and the key features

that are leveraged in ML methods for anomaly detection utilizing API calls. We will provide an overview
of the sources of these datasets, the nature of the data they contain, and the specific features that are
extracted and used for training anomaly detection models. This analysis will help in understanding the
data foundation upon which current research is built and highlight any gaps or opportunities for future
dataset development.

In [8] a hybrid anomaly detection system based on deep learning techniques, aiming to enhance both
accuracy and efficiency was proposed. The proposed system combines CNN and LSTM to achieve im-
proved detection capabilities. The initial step involves inputting the raw sequence of system call traces
into the CNN network to decrease the dimensionality of the traces. Subsequently, the reduced trace vec-
tor was passed to the LSTM network to understand the sequence of system calls and generate the final
detection result.The hybrid model was implemented and trained using TensorFlow-GPU, and its perfor-
mance was evaluated on the ADFA-LD dataset. The ADFA-LD host-based intrusion detection dataset
was generated by the ADFA. This dataset records Linux system calls, which facilitate communication
between user and kernel modes through standard interfaces provided by the Linux kernel. Every system
call on the sequence trace has a unique identifier number. The host was designed to profile a recent
Linux server that logs system call traces during a specific time period. ADFA-LD dataset was used in
the first phase. In the second phase, stratified sampling was applied and the dataset was divided into
training, validation, and test. In the second phase, a hybrid deep learning model utilizing CNN and the
LSTM algorithm was trained. The CNN consists of two layers: the convolution layer and the pooling
layer. The convolution layer applies convolution procedures to the input picture to extract significant
features, while the pooling layer decreases image dimensionality and deals with data nonlinearity. ReLu
activation function was employed. Finally, a hybrid DL-based CNN with LSTM was presented to detect
abnormalities in sequential system calls. The CNN extracted significant features, and the LSTM learned
the sequence patterns from the reduced data. Experiments reveal that the suggested technique displayed
reduced training time and better anomaly detection rates, hence lowering false alarm rates.

In [41], a novel anomaly recognition and detection framework named AnRAD inspired by biological
systems, which utilizes probabilistic inferences was proposed. It investigates feature dependencies and
introduces a self-structuring approach that learns an efficient confabulation network from unlabeled data.
This network enables fast incremental learning, continuously refining its knowledge base with streaming
data. Comparative analysis with existing anomaly detection methods demonstrates competitive detection
quality. Moreover, the AnRAD framework leverages parallel processing capabilities, yielding signif-
icant speed enhancements when implemented on graphic processing units and Xeon Phi coprocessors
compared to sequential execution on standard microprocessors. Versatility of the framework enables
real-time processing of concurrent data streams across various knowledge domains, making it applicable
to large-scale problems characterized by multiple local patterns. The proposed methodology incorporates
the principles of the confabulation theory within a hierarchical cognitive architecture, enabling flexible
network configurations tailored to specific applications. Leveraging the computational power of GPUs
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and Xeon Phi processors, the notable speed enhancements through both fine-grained and coarse-grained
parallelization methods were achieved.

In [24], a novel intrusion detection framework was introduced, which can identify both known and
unknown attacks through system call sequence analysis. This framework examines the system call se-
quences of VMs using a hybrid model that combines LSTM networks with anomaly detection techniques
based on system call frequency. The effectiveness of this framework was validated using the ADFA-LD.
System call traces are collected and stored as a dataset for offline training, necessitating preprocessing
to remove extraneous information and retain only system call sequences. These sequences are then en-
coded with unique identifiers and labeled as normal or malicious. Frequency-based methods like Bags
of n-grams are employed to generate a Feature Vector Matrix (FVM) from the processed traces. These
vectors, representing the frequency of distinct n-grams, are stored in a feature-vector database file. Ex-
perimental results showed that this framework outperforms existing models in accuracy and has a lower
false positive rate.

In [38], a new feature extraction method designed to derive features that are independent of system
call names, making the samples directly applicable to cross-platform scenarios. The method converts
system call sequences into frequency sequences of n-grams and then extracts a fixed number of statistical
features from these sequences. These features are calculated based on the frequency sequences rather
than the direct system call sequences, and are used to train a one-class classification model for anomaly
detection. The study utilized the ADFA-LD, ADFA-WD, and NGIDS-DS datasets, employing anomaly
detection algorithms like Isolation Forest, LOF, OCSVM, and kNN. The method was compared with
other feature extraction techniques, such as Bag of System Calls, tf-idf, and subsequence frequency.
Even though the proposed method did not always achieve the highest AUC on the same platform, it
generally outperformed other methods, especially in cross-platform scenarios.

Lv et al. developed a system-call sequence-to-sequence prediction model by semantically modeling
system calls [42]. This model predicts future system calls to monitor system states and detect attack be-
haviors. An end-to-end system call prediction model was built to predict subsequent system calls based
on traces generated during malicious process execution. The RNN model was used to ensure the genera-
tion of semantically reasonable sequences. The model was evaluated using the ADFA-LD dataset, which
contains traces from both normal and intrusion attempts. Performance was assessed using the BLEU
score and Euclidean distance between encoded semantic vectors, with TF-IDF used for sequence simi-
larity evaluation. The predicted sequences, when combined with known system call traces, significantly
enhanced intrusion detection performance across various classifiers.

System calls are the primary means for applications to communicate with the Operating System (OS),
making them vital for Host-based Intrusion Detection Systems (HIDS). In [22], several existing datasets
are outdated, prompting the introduction of a large-scale dataset specifically for anomaly detection in
the Linux kernel. The dataset, named DongTing, comprises 85 GB of data, including 18,966 system
call sequences labeled as normal or anomalous. It encompasses over 200 kernel versions and 3600 bug-
triggering programs from the past five years. Cross-dataset evaluation demonstrated that models trained
on this dataset exhibited superior generalization capabilities. The dataset was divided into training, vali-
dation, and testing subsets for training deep learning models to detect anomalies in Linux kernels. Four
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deep learning models—CNN/RNN, LSTM, WaveNet, and ECOD—were evaluated, showing that models
trained on this dataset achieved the highest generalization scores and better performance when trained on
abnormal data. This framework significantly reduces the time required to produce the dataset.

In [30], an end-to-end strategy was presented for identifying abnormal activities, merging sequential
information preservation through log embedding techniques with anomaly detection algorithms based on
ML. Unlike current ML methods for system anomaly detection, which rely on domain experts to extract
relevant features from log data, the proposed method converts raw log data into fixed-size continuous
vectors regardless of length. These vectors are then utilized to train anomaly detection algorithms. This
paper proposes a strong intrusion detection model designed specifically for Linux settings, combining se-
quential information-preserving log embedding techniques with anomaly detection algorithms. Doc2vec
was used to convert system call traces of different durations into fixed-dimensional real-valued vectors, as
are recurrent neural network-based auto-encoder (RNN-AE) and recurrent neural network-based denois-
ing auto-encoder (RNN-DAE) approaches that keep sequential information. To validate the detection
model, an experiment was carried out using the ADFA-LD dataset, which contains Linux system call
traces. Three assessment measures were utilized to assess the performance of anomaly detection algo-
rithms. The ROC was used to assess the performance of each model. In the studies, the performance
of anomaly detection systems based on unsupervised learning was assessed across several attack types.
After gathering a significant quantity of labeled data, a supervised classification model was trained and
its performance was compared against anomaly detection techniques. Finally, the paper provides an un-
supervised ML-based system anomaly detection framework that does not require labeled data for model
training.

In [30] an end-to-end approach was proposed for detecting abnormal behaviors, integrating sequential
information preservation through log embedding algorithms with anomaly detection algorithms based on
ML. Unlike other ML models for system anomaly detection that rely on domain experts to extract mean-
ingful features from log data, the proposed approach transforms raw log data into fixed-size continuous
vectors regardless of their original length. In this work, a robust intrusion detection model was devel-
oped which was specially created for Linux environments, leveraging sequential information-preserving
log embedding techniques alongside anomaly detection algorithms. To convert system call traces of
varying lengths into fixed-dimensional real-valued vectors, Doc2vec was used, as well as recurrent neu-
ral network-based auto-encoder (RNN-AE) and recurrent neural network-based denoising auto-encoder
(RNN-DAE) methods, which retain the sequential information. To validate the detection model, an ex-
periment was conducted using the ADFA-LD dataset, which comprises Linux system call traces. In the
experiments, firstly the performance of anomaly detection algorithms based on unsupervised learning
was evaluated across different attack types. After gathering a significant quantity of labeled data, a su-
pervised classification model was trained and its performance was compared against anomaly detection
techniques.
4.2. Performance Evaluation Metrics for Machine Learning-Based API Anomaly Detection.

This section will focus on how the performance of ML methods for anomaly detection using API calls
is evaluated. We will examine the most commonly utilized metrics, such as accuracy, precision, recall, F1
score, and area under the ROC curve (AUC). By analyzing these metrics, we aim to provide insights into
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how researchers measure the effectiveness of their models, the challenges associated with each metric,
and the contexts in which certain metrics are preferred over others. This will offer a comprehensive
understanding of the evaluation landscape in this field. Figure 3 illustrates dataset and platform summary
of the examined studies.

In [34], system calls based anomaly highlighting and detecting framework was proposed to guide
developers regarding performance problems in data. The LTTng was used to collect data from the Linux
kernel, applications, and libraries. A supervised learning method was utilized in order to manage large
amounts of labeled data. In addition, the learning method was improved and modified as semi-supervised.
Then, the feature vector was constructed considering the duration of the most significant call sequences.
In the detection phase, an automated anomaly detection method was implemented as module-by-module.
It was indicated that the proposed method ensures high accuracy and efficiency in large scale systems
and distinguishes CPU and memory shortages as well as detecting normal behavior.

In [39], an unsupervised anomaly detection and innovative algorithms based on LSTM neural net-
works were developed. The proposed structure was started by processing variable length data sequences
through an LSTM-based structure, resulting in fixed-length sequences. Decision functions for anomaly
detection were then derived using One-Class Support Vector Machines (OC-SVMs) or Support Vector
Data Description (SVDD) algorithms.The main contribution of the proposed work was indicated that
the simultaneous training and optimization of LSTM architectural parameters as well as OC-SVM or
SVDD parameters, facilitated by highly effective gradient and quadratic programming-based training
methods.This study extends the unsupervised framework to semi-supervised and fully supervised set-
tings. The resulting anomaly detection algorithms excel in processing variable length data sequences,
particularly time series data, offering superior performance compared to conventional methods.

In [43], an anomaly detection model utilizing LSTM networks as well as intra- and inter-trace context
vectors was proposed to overcome the challenge of online anomaly detection in CPSs. This dynamic ap-
proach allows both identified and unseen anomalies to be addressed while improving the understanding
of kernel event execution contexts both horizontally and vertically. A deep context-aware architecture
was introduced for anomaly detection in semi-structured sequences specifically focused on system calls
or kernel events. Furthermore, the importance of using a context-based attention layer to extract rich
semantics that help identify non-linear high-dimensional relationships present in syslog sequences was
emphasized. In the simulation, a custom dataset generated by existing work was used. Two parameters
were relevant to analyze the complexity of the model. Finally, the proposed approach characterizes the
behavior of the system through online execution trace analysis using recurrent neural networks. Exper-
iments show that the proposed model provides effective and robust results in anomaly detection using
system call sequences.

In [44], a state summarization and and nested-arc hidden semi-Markov model (NAHSMM) model was
proposed to model dynamic usage behavior and identifying anomalies for cloud servers. The model was
designed to control the propagation of system call sequences and less usage transitions. In addition, the
proposed detection algorithm was generated by integration of NAHSMM and state summarization. The
system calls in varying length were summarized using these methods and the NAHMM was utilized to
fit time sequences. As fundamental, the proposed system was constructed as a mathematical model. The

76



FIGURE 3. Comparison of the studies in terms of dataset and platform
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main concept was to use structured numerical models that include summarization of states to better un-
derstand the behavior of sequences of system call identifiers. In training and testing phases, IXIA Perfect
Storm was used to collect data. As final, the effectiveness of the proposed model in accurately detecting
anomalies within machine operating systems was highlighted . By leveraging descriptive features and a
streamlined structural framework, the model achieves this with fewer parameters, leading to significant
reductions in computational complexity and storage needs. Although the focus is on modeling system
call identifier sequences from servers in cloud environments, the method shows promise for application
in classifying network traffic and identifying anomalous human behavior.

In [40], a threat detection model was proposed implementing the Word2vec-based approach. The pos-
sibility of suspicious behavior was assessed by leveraging Word2vec model trained on a corpus of various
security logs.The method consists of three main components: log2text, text2corpus, and anomaly detec-
tion. The log2text component standardizes events from diverse security logs into uniform text format.
These texts are then merged, sorted chronologically, and processed into a corpus by the text2corpus com-
ponent. Finally, the anomaly detection component trains a Word2vec model on this corpus to compute
the probability of a specific behavior given an event, denoted as p(behavior—user). Events exceeding
a certain threshold are flagged as suspicious, potentially indicating malicious insider activity if multi-
ple suspicious events are associated with a user. The dataset was divided into smaller data and selected
specified security logs. The TPR and FPR were used as success metrics to determine performance of the
anomaly detection. The proposed study was compared with existing ones in terms of cost and complexity.

In [29], a novel anomaly and intrusion detection models were designed. The network data was rep-
resented as a graph structure to identify relation features between samples. The graph structure was
constructed as a triplet graph CNN and it was used to detect anomalies in the system. In addition Graph
Convolutional Network (GCN) was modeled and CSE-CIC-IDS2018 and UNSW-NB15 datasets were
used to monitor performance of the model. IThe dataset includes varying attack types and subtypes. In
the training phase, the value of the neighborhood number K is modified to achieve optimal detection ac-
curacy and the KNN model was utilized to complete learning. A small traffic data sample was used in the
integration phase of the proposed tGCN-KNN. The experiments were performed for a varying number of
samples under tGCN and tCNN learning models. As final, according to the comparison of three methods,
it was indicated that tGCN-KNN outperforms tCNN and CNN in terms of accuracy.

In [28], a novel approach named fault injection analytics was introduced for analyzing data from
fault injection experiments. This approach integrates distributed tracing to gather raw failure data and
employs unsupervised ML to identify failure modes within the injected system. The primary objective
is to aid human analysts in identifying failure modes more efficiently, especially when managing large
volumes of data from fault-injection experiments. A new anomaly detection algorithm was proposed
within this framework, designed to pinpoint unusual events in fault injection experiments. This algorithm
is resilient to noise inherent in cloud systems, which can stem from non-deterministic timing and event
ordering. It is also efficiently trainable with a small set of fault-free executions of the distributed system,
leveraging a variable-order Markov Model. The proposed method treats the cloud-computing system as
a collection of black-box communicating components, eliminating the need for prior knowledge about
their internal workings. Unsupervised ML is applied to execution traces to uncover patterns of failure.
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The method detects shared symbols among sequences by calculating the Longest Common Subsequence
(LCS) of the sequences. The LCS represents a subset of symbols present in both sequences in the same
order, obtained by minimally eliminating symbols from the original sequences. Using this probabilistic
model, the method effectively detects anomalies in noisy execution traces, reducing false alarms while
maintaining the detection of true anomalies. Results indicate that clustering achieves high accuracy under
various conditions.
4.3. Top Performing Machine Learning Methods for API Call Anomaly Detection: Characteristics
and Effectiveness.

In this section, we will identify the ML methods that have proven to be the most effective for anom-
aly detection using API calls. We will explore the characteristics that make these methods stand out,
such as their ability to handle high-dimensional data, robustness to noise, computational efficiency, and
interpretability. By comparing and contrasting these methods, we will highlight their strengths and weak-
nesses, providing a clear picture of the current best practices and innovative approaches in the field. This
analysis will also suggest directions for future research and potential improvements. Table 5 summarizes
method and platform based summary of the summarized studies.

In [36], an anomaly detection approach was developed utilizing NLP. The Bags of System Calls
(BoSC) was used to analyze application activity on Windows virtual machines operating under the Xen
hypervisor. System call traces were retrieved from both regular (benign) and malware-affected (ma-
licious) apps utilizing virtual memory introspection. The retrieved system call sequences were prepro-
cessed to produce valid sequences by filtering and arranging duplicate system calls. The behavior of these
sequences was then investigated using NLP-based anomaly detection algorithms. The Cosine Similarity
Algorithm (Co-Sim) was used to identify malicious processes on the Virtual Machine (VM). Further-
more, the Point Detection Algorithm was employed to identify the point of breach in the system call
sequence. Virtual Machine Introspection (VMI) was identified as the most flexible approach for detect-
ing, monitoring, and evaluating malware threats at the hypervisor level. In the feature extraction step, a
technique called angle similarity, which is comparable to text classification for anomaly detection, was
applied. In this method, a sequence of system calls was treated as a document, but individual system
calls were treated as words. According to the findings, the suggested algorithms have a high detection
accuracy for spotting abnormalities.

In [25] an innovative method for detecting anomalies with adversarial robustness was proposed to
address vulnerabilities in existing systems against perturbation attacks. The focus of the proposed ap-
proach was on analyzing behavior units, which encapsulate representative semantic information of local
behaviors to enhance the resilience of behavior analysis. A multilevel deep learning model was lever-
aged to understand overall semantics and contextual relationships among behavior units, effectively mit-
igating perturbation attacks targeting both local and large-scale behaviors. Moreover, versatility was
demonstrated across different types of behavior logs, including low-level (e.g., API) and high-level (e.g.,
syscall) logs. The approach assumed limited attacker knowledge and incorporated threat modeling to
address potential modifications to behaviors by attackers. Initially, key behavioral actions were identified
from behavior sequences, followed by the use of the Longest Common Subsequence (LCS) algorithm to
extract related segments that bolstered model robustness. Finally, multilayer transformer models were
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implemented for feature extraction from behaviors, enabling behavior classification to determine whether
a system sequence was abnormal or normal.

In [26] a novel approach was proposed where program behavior, considered as a sequence of compu-
tational steps, was represented by a single Characteristic Value (CV) rather than individual input values.
This CV sequence was used as input for neural networks, resulting in improved efficiency in modeling
program behavior. Multiple LSTM-RNN models were employed to reduce the neural network’s input
space, marking a significant advancement in program behavior modeling. The primary focus of the pro-
posed model was on modeling program behavior using CV sequences. These sequences were utilized
to represent program behavior after execution steps and were integral to the anomaly detection phase
based on the constructed CV models. A custom dataset was employed to evaluate the proposed model,
comparing its performance in terms of detection accuracy against existing methods.

In [33], a model for an intrusion detection system was developed that integrated various detection
techniques into a single system, aiming to achieve a comprehensive view of application behaviors. The
paper proposed a novel modified system calls graph that was designed to integrate and consolidate infor-
mation from different techniques within a unified data structure. A deep neural network was employed
to combine the results from different detection techniques used in the global model. The effectiveness
of this approach was validated using three datasets of varying complexity levels. The key contribution
of this study was the integration of multiple intrusion detection techniques into a unified system, leading
to improved detection accuracy. The architecture of the proposed system was characterized by two main
stages: detection and integration. In the detection stage, multiple intrusion detection techniques were uti-
lized concurrently. The study employed several datasets, including DARPA, UNM, and ADFA-LD, each
chosen for its distinct complexity levels. Results demonstrated significant improvements in detection ac-
curacy compared to using individual techniques, with higher detection rates and reduced false positives
achieved by the proposed model.
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TABLE 5. Method and platform based summary of the methods

Reference ML Method Applied
platform

Success Metrics

[21] DNN General Accuracy, loss rate, TNR, precision, F1-score,
FPR, sensitivity, FNR, G-mean

[22] CNN/RNN,
LSTM, WaveNet,
ECOD

Linux Kernel FPR, F1-score, time efficiency, AUC, TPR

[23] DNN, CNN Container
Platforms
(Kubernetes
cluster)

Accuracy, NPV, coverage, sensitivity, FPR,
F1-score, ROC

[24] LSTM Linux, Cloud Accuracy, loss rate, FPR, F1-score, sensitivity
[25] Multi-layer DL Android Precision, F1-score, ROC
[8] LSTM, CNN Linux Accuracy, loss rate, detection rate, FAR,

training time
[26] LSTM-RNN General Accuracy, detection rate, AUROC, AUPR,

CPU cycle count, complexity, memory usage
[27] iForest Smart Traffic

System with
Sensor Devices

Detection rate

[28] Not provided Cloud Systems FAR, time efficiency, TPR, computational cost
[29] tGCN-KNN General Accuracy, precision
[31] DT, ANN Container Clouds Loss rate, F1-score, precision, recall
[30] 1-SVM, LOF,

iForest
Linux AUROC, AUC

[32] Hierarchical
Clustering

Kernel Events,
Operating
System (OS)

Precision, FPR, complexity, FNR

[33] D-MLP Linux Detection rate, FPR, ROC
[34] SVM, K-means,

Dbscan
Linux Accuracy, time efficiency

[35] ANN General, IoT Accuracy, FPR, TPR
[37] SVM, LR, KNN Linux Accuracy, AUC, ROC
[38] IF, LOF,

OC-SVM, KNN
Linux, Windows FPR, computational cost, TPR

[39] OC-SVM,
LSTM, SVDD

General AUC, ROC

[40] Word2vec General FPR, TPR, computational cost
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5. OPEN PROBLEMS AND CHALLENGES

While anomaly detection using API calls is very significant and quite functional, there are some open
issues that have not been resolved by researchers and application developers. Some of these challenges
are as follows:

• Imbalanced datasets: The performance of ML methods is significantly affected by the imbal-
anced datasets used for anomaly detection. Typically, the volume of data representing anomalous
behavior is significantly smaller than that representing normal system behavior. This imbalance
can lead to inadequate performance of ML methods in both the training and testing phases, re-
sulting in inadequate success metrics. Furthermore, labeling the available dataset is often time-
consuming and resource-intensive, especially when dealing with large and diverse data volumes.

• High data volume in processing: ML models applied to high-volume datasets may struggle to
perform efficiently under heavy loads. The scalability of these models is directly affected by the
increasing number of API calls. The literature shows that performance issues arising from high
data volumes in distributed and cloud systems represent a critical area for improvement.

• Open source datasets: Datasets available in open sources often contain sensitive information
within API calls, raising concerns about privacy violations. Therefore, when creating datasets
related to application and system behavior, it is crucial to prioritize privacy and data security.

• Real-time Processing: The ability of ML models to detect anomalies in real-time remains a sig-
nificant challenge. Real-time processing of data requires advanced algorithms and infrastructure
that can handle large-scale, high-speed data streams without compromising accuracy or speed.

• Adaptability to Emerging Threats: Anomaly detection systems must constantly adapt to new
and evolving threats. Static models can quickly become obsolete, requiring the development
of adaptive learning techniques that can update and evolve in response to new data and threat
patterns.

• Explainability and Interpretability: The black box nature of many ML models poses a prob-
lem for understanding and interpreting results. Developing methods to make anomaly detection
models more transparent and interpretable is crucial for their practical application and reliability.

• Integration with Existing Systems: It is often difficult to seamlessly integrate anomaly detec-
tion systems with existing IT infrastructure and workflows. Ensuring compatibility and minimal
disruption to existing processes requires advanced integration strategies and tools.

6. CONCLUSIONS

In this paper, a systematic literature review on anomaly detection using ML methods with API calls
is presented by providing a systematization of information. A research methodology is established by
selecting appropriate search keywords and the searching sentences are generated with these keywords.
Common databases are used in advanced mode to use generated searching terms. Research questions
are determined and inclusion and exclusion criteria are defined to filter the studies according to the focus
of the literature. Over 30 research papers are summarized and compared based on different criteria.
Fundamental concepts related to API calls, machine learning fundamentals, and the scope of our review
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are summarized to provide a foundation. Through systematic research and analysis, it is obtained that
models such as KNN, SVM, LSTM, and CNN are frequently used for anomaly detection with API
calls. Additionally, open-source datasets like ADFA-LD, DARPA, and UNM are generally preferred for
classification and detection. It is also observed that custom datasets are often created using various tools
from operating systems like Linux. Metrics such as accuracy, F1-score, recall, and precision are used to
measure the performance of the models in the studies.
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