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ABSTRACT 
In this study, research has been conducted using pre-trained knowledge graph embedding for drug repurposing in 

treating ALS (Amyotrophic Lateral Sclerosis), and its results have been presented. Drug repurposing studies for 

ALS have been carried out through two main methods: disease-drug relationship and genes-drug relationship. 

Drug repurposing recommendations for ALS have been provided by predicting connections between disease and 

drug entities on the DRKG (Drug Repurposing Knowledge Graph). The findings obtained from the study have 

been evaluated by comparing them with the list of clinical trial drugs obtained from DrugBank. DRKG has been 

utilized as a comprehensive biological knowledge graph containing genes, compounds, diseases, biological 

processes, side effects, and symptoms. This graph has proven to be an effective resource for extracting information 

related to ALS disease. In drug repurposing studies, drugs obtained through disease-drug relationships have been 

compared with the list of clinical trial drugs associated with ALS, yielding significant results. Additionally, 

interactions between genes associated with ALS and drugs related to these genes have been examined in studies 

conducted through gene-drug relationships. The results obtained from the study demonstrate that DRKG is an 

effective resource for identifying drugs with potential therapeutic effects in the treatment of ALS. The findings 

suggest that drug repurposing studies could offer new and effective solutions for the treatment of ALS, marking a 

significant step forward in this regard. 
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Önceden Eğitilmiş Bilgi Grafik Gömme Yöntemleri Kullanılarak ALS 

Tedavisi için İlaç Yeniden Kullanımı Üzerine Bir Çalışma: Yöntemler 

ve Bulgular 
 

ÖZ 
Bu çalışmada, ALS hastalığının tedavisinde ilaç yeniden kullanımı amacıyla önceden eğitilmiş bilgi grafik 

yerleştirmesi kullanılarak bir çalışma yapılmış ve sonuçları sunulmuştur. İki ana yöntemle, yani hastalık ve ilaç 

ilişkisi ile genler ve ilaçlar üzerinden, ALS için ilaç yeniden kullanımı çalışmaları gerçekleştirilmiştir. DRKG 

(Drug Repurposing Knowledge Graph) üzerinde hastalık ve ilaç varlıkları arasındaki bağlantılar tahmin edilerek 

ALS için ilaç yeniden kullanımı önerileri sunulmuştur. Çalışma sonucunda elde edilen bulgular, DrugBank 

üzerinden elde edilen klinik deneme ilaçları listesi ile karşılaştırılarak değerlendirilmiştir. DRKG, genleri, 

bileşikleri, hastalıkları, biyolojik süreçleri, yan etkileri ve semptomları içeren geniş kapsamlı bir biyolojik bilgi 
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grafiği olarak kullanılmıştır. Bu grafik, ALS hastalığı ile ilgili bilgilerin çıkarılmasında etkili bir kaynak olmuştur. 

İlaç yeniden kullanımı çalışmalarında, hastalık-ilaç ilişkisi üzerinden elde edilen ilaçlar, ALS ile ilişkilendirilmiş 

klinik deneme ilaçları listesiyle karşılaştırılmış ve önemli sonuçlar elde edilmiştir. Ayrıca, gen- ilaç ilişkisi 

üzerinden yapılan çalışmalarda, ALS ile ilişkilendirilmiş genler ve bu genlerle ilişkilendirilmiş ilaçlar arasındaki 

etkileşimler incelenmiştir. Çalışmanın elde ettiği sonuçlar, DRKG' nin ALS tedavisinde potansiyel terapötik 

etkilere sahip ilaçları belirlemede etkili bir kaynak olduğunu göstermektedir. Elde edilen bulgular, ilaç yeniden 

kullanımı çalışmalarının ALS hastalığının tedavisinde yeni ve etkili çözümler sunabileceği konusunda önemli bir 

adım olarak değerlendirilebilir. 

 

Anahtar Kelimeler: İlaç yeniden kullanımı, ALS (Amyotrofik lateral skleroz), Önceden eğitilmiş bilgi grafik 

gömme, Klinik deneme ilaçları 

 

 

I. INTRODUCTION 
 

Amyotrophic Lateral Sclerosis (ALS), first described by Charcot in the nineteenth century, is defined as 

a progressive neurodegenerative disease with a survival of three to five years. This disease, the treatment 

and etiology of which are unknown, is characterized by permanent loss of function of upper and lower 

motor neurons. ALS, which is diagnosed in 1500 to 4500 people every year in our country, is known as 

a fatal disease characterized by progressive loss of muscle function. Although many symptomatic and 

therapeutic drug researches continue, only FDA-approved riluzole and edaravone are included in the 

treatment protocol [1]. There is currently no treatment that will completely cure the disease in motor 

neuron disease. Symptomatic and supportive therapies help to improve the quality of life and life span 

of patients [2]. The prognosis of the disease is not good. Patients die 2-5 years after diagnosis [3]. The 

effect of Riluzole, which is paid for by the Social Security Institution (SGK) in Türkiye and used for the 

treatment of ALS patients, is also controversial. Although it is claimed that this drug slows down the 

progression of the disease, it has been observed that some patients who took Riluzole regularly did not 

stop the progression of the disease and could not prevent the worsening of the prognosis [3]. Although 

the etiology of ALS is not known exactly, it is suggested that many different factors play a role in its 

pathogenesis. Genetics, oxidative stress, glutamate excitotoxicity, mitochondrial dysfunction, axonal 

transport disorder, neuroinflammation, and RNA disorders are the main factors [4]. Familial ALS cases 

constitute approximately 10% of all ALS cases and are phenotypically and genetically heterogeneous 

[5]. It is usually inherited as Autosomal Dominant (OD; inheritance pattern in which one copy of a gene 

causes the disease). The association with a mutation in Superoxide Dismutase 1 (SOD-1; an enzyme 

that neutralizes free radicals) was first proposed in 1993. Subsequent developments have shown that 

some genes cause ALS, while others increase the risk of ALS or may affect the disease process [4]. 

 

Drug repurposing is an innovative approach to exploring new therapeutic uses for existing drugs. It 

focuses on research to understand how existing drugs can effectively treat different diseases beyond the 

purposes for which they were originally designed. It is based on identifying new interactions between 

biological entities such as genes and compounds. Traditional approaches to do this rely on costly and 

time-consuming experimental methodologies. As a result, several approaches have been developed that 

aim to leverage the various types of information that already exist about drugs, their targets, and diseases 

to reduce cost and accelerate drug reuse. Among these, approaches that represent existing knowledge in 

the form of a knowledge graph and utilize graph-based machine learning techniques based on graph 

neural networks and knowledge graph embedding models have gained popularity [6]. 

 

The drug discovery process ranges from reading and analyzing already existing literature to testing the 

ways in which potential drugs interact with targets. The preclinical development phase of drug discovery 

involves testing potential drug targets in animal models. Using artificial intelligence at this stage can 

help trials run smoothly [7]. It can enable researchers to more quickly and successfully predict how a 

drug might interact with an animal model. After going through the preclinical development phase and 

receiving approval from the United States Food and Drug Administration (FDA or USFDA), researchers 

began testing the drug with human participants. In general, this is a four-step process and is generally 
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considered to be the longest and most expensive stage of the manufacturing journey [7]. A representative 

drug discovery step is schematized in Figure 1. The drug discovery process comprises several major 

steps that include identifying compounds by screening compound collections via primary assays, such 

as high through-put screening in vitro, and secondary assays that include counter-screens and ADMET 

(absorption, distribution, metabolism, excretion, and toxicity) studies. Structure–activity relationship 

(SAR) and in silico studies in combination with cellular functional tests are used in an iterative cycle to 

improve the functional properties of the drug candidates. New drug candidates with desired 

characteristics are synthesized via organic synthesis. The selected drug candidate which has now passed 

all preclinical tests successfully is given to human patients in a clinical trial [8].  

 

 
 

Figure 1. A representative diagram highlighting the steps and cyclical nature of the drug discovery process [8]. 

Most drugs that enter clinical trials fail, often due to a poor understanding of the mechanisms governing 

drug response. Machine learning techniques hold tremendous promise for better drug response 

predictions, but most have not reached clinical application due to their lack of interpretability and focus 

on monotherapies [9]. The methods to be used for the rapid screening of drug molecules are the 

HTS(High-Throughput Screening) method and the virtual screening method. In the HTS method, 

thousands of molecules are rapidly screened whether they show activity against a specific receptor or 

enzyme. In virtual screening, drug molecules can be rapidly classified or ranked in activity order by 

using machine learning methods. For this purpose, machine learning methods such as support vector 

machines (SVM) and random forest (RF) are frequently used in the literature for the detection of active 

molecules. However, these algorithms do not perform well in unbalanced datasets. For this reason, the 

data sets in the literature where these algorithms are used are mostly composed of balanced datasets[10]. 

The enormous amount of PubChem bioassay data, PubChem, which is updated daily, constitutes a 

publicly available big data resource for compounds with various target response information, including 

most drugs and drug candidates. Similar to PubChem, ChEMBL is a database containing binding, 

functional, ADME, and toxicity data for a large number of compounds. Compared to PubChem, 

ChEMBL contains a large amount of manually compiled data from the literature. DrugBank [11], one 

of the data sources designed specifically for drugs and drug candidates, is a publicly available database 

containing all approved drugs with their mechanisms, interactions, and relevant targets [12]. 

 

With the increase in the data size in the associated databases, it has become necessary to use new 

methods for virtual screening. In recent years, deep neural networks (DNNs) have shown very good 

performances in many areas and have surpassed the performances of machine learning methods such as 

SVM and RF [10]. In a 2014 study, Gramatica et al. presented a new methodology for directing existing 

drugs to diseases that were not initially targeted using biomedical knowledge. This methodology 

involves graphically representing and automatically analyzing knowledge using computational 

linguistics and graph theory [13]. In 2016, Udrescu et al. presented a new approach based on complex 

network science techniques, starting from the assumption that the analysis of drug-drug interactions can 

lead to the development of new drug discovery tools. In this study, they revealed functional drug 

categories and relationships, linked network clusters to relevant pharmacological properties, and 
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validated 85% of predicted properties by cross-checking with various databases [14]. In 2020, Zhou et 

al. published a study presenting powerful network-based methodologies for the rapid identification of 

candidate reusable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2 [15]. In 

2020, Ioannidis et al. proposed an RGCN(Relational Graph Convolutional Network) model that greatly 

outperforms GCN(Graph Convolutional Network) and state-of-the-art KGE (Knowledge Graph 

Embedding) models on low-connected learning tasks using effective deep graph learning (DGL) 

methods and confirmed the identification of several drugs used in clinical trials as possible drug 

candidates [16]. In addition, in 2020, Ioannidis et al. constructed a comprehensive biological knowledge 

graph between genes, compounds, diseases, biological processes, side effects, and symptoms to assist 

such machine learning techniques, and this graph was named Drug Repurposing Knowledge Graph 

(DRKG) [6]. In 2022, Xiangxiang Zeng and his team developed an artificial intelligence model called 

ImageMol, which was pretrained on 10 million unlabeled molecules. This model successfully predicted 

molecular targets, as well as properties such as drug metabolism, toxicity, and brain permeability, and 

identified anti-SARS-CoV-2 candidate molecules. It has been demonstrated that this system could be 
effective in accelerating the drug discovery process for neurodegenerative diseases like Alzheimer's and 

diseases like COVID-19 [17]. In the same year, Wang and his team introduced new methods for 

molecular property prediction and drug discovery using graph and sequence-based neural networks. 
These methods demonstrated significant improvements in ROC-AUC and PRC-AUC metrics in 

COVID-19 drug discovery tasks during the AI Cures open challenge [18]. In 2023, Kang-Lin Hsieh and 

colleagues conducted a study on drug repurposing for Alzheimer's disease using DRKG, showing that 

molecular profiles integrated into a knowledge graph could systematically identify potentially reusable 

drugs [19]. Similarly, in 2024, Yunguang Qiu and Feixiong Cheng summarized artificial intelligence-

supported drug discovery methodologies focused on the complex molecular structure of Alzheimer's 

disease, emphasizing the importance of AI-based drug repurposing strategies in identifying new 

indications for Alzheimer's disease [20]. 

 

In contrast to approaches in the existing literature, this study addresses drug reuse for ALS disease 

through a bidirectional analysis examining both disease-drug and gene-drug associations. DRKG's 

extensive network of biological knowledge underpins the methods used, enabling a more comprehensive 

assessment of the potential therapeutic implications of gene-drug and disease-drug linkages in ALS. 

One of the main contributions of the study is that this two-pronged approach enables a broader 

perspective of potential drug candidates for ALS. While the literature often focuses on a single type of 

association, the analysis here of both disease-drug and gene-drug associations provides an opportunity 

to more accurately determine the therapeutic effects of drugs. The use of DRKG and advanced analysis 

methods enables prediction of associations between disease and drug entities with higher accuracy 

through pre-trained knowledge graph overlays and provides drug reuse recommendations. The 

identification of new treatment strategies for ALS by evaluating gene-drug associations reflects an 

innovative approach. Furthermore, the comparison of the results with ALS-associated clinical trial drugs 

provides an important contribution in assessing the clinical relevance of the findings. These 

contributions draw attention to the development of new approaches to drug reuse in ALS treatment and 

the importance of knowledge graphs in this process. 
 

In the remaining sections of this study, Chapter 2 provides a detailed explanation of the dataset and 

methods used in the project, while Chapter 3 presents the findings of research on drug repurposing for 

ALS disease. Chapter 4 extracts drug repurposing results for ALS disease using DRKG embeddings and 

summarizes the findings of the study. Subsequently, Chapters 5 and 6 will present a discussion on the 

overall outline of the study and potential future research directions. Additionally, an evaluation will be 

conducted on how the findings could contribute to clinical applications and the implications of these 

findings on ALS treatment. This evaluation may play an important role in shaping future research aimed 

at developing new therapeutic strategies for the treatment of ALS disease. 
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II. METHODS 
 
In this section, the dataset and methods used in the paper are described in detail. Using the pre-trained 

knowledge graph embedding of the dataset DRKG (Drug Reuse Knowledge Graph), a drug reuse study 

was performed to provide a recommendation for the treatment of ALS disease. Drug reutilisation is 

studied in two ways: through disease and drug associations and through genes and drugs interactions. 

By predicting the links between disease entities and drug entities in the DRKG, a drug reuse 

recommendation for ALS is presented.  Firstly, a list of ALS-related diseases was extracted from the 

DRKG. Diseases are coded with identification numbers on the DRKG. This was done by scanning the 

identification code of ALS disease on DRKG. A list of drugs on Drugbank was used as candidate drugs 

in our study. There are 8104 drugs in this drug list. In order to evaluate the drugs for reuse, they were 

compared with the list of clinical trial drugs associated with ALS disease collected from Drugbank. 
Figure 2 provides a Graphical Summary of the Data Set and Methods of the Drug Reuse Study for ALS 

Disease. 

 

 
 

Figure 2. Drug Reuse Study for ALS Disease: Graphical Summary of Data Set and Methods 

 

A. DATASET 
 

DRKG is a comprehensive biological knowledge graph that associates genes, compounds, diseases, 

biological processes, side effects, and symptoms. Figure 3 visualizes the possible interactions between 

entity type pairs in the DRKG. 

 



 

 

322 

 
 

Figure 3. Representation of the DRKG. The number next to an edge indicates the number of relationship types 

between the corresponding entity types in the DRKG [21]. 

It contains information from six existing databases, including DRKG, DrugBank, Hetionet, GNBR, 

String, IntAct, and DGIdb, as well as data collected from recent publications specifically related to 

COVID-19. This database contains 97,238 entities belonging to 13 entity types and 5,874,261 triples 

belonging to 107 edge types. These 107 edge types represent a type of interaction between one of the 

17 entity type pairs, as shown in Table 1 (more than one type of interaction is possible between the same 

pair of entities)[21]. The type-wise distribution of entities in DRKG and the original data sources are 

shown in Table 1. 

 
Table 1. Number of nodes per node type in the data sources in the DRKG [21]. 

Entity type Drugbank GNBR Hetionet STRING IntAct DGIdb Bibliography Total Entities 

Anatomy - - 400 - - - - 400 

Atc 4,048 - - - - - - 4,048 

Biological Process - - 11,381 - - - - 11,381 

Cellular Component - - 1,391 - - - - 1,391 

Compound 9,708 11,961 1,538 - 153 6,348 6,25 24,313 

Disease 1,182 4,746 257 - - - 33 5,103 

Gene 4,973 27,111 19,145 18,316 16,321 2,551 3,181 39,22 

Molecular Function - - 2,884 - - - - 2,884 

Pathway - - 1,822 - - - - 1,822 

Pharmacologic Class - - 345 - - - - 345 

Side Effect - - 5,701 - - - - 5,701 

Symptom - - 415 - - - - 415 

Tax - 215 - - - - - 215 

Total 19,911 44,033 45,279 18,316 16,474 8,899 9,464 97,238 

 

Table 2 shows examples of the number of triples between different pairs of entity types in DRKG for 

DRKG and various data sources. 

 
Table 2. Some of the numbers of interactions in DRKG and in data sources [21]. 

Entity-type pair Drugbank GNBR Hetionet STRING IntAct DGIdb Bibliography Total interactions 

(Gene, Gene) - 66,722 474,526 1,496,708 254,346 - 58,629 2,350,931 

(Compound, Gene) 24,801 80,803 51,429 - 1,805 26,29 25,666 210,794 
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(Disease, Gene) - 95,399 27,977 - - - 461 123,837 

(Compound, Compound) 1,379,271 - 6,486 - - - - 1,385,757 

(Compound, Disease) 4,968 77,782 1,145 - - - - 83,895 

 

DRKG is available in its final form on Git Hub. An image created by selecting samples from the data 

on the DRKG database is shown in Table 3. 

 
Table 3. Sample DRKG database file image. 

Gene::2157 bioarx::HumGenHumGen:Gene:Gene Gene::2157 

Compound::DB09080 bioarx::DrugHumGen:Compound:Gene Gene::154 

Compound::DB00669 DRUGBANK::ddi-interactor-in::Compound:Compound Compound::DB13064 

Gene::10959 GNBR::Te::Gene:Disease Disease::MESH:D006509 

Gene::2742  Hetionet::GpBP::Gene:Biological Process Biological Process::GO:0006821 

Gene::6202 Hetionet::GiG::Gene:Gene Gene::26156 

Anatomy::UBERON:0000057 Hetionet::AuG::Anatomy:Gene Gene::113791 

Compound::DB01115  Hetionet::CcSE::Compound:Side Effect Side Effect::C0344232 

Gene::3007 Hetionet::GpPW::Gene:Pathway Pathway::PC7_2529 

 

In the DRKG study, data from the DrugBank, Hetionet, GNBR, String, IntAct, and DGIdb databases 

were filtered and a list of triples (head-entity, relationship type, tail-entity) of data from each dataset 

was first extracted. In this process, an entity type was associated with an identifier of the entity followed 

by an identification number that makes it unique. For example Gen::229475. In the representation of 

relationships, the database name, the relationship name, and the types of head and tail entities were used. 

Example: DGIDB::INHIBITOR::Gene:Compound. Different ids can be used to represent entities such 

as genes, compounds, and diseases from different data sources, these ids are mapped to a common ID 

to remove the incompatibility here. Finally, relations with less than 50 edges were excluded by removing 

relations with insufficient data [21]. 

 

B. GRAPH NEURAL NETWORK(GNN) 
 

Graph neural network (GNN) is a deep learning method that belongs to the artificial neural network 

(ANN) family and performs information extraction from graphs. It was first used in 2008 and its 

development started in 2014 and after [22]. GNNs, which were developed in response to the failure of 

convolutional neural networks (CNNs) to meet the expected performance on visuals, are used in many 

fields such as physics, chemistry, biology, and cyber security [22]. Graphs are a type of data structure 

that models a set of objects (nodes) and their relationships (edges). Recently, research on analyzing 

graphs with machine learning has received increasing attention due to the great expressive power of 

graphs [23]. A graph G = (V, E) consists of two sets: V the set of nodes (also called vertices), and E the 

set of edges (also called arcs). Each edge connects a pair of nodes, indicating a relationship between 

them [6]. Graph analysis, a unique non-euclidean data structure for machine learning, focuses on tasks 

such as node classification, link prediction, and clustering. Graph neural networks (GNNs) are deep 
learning-based methods that operate on the graph domain. Due to its convincing performance, GNN has 

recently become a widely applied graph analysis method [23]. Studies in this field are increasing day by 

day in Türkiye, and graph-based methods such as GNN are used in many national theses and research 

projects. However, this type of network is still developing in our country compared to global 

applications.  

 

In general, the GNN model structure consists of four steps:  

1- Finding the structure of the graph,  

2- Determining the graph type and scale,  

3- Determine the design loss function, 
4- Building the model using computational modules [23]. 
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III. FINDINGS 
 

In this section, the findings from the research on drug repurposing for amyotrophic lateral sclerosis 

(ALS) are presented. The study conducted two separate analyses based on disease-drug and gene-drug 

relationships to obtain results for both approaches. First, using the mesh code for ALS, the connections 

between disease and drug entities in the DRKG database were predicted. In this process, scores 

representing the disease-drug relationship were calculated, and drugs with the highest scores were 

identified. These drugs were then compared with a list of 158 clinical trial drugs related to ALS obtained 

from DrugBank to derive results. Secondly, gene-drug relationships were examined by assessing the 

connections between disease-related genes and drugs. Similar formulas and algorithms were employed 

to determine the relationships between genes and drugs. The findings from both methods were 

completed by comparing the repurposed drugs with the clinical trial drugs related to ALS. 

 

Mesh code (Medical Subject Headings) is a frequently used indexing term in medical literature. Mesh 

terms are a standard list of terms used to categorize and index medical subjects. Mesh codes are a unique 

identifier of each Mesh term and are used to categorize and index research in medical literature. These 

codes are used in scientific papers, references in medical literature, and databases. Here, we aimed to 

access all ALS disease entity links in our database by using the mesh code "D000690", which is the 

mesh code of ALS disease. 

 

d = γ − ‖h + r − t‖2 (1) 

𝑠core = log (
1

1 + exp(−d)
) (2) 

 

In the formula provided in Equation 1[6]: 

d: is a score representing the drug-disease relationship. 

γ: is a constant coefficient (which may depend on a specific dataset or model parameter). 

h: is a vector representing the disease. 

r: is a vector representing the relationship between the drug and the disease. 

t: is a vector representing the drugs. 

‖h + r - t‖_2: This term represents the L2 norm of the vectorial difference between the disease and the 

drug, which measures how close the drug and the disease are.  

This equation measures the similarity between the drug and the disease in vector space and determines 

how strong the treatment effect is. 

 

In the formula for Log-Sigmoid Score Calculation provided in Equation 2[6]: 

score: is defined as the final score of the relationship between the drug and the disease. 

log-sigmoid function: brings the score into a specific range, making all scores negative. This function is 
the logarithm of the sigmoid function, which ensures that the scores remain within a more manageable 

range.  

This equation normalizes the relationship score calculated by d (the value obtained from the first 

equation) through a logarithmic sigmoid function. The log-sigmoid function compresses the scores into 

a range between 0 and 1, thus producing a score that represents the strength of the relationship. At the 

same time, this function is used to bring all scores into a range below 0. 

 

In our study, the ['Hetionet::CtD::Compound:Disease','GNBR::T::Compound:Disease'] connection was 

used as the edge connection type for the drug-disease relationship. This connection represents the 

treatment relationship between a specific drug and a disease. When repurposing drugs, only treatment-

related edge connections should be used. The formulas provided in Equation 1 and Equation 2 are used 

to calculate the edge score. Here, the log-sigmoid function must be used to ensure all scores are < 0 [6]. 

After calculating the edge scores, a list of the drugs with the highest scores, i.e., those most associated 
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with the disease, was generated. These drugs were then compared with the list of 158 clinical trial drugs 

related to ALS collected from DrugBank, and a result list was obtained. 

 

In the study conducted through gene-drug relationships, drug repurposing for ALS was investigated by 

predicting the connections between host gene entities related to the disease and drug entities in DRKG. 

The connection relationships of target gene entities associated with the disease were listed in a file, and 

for the drugs, a list entirely obtained from DrugBank was used. The edge connection types 

'GNBR::N::Compound:Gene', 'DRUGBANK::target::Compound:Gene, 

DGIDB::INHIBITOR::Gene:Compound' were used in separate trials. The formulas given in Equation 1 

and Equation 2 for calculating the edge scores and the pathway followed in the disease-drug relationship 

were also applied here.  Equation 1 was used to calculate the relationship score between the gene and 

the drug, thereby measuring the vectorial distance between the genes and drugs to determine the 

connection strength. Equation 2 used the log-sigmoid function to normalize this score and obtain the 

edge score. This score was used to identify and rank the relationship between genes and drugs. After 
calculating the edge scores, the repurposed drugs were compared with clinical trial drugs related to ALS, 

and a list was created. 

 
 

IV. RESULTS 

In this section, we obtain drug repurposing results for ALS disease by using pretrained DRKG 

embeddings. In the study based on disease-drug relationships, drug repurposing for ALS was conducted 

by predicting the connections between disease entities and drug entities in DRKG. In the study based 

on gene-drug relationships, trials were carried out using inhibitory connections between genes and 

drugs. Separate results were obtained from the drug repurposing analysis conducted with both methods. 

 

A. DRUG REPURPOSING THROUGH THE DISEASE-DRUG LINK 

 
Among the first 100 drugs found for the treatment of ALS disease based on the disease-drug relationship, 

18 drugs, which are also on the drugbank clinical drug trial list, are listed in Table 4 starting from the 

most related one according to the edge score. 

 
Table 4. The 18 drugs and their scores are also included in the Drugbank clinical drug trial list. 

Order No Drug Name Edge Score 

[0] Trehalose -0.1777 

[1] Arimoclomol -0.1847 

[3] Pridopidine -0.2015 

[6] Testosterone -0.2211 

[8] Mecobalamin -0.2360 

[13] Sirolimus -0.2563 

[23] Minocycline -0.2878 

[25] Quinidine -0.2961 

[26] Mycophenolate mofetil -0.2963 

[28] Ubidecarenone -0.2986 

[31] Colchicine -0.3003 

[56] Methylprednisolone -0.3561 

[59] Cimetidine -0.3604 

[62] Tamoxifen -0.3657 

[66] Tretinoin -0.3686 

[68] Thalidomide -0.3704 

[73] Capsaicin -0.3746 

[91] Ceftriaxone -0.3956 

 

The first 10 of the first 100 drugs listed for the treatment of ALS disease, regardless of whether they 

were used in clinical trials on the disease-drug relationship, are listed in Table 5 in order of relationship 

priority. 
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Table 5. The top 10 drugs are listed regardless of whether they have been used in clinical trials. 

Order No Drug Name Identity Code  Edge Score 

1 Trehalose DB12310 -0.1777 

2 Arimoclomol DB05025 -0.1847 

3 Glutathione DB00143 -0.1869 

4 Pridopidine DB11947 -0.2015 

5 Melatonin DB01065 -0.2073 

6 Cholesterol DB04540 -0.2127 

7 Testosterone DB00624 -0.2211 

8 Dexamethasone DB01234 -0.2328 

9 Mecobalamin DB03614 -0.2360 

10 Estradiol DB00783 -0.2475 

 

When evaluating drugs associated with ALS, the reason for considering not only the drugs used in 

clinical studies but also those that have not yet been implemented in clinical practice is that some drugs, 
despite being insufficiently researched, may provide potential benefits and pave the way for future 

studies. Furthermore, the evaluation of these drugs can contribute to innovative approaches in the 

management of ALS, offering a broader treatment perspective. 

 

When comparing the drugs listed in Table 5, which we obtained as output, with the clinical trial list 

related to ALS collected from DrugBank in Table 4, it is observed that the five drugs (Trehalose, 

Arimoclomol, Pridopidine, Testosterone, Mecobalamin) that have the highest edge scores and are most 

associated with the disease are common in the clinical trial list. 

 

 

B. DRUG REPURPOSING THROUGH GENE-DRUG LINKAGE 

 
In this section, experiments were performed by selecting inhibitory association links appearing in three 

data sources: 'GNBR::N::Compound:Gene', 'DRUGBANK::target::Compound:Gene' and 

'DGIDB::INHIBITOR::Gene:Compound'. In the study for the gene-drug association for ALS disease 

treatment, in order to predict the links between genes and drugs to act as inhibitors, a list of biological 

gene entities associated with ALS disease was taken on DRKG and it is seen that there are 550 associated 

genes. Then, using the pre-trained knowledge graph placements and the equation used to calculate the 

edge score, we found the 100 drugs with the highest score and ranked these drugs per target gene. Thus, 

according to the type of inhibitory relationship we chose, the gene with the highest drug-gene association 

and the drugs associated with it were found. Then, in order to evaluate the connection of our prediction 

with the clinical drugs used in treatment, the overlap and the number of hits between these 100 predicted 

drugs and the drugs used in clinical trials for treatment were checked. Here, the number of hits is related 

to determining how many of the total number of genes the predicted drug is associated with. If a drug is 

associated with all genes, the number to be seen here will be equal to the total number of genes we found 

associated with ALS, i.e. 550. The same study was repeated for the three types of association mentioned 

above. 
 

Within the scope of the 'GNBR::N::Compound::Gene' relationship, when we listed the genes associated 

with ALS disease in the list of genes associated with this disease, Gene::627 and Gene::9217 genes 

associated with 16 drugs were determined as the genes with the most drug associations. Among the 

drugs associated with these genes, those with the most drug associations are listed first and these 

associations can be seen in Table 6. 
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Table 6. List of drugs Gene::627 and Gene::9217 related to 16 drugs by 'GNBR::N::Compound:Gene' 

relationship. 

Gene::627 16  Gene::9217 16 

[9] Tretinoin  [5] Sirolimus 

[12] Capsaicin  [21] Ubidecarenone 

[17] Testosterone  [24] Quinidine 

[32] Sirolimus  [30] Tamoxifen 

[33] Tamoxifen  [32] Capsaicin 

[44] Methylprednisolone  [53] Bosutinib 

[50] Scopolamine  [56] Thalidomide 

[59] Thalidomide  [59] Methylprednisolone 

[69] Dextromethorphan  [60] Tretinoin 

[79] Trazodone  [65] Prednisone 

[81] Minocycline  [67] Cimetidine 

[83] Dronabinol  [77] Minocycline 

[84] Prednisone  [81] Colchicine 

[87] Pimozide  [93] Testosterone 

[89] Atropine  [97] Mycophenolate mofetil 

[91] Midazolam  [99] Atropine 

 

Table 7 shows the top 10 of the 100 drugs with the highest score listed according to the 

'GNBR::N::Compound:Gene' relationship and the top 10 drugs that overlap with the list of ALS clinical 

trial drugs and how many genes these drugs are associated with, that is, the number of hits. For example, 

the drug named Sirolimus coded with the id ‘DB00877’, which is also included in the clinical trial list 

related to ALS Disease, is associated with 538 genes related to ALS disease and ranks first, while the 

drug named Tretinoin coded with the id ‘DB00755’ is associated with 522 genes and ranks second. The 

drug named Tamoxifen with the ID code ‘DB00675’ is in the 3rd place with 478 hits. 

 
Table 7. The top 100 highest-scoring drugs listed by 'GNBR::N::Compound:Gene' association overlap with the 

list of ALS clinical trial drugs and the number of genes with which these drugs are associated. 

Identity Code Drug Name Hit Count 

DB00877 Sirolimus 538 

DB00755 Tretinoin 522 

DB00675 Tamoxifen 478 

DB00624 Testosterone 398 

DB01041 Thalidomide 360 

DB00908 Quinidine 307 

DB06616 Bosutinib 257 

DB06774 Capsaicin 256 

DB00635 Prednisone 198 

DB01394 Colchicine 179 

 

Within the scope of the 'DRUGBANK::target::Compound::Gene' relationship, Gene::283, Gene::5551, 

and Gene::6647 genes, which were found to be associated with 13 drugs, were identified as the genes 

with the most drug associations in the list of genes associated with ALS disease. Among the drugs 

associated with these genes, those with the most drug associations were ranked first and these 

associations can be seen in Table 8. When the drugs associated with three different genes that ALS 

disease interacts within the current association type are analyzed, it is seen that there are common drugs 

in all three gene types. 
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Table 8. List of drugs Gene::5551 and Gene::283 related to 13 drugs by association with 

'DRUGBANK::target::Compound:Gene'. 

Gene::283 13 Gene::5551 13 Gene::6647 13 

[8] Bosutinib [7] Sirolimus [0] Arimoclomol 

[11] Capsaicin [11] Prednisone [7] Cannabidiol 

[19] Colchicine [13] Tretinoin [23] Medical Cannabis 

[26] Cannabidiol [16] Thalidomide [30] Bosutinib 

[36] Tretinoin [22] Minocycline [33] Sirolimus 

[49] Trametinib [36] Methylprednisolone [51] Dolutegravir 

[54] Sirolimus [39] Mycophenolate mofetil [69] Minocycline 

[60] Tenofovir alafenamide [44] Colchicine [70] Colchicine 

[66] Tamoxifen [56] Dextromethorphan [77] Tretinoin 

[80] Testosterone [68] Quinidine [78] Mycophenolate mofetil 

[81] Medical Cannabis [89] Bosutinib [81] Quinidine 

[91] Thalidomide [91] Testosterone [83] Tauroursodeoxycholic acid 

[95] Dolutegravir [94] Tacrolimus [84] Capsaicin 

 

Table 9 shows the top 10 of the 100 drugs with the highest score listed according to the 

'DRUGBANK::target::Compound::Gene' relationship and the top 10 drugs that overlap with the ALS 

clinical trial drugs list and how many genes these drugs are associated with, that is, the number of hits. 

Here, it was revealed that the drug named Bosutinib coded with the ID code ‘DB06616’, which is also 

included in the clinical trial list related to ALS Disease, ranked first with 446 genes related to ALS 

disease, the drug named Dolutegravir coded with the id code ‘DB08930’ ranked second with 379 genes, 

and the drug named Sirolimus coded with the id code ‘DB00877’ ranked third with 360 genes. 

Table 9. The top 100 highest-scoring drugs listed by 'DRUGBANK::target::Compound::Gene' are associated 

with the list of ALS clinical trial drugs and the number of genes with which these drugs are associated. 

Identity Code Drug Name Hit Count 

DB06616 Bosutinib 446 

DB08930 Dolutegravir 379 

DB00877 Sirolimus 360 

DB00755 Tretinoin 320 

DB00908 Quinidine 218 

DB09061 Cannabidiol 211 

DB06774 Capsaicin 187 

DB00624 Testosterone 152 

DB08911 Trametinib 152 

DB00675 Tamoxifen 120 

 

Within the scope of the 'DGIDB::INHIBITOR::Gene::Compound' relationship, when we list the genes 

associated with ALS disease in the list of genes associated with this disease, Gene::4283, which is 

associated with 14 drugs, was determined as the gene with the most drug associations. Among the drugs 

associated with this gene, those with the most drug associations are listed first and these relationships 

can be seen in Table 10. 
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Table 10. List of drugs related to Gene::4283 which is related to 14 drugs by association with 

'DGIDB::INHIBITOR::Gene:Compound'. 

Gene::4283             14 

[7] Olanzapine 

[12] Methylprednisolone 

[33] Prednisone 

[46] Ciprofloxacin 

[57] Sirolimus 

[61] Corticotropin 

[64] Tretinoin 

[68] Tacrolimus 

[73] Fingolimod 

[76] Testosterone 

[85] Pimozide 

[93] Thalidomide 

[94] Atropine 

[98] Trazodone 

 

Table 11 shows the top 10 of the 100 drugs with the highest score listed according to the 

'DGIDB::INHIBITOR::Gene::Compound' relationship and the top 10 drugs that overlap with the ALS 

clinical trial drugs list and how many genes these drugs are associated with, that is, the number of hits. 

It was revealed that the drug named Tretinoin coded with the ID code ‘DB00755’, which is also included 

in the clinical trial list related to ALS Disease, ranked first in relation to 455 genes related to ALS 

disease, the drug named Sirolimus coded with the id code ‘DB00877’ ranked second in relation to 445 

genes and the drug named Bosutinib coded with the id code ‘DB06616’ ranked third in relation to 425 

genes. 

 
Table 11. The top 100 highest-scoring drugs listed by 'DGIDB::INHIBITOR::Gene:Compound' association 

overlap with the list of ALS clinical trial drugs and the number of genes with which these drugs are associated. 

Identity Code Drug Name Hit Count 

DB00755 Tretinoin 455 

DB00877 Sirolimus 445 

DB06616 Bosutinib 425 

DB00864 Tacrolimus 314 

DB00908 Quinidine 291 

DB00624 Testosterone 266 

DB08911 Trametinib 230 

DB01041 Thalidomide 194 

DB00688 Mycophenolate mofetil 150 

DB00675 Tamoxifen 144 

 
In this study, drug reuse studies were performed separately on the disease-drug relationship and gene-

drug relationship and separate results were obtained for both studies. A list of 158 drugs in clinical trials 

related to ALS disease from clinical drug studies on Drugbank was compiled and the results were 

compared with this list. 

 

Among the first 100 drugs found through the disease-drug relationship for the treatment of ALS disease, 

18 drugs that are also on the drugbank clinical drug trial list were found and listed. When we compared 

the clinical trial list compiled from DrugBank with the first 10 drugs selected among the top 100 drugs 

with the highest edge score, i.e. the most associated with the disease, which we obtained regardless of 

whether they were used in clinical studies on disease-drug association for the treatment of ALS disease, 

it was seen that the 5 drugs with the highest edge score in the clinical trial list (Trehalose, Arimoclomol, 

Pridopidine, Testosterone, Mecobalamin) were the same. 

 

In the study conducted for the gene-drug association, 550 gene information was collected on ALS-

related DRKG, and using the inhibitory links between these genes and drugs, a drug reuse study was 
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performed separately according to each selected inhibitory linkage type associated with ALS disease, 

and the 100 drugs with the highest score were found and these drugs were ranked per target gene. As a 

result, the gene with the most drug-gene connections and the drugs associated with it were listed 

according to the type of inhibitory linkage we selected. In addition, we listed the 100 drugs with the 

highest scores that overlapped with the list of ALS clinical trial drugs, that is, how many drugs are 

currently registered as trial drugs for ALS disease on the Drugbank and how many genes these drugs 

are associated with (number of hits). The same study was repeated for three different inhibitory 

association types and separate results were obtained. According to these results, the prominent findings 

for each association type are as follows; According to the ‘GNBR::N::Compound::Gene’ Association, 

the genes associated with the most drugs are Gene::627 and Gene::9217 and these genes are associated 

with 16 drugs. According to this association type, Sirolimus (DB00877) is associated with 538 genes, 

Tretinoin (DB00755) is associated with 522 genes, and Tamoxifen (DB00675) associated with 478 

genes are among the prominent drugs overlapping with the clinical trial drug list. According to the 

'DRUGBANK::target::Compound::Gene' Association, the genes associated with the most drugs are 
Gene::283, Gene::5551, and Gene::6647, which are associated with 13 drugs. Drugs that stand out by 

overlapping with the clinical trial drug list according to this association type include Bosutinib 

(DB06616), which is associated with 446 genes, Dolutegravir (DB08930), which is associated with 379 
genes, and Sirolimus (DB00877), which is associated with 360 genes. According to the 

'DGIDB::INHIBITOR::Gene::Compound' association, Gene::4283 is the gene associated with the most 

drugs, and this gene is associated with 14 drugs. The prominent drugs that overlap with the clinical trial 

drug list according to this association type are Tretinoin (DB00755), which is associated with 455 genes, 

Sirolimus (DB00877), which is associated with 445 genes, and Bosutinib (DB06616), which is 

associated with 425 genes. These results show interactions between ALS disease-associated genes and 

their associated drugs for all three types of associations. The drug Tretinoin (DB00755) shows 

interactions with ALS disease-associated genes under both the 'GNBR::N::Compound:Gene' association 

and the 'DGIDB::INHIBITOR::Gene:Compound' association. Bosutinib (DB06616) stands out by 

showing interaction with ALS disease-associated genes under 'DRUGBANK::target::Compound::Gene' 

and 'DGIDB::INHIBITOR::Gene::Compound' association types. In addition, Sirolimus (DB00877) 

interacts with genes associated with ALS disease under all three association types. These common drugs 

were associated with genes associated with ALS disease under different association types in the gene-

drug association study. On the other hand, Sirolimus (DB00877) was prominent both in the gene-drug 

association study and in the disease-drug association study.  These results indicate that these drugs may 

have potential therapeutic effects on ALS and may influence the prioritization of these drugs in relevant 

studies. However, as stated at the beginning of the study, although the FDA-approved drugs riluzole and 

edaravone, which are included in the current treatment protocol for ALS disease, were included in our 

clinical trial drug list, they were not listed as recommendations as a result of our training. However, the 

results of this study show that many drugs used in clinical trials were discovered as possible drug 

candidates. This study by no means recommends specific drugs but provides a deep learning 

methodology to prioritize some of the available drugs for research. 

 

 

V. DISCUSSION 
 

The results of this study represent an important step in the discovery of potential ALS treatment 

candidates through disease-drug and gene-drug linkages. In the disease-drug association study, when 

the drugs with the highest scores were identified, they were found to be in common with some clinical 

trial drugs. This suggests that the disease-drug association approach may be effective in identifying the 

potential reuse of drugs currently being trialed in clinical trials. 

 

On the other hand, the gene-drug association study examined the interactions between genes associated 

with ALS disease and drugs associated with these genes using different types of inhibitory relationships. 

This study highlights the potential of a gene-drug association-based treatment strategy for ALS disease. 

In particular, the identified partner drugs were associated with ALS disease-associated genes under 

different association types, suggesting that these drugs may have potential therapeutic effects on ALS. 
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The results of this study may contribute to the development of new approaches for the discovery of 

potential treatment candidates for ALS. However, the limitations of this study should also be considered. 

For example, the lack of data sources used, or the limited datasets may affect the generalisability of the 

results. Therefore, it is important for further research to confirm and extend these findings. 

 

 

VI. CONCLUSION 
 

In this study, we focused on the identification of potential therapeutic drugs for the treatment of ALS 

disease. For this purpose, separate studies on disease-drug association and gene-drug association were 

carried out. In addition, drugs in the clinical trial phase in the DrugBank database were also analyzed 

and compared with the results obtained. 

 

Firstly, in the study on the disease-drug association, drug reuse studies for ALS disease were performed 

using data to estimate the links between disease and drug entities in DRKG. Using the mesh code 

‘D000690’, access to all entity links for ALS disease was provided. Then, the drugs with the highest 

scores on the disease-drug association were identified and these drugs were compared with ALS disease-

related clinical trial drugs collected from drugbank. Similarly, in the gene-drug association study, the 

links between genes and drugs for ALS disease were predicted. Separate trials were conducted for three 

different relationship types and the drugs with the highest scores were identified. Finally, the results 

obtained through disease-drug association and gene-drug association may play an important role in 

identifying potential treatment candidates for ALS disease. 
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