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ABSTRACT 

The use of GPU in different fields and its successful results initiate efforts to use GPU in database systems. It is 

also effective in distributed systems and computer networks in that it accelerates computational tasks by leveraging 

parallel processing capabilities across multiple nodes and for tasks that require high computational power, such as 

network traffic analysis and real-time data processing. Digital transformation in all areas of life has led to the 

emergence of needs such as increased data diversity and faster data analysis. Upgrading the hardware capacity of 

the system or conducting software-based studies are possible solutions to analyze this data to meet the needs. In 

this study, Apache Spark and GPU performance differences are examined in commonly used SQL queries on big 

data. In this context, SQL queries such as grouping, sorting, and filtering, which are widely used in data analysis, 

are used. While the queries performed with the GPU showed similar results in simple queries compared to the 

queries performed with Apache Spark, the GPU was completed 3x faster in queries requiring calculation.  
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DAĞITIK AĞLAR İÇİN VERİ TABANI SQL SORGULARINDA 

APACHE SPARK VE GPU PERFORMANSLARININ ANALİZİ 

ÖZET 

Her geçen gün farklı bir alanda kullanılmaya başlanan ve başarılı sonuçlar sergileyen GPU’nun veri tabanlarında 

kullanılmasına yönelik çalışmalar giderek yaygınlaşmaktadır. Ayrıca dağıtık sistemlerde ve bilgisayar ağlarında 

da birden fazla düğümde paralel işleme yeteneklerinden yararlanarak hesaplama görevlerini hızlandırmaya ve 

yüksek hesaplama gücü gerektiren ağ trafiği analizi, gerçek zamanlı veri işleme gibi görevlerde etkin olmaktadır. 

Hayatın her alanda gerçekleşen dijital dönüşüm veri çeşitliliğinde artış, verilerin daha hızlı analiz edilebilmesi vb. 

ihtiyaçların ortaya çıkmasına neden olmuştur. Bu verilerin analizi için sistem donanım kapasitesinin artırılması 

veya yazılım temelli çalışmalar ile ihtiyaçların karşılanabilmesine yönelik çözümler bulunmaktadır. Bu çalışmada 

ise büyük verilerde Apache Spark ve GPU’nun yaygın olarak kullanılan SQL sorgularındaki performans 

farklılıkları incelenmiştir. Bu kapsamda veri analizinde genel olarak kullanılan gruplandırma, sıralama ve 

filtreleme gibi SQL sorguları kullanılmıştır. GPU ile gerçekleştirilen sorguların Apache Spark ile gerçekleştirilen 

sorgulara göre basit sorgularda benzer sonuçlar sergilerken, hesaplama gerektiren sorgularda GPU’nun 3x kadar 

daha kısa sürede sonuçlandırmıştır. 
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1. Introduction 

Different concepts and approaches have emerged as a result of the developments aimed at increasing 

the quality of life. Depending on the object used, it is of great importance in terms of effective use of 

resources, determining new strategies for solving problems, increasing satisfaction and reducing errors, 

etc. The concept of data, whose value increases depending on its variety and size, becomes meaningful 

if it is possessed on a regular base and accurately. By utilizing data in many fields, it is possible to make 

inferences about how to move forward and what kind of measures should be taken. Data, which was 

kept limited until recently, has led to the emergence of new systems or solutions in larger volumes, more 

variables, and faster increases in parallel with the digital transformation that has taken place in recent 

years. While there was no significant problem in the studies that were widely used and carried out with 

computers in the past, the growing amount of data and the need to get results from these data in a shorter 

time have led to the emergence of different technologies.  

Initially, CPUs, disks, and RAMs were used for faster processing for long-running operations. When 

the system used was not sufficient to meet the needs in terms of performance, the problem was solved 

with new hardware with a higher capacity. Although the developments in the hardware sector have 

reached a certain point, the amount of data used in processing not only has begun to increase rapidly but 

also it has been used in different fields. Real-time access to data and the ability to process it in a shorter 

time are of great importance for sectors operating in similar fields to compete and be advantageous [1]. 

Efforts to improve the performance of data processing such as analysis, storage, and visualization 

are of great importance. This has led to significant developments depending on the impact of big data 

analysis and evaluations of these analyses [2]. Moreover, the state-of-the-art open-source parallel 

processing frameworks/programming models such as Impala, Hadoop, Spark, and MapReduce have 

evolved to overcome the issues of distributed big data. In these frameworks/models, the need for more 

efficient processing of data is met by adding a new server when the server is insufficient with horizontal 

scalability.  Apache Spark, one of the scalable structures used in big data processing, stands out amongst 

others. With Spark, the system can be scaled to thousands of nodes. With its ability to perform in-

memory computation, Apache Spark is preferred because it gives faster results than other big data 

processing frameworks [3-4]. Today, with the increase in RAM memory capacities, the increase in 

performance with memory access instead of disk access offers new opportunities to those working in 

this field [5-6]. In applications utilizing Spark, the size and type of input data and the design of 

algorithms have a great impact on the performance of the computation process [7-10]. 

Significant progress has been achieved in GPU technology with the stagnation of developments in 

the CPU compared to the past, the ability to program GPUs, and their use in different fields. Modern 

GPUs are not only powerful graphics cards, but they are also preferred for computationally demanding 

operations due to their parallel computing capability and faster processing compared to traditional CPUs 

due to their high memory bandwidth [11-13]. The high performance in operations performed with GPU 

has led to an increase in the number of studies in this field and the concept of GPU Computing has 

become widespread. Compared to traditional microprocessors, GPUs are seen as a good alternative due 

to their high capacity in computationally demanding operations. GPUs allow not only graphics 

operations and calculations but also the execution of any algorithm. The complexity of the hardware 

used and the complexity of the user functions play an important role in achieving the success obtained 

from GPU applications [14]. 

Parallel data processing and the ability to perform parallel computation are the key features that 

make GPUs stand out. In the microprocessors being developed for GPUs, efforts are being made to 

increase not only the thread performance but also the number of cores. While the GPU's performance 

and potential hold great promise for new computer systems, its architecture and programming model are 

distinctly different from other uniform processors. Increasing the number of programmable processor 

cores in the GPU has a significant impact on increasing the total system output [15-16]. Furthermore, 
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combining processors allows for very effective load balancing. This is because any processing function 

can utilize the entire array of processors. 

Achieving high performance in GPU-executed operations depends on using the full memory 

bandwidth of the GPU and designing the application in a way that is compatible with 

parallelization. CUDA's scalable programming model enables parallel computing applications to handle 

large numbers of workloads while allowing parallel processor cores to scale [17]. The computational 

performance obtained from the GPUs can be achieved by using more than one CPU, but it is not as 

successful as GPUs in terms of performance/power consumption. GPUs are very efficient in terms of 

the work they do and the energy they consume [18]. Applications that are not organized according to 

GPU operation cause a great loss in terms of the amount of energy consumed due to the inability to use 

GPU capacity effectively. 

With the digital transformation, every object has become part of a network. The fact that these 

objects communicate with each other according to certain rules and the unique addressing of the data 

has led to the emergence of different approaches. With these developments, it has become possible for 

every object that is part of daily life to be part of a network, to record the activities of these objects 

depending on their functioning, and to transfer these records to certain centers depending on the user's 

permission. This situation makes it easier for service providers to work on many aspects such as 

development and security based on this data. Big data is generated in every area where technology is 

used, such as internet service providers, servers, and applications. In the relevant units of many large or 

small enterprises, there are systems for tracking activities. Billions of data can be recorded in these 

systems every day. It is of great importance that the processes related to the analysis of these data can 

be carried out in a shorter time and reports can be created for the needs, and the loss that will occur in 

the sectors where these data are used can be minimized and measures can be taken. Therefore, it becomes 

a necessity rather than a need to realize the data analysis process as earliest as possible. 

There are many studies on the processing of databases using GPU. Due to the programmability of 

the GPU, it is seen as a potential hardware that can show higher performance than CPU-based 

applications in many areas. In this study, the effect of the GPU's parallelization and internal memory 

advantage on the performance of in-memory data analytics operations on the congestion that prevents 

full performance in data transfer between CPU and RAM memory is observed. Although the intended 

use of the data is different, the underlying variables and characteristics are similar.  For this purpose, the 

performance of the GPU in processing log data by considering the processing power and operating 

principles of the GPU and the performance differences of Apache Spark in the same processes are 

analyzed. 

With two different computing technologies, GPU and Apache Spark, the same SQL queries for 

commonly used operations such as querying, filtering, grouping, and computation in data were 

repeatedly performed at different times and for certain numbers of times in two different models and the 

completion times of the operations were compared. 

2. Related Work 

Parallel communication and synchronization, as well as sustainable scalability, is one of today's 

hottest topics.  Organizations that direct their activities based on data analysis have a great advantage in 

their competition with each other [19]. This situation requires the development of new tools to solve the 

challenges caused by the volume, diversity, and speed characteristics of big data. 

Since NVIDIA introduced parallel computing on GPUs with CUDA in 2006, there have been many 

efforts for different purposes. Although GPU-based database applications are still at the beginning of 

the road, serious work continues in this field [20]. GPU-based systems can be a good option in terms of 

both energy and cost to accelerate applications in big data processing and intensive computing. While 

GPUs are a good option for reducing computational load and efficient resource scheduling, they also 

have some challenges. The most important challenge is that achieving high performance depends on 

advanced application development knowledge. Wrede and Ernsting [14] argue that GPUs can provide 
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significant acceleration in certain situations, but the complexity of the hardware and its functions is a 

determining factor in achieving this result. 

With the introduction of CUDA and OpenCL, the programming of GPUs has become much more 

efficient. GPU cards, which were mathematically used to greatly increase video processing and 

transformation tasks, were then used in different areas. He et al. [21], using CUDA, designed a join 

algorithm that also includes sorting and achieved 2-7 times the performance compared to CPU. Again, 

Bakkum and Skadron [22] concluded simple queries performed by executing SQLite on GPU within the 

virtual machine infrastructure 20x faster than SQLite. 

Wu [23], considering the limited memory capacity of the GPU, the algorithms applied to the data 

cannot be used directly for big data. With CUDA unified virtual addressing, data is not necessarily 

copied to the GPU, as the GPU can directly access the data in CPU memory. However, the performance 

of the algorithm used will be decisive, depending on the PCIe bandwidth. According to He et al. (2009), 

the bandwidth for data exchange between GPU and CPU is limited. In addition, the CPU does not allow 

dynamic memory allocation for GPU cores, so algorithms need to be designed carefully. 

Breß et al. [24] argued that a hybrid approach that decides whether to execute the query on the GPU 

or CPU with a self-adjusting query editor would be a better solution in terms of performance with the 

HyPE application they developed. Again, Ilić et al. [25], with the application they developed, stated that 

the use of two processing centers together, depending on the scheduling library to execute the work to 

be done on the CPU or GPU, contributed significantly to the performance increase. 

Li et al. [26] have achieved a performance increase of up to 18x in different machine learning 

applications with the HeteroSpark platform but emphasized the insufficient memory size when using 

large data in experiments with a single GPU, and the complexity of data partitioning in multi-GPU 

applications. In a detailed analysis of queries performed on CPU and GPU, the GPU can only be used 

for specific queries that can be fixed in memory, which causes problems in compatibility with data 

storage systems [27]. 

3. Material & Method  

The materials used in this study, which analyzes big data queries on Apache Spark and GPU, consist 

of hardware, software, and data. The hardware includes a Tesla T4 GPU, 12 GB DDR RAM, and an 

Intel Xeon 2200 MHz CPU. The software is a Python application using Apache Spark and BlazingSQL 

libraries. Apache Spark is an open-source, scalable, fault-tolerant, easy-to-use & fast distributed 

computing framework that runs on datasets. It is also widely used in Java, Scala, Python, and R due to 

its development APIs and extensive libraries. It supports code reuse across multiple workloads such as 

real-time data analysis and engineering, graphics processing, data science, and machine learning. For 

example, it enables parallelization of machine learning algorithms and data transformation logic, 

enabling fast processing on distributed storage systems of varying sizes and types. Another important 

reason why Apache Spark preferred in this study is that Spark applications can perform approximately 

100 times faster in-memory operations on Hadoop clusters and 10 times faster on disk. In addition, the 

MapReduce feature allows Spark to be implemented independently. On the other hand, since Apache 

Spark is an open-source, distributed processing system used for big data workloads, it has some 

limitations inherent to distributed systems, such as delays, congestion, packet loss, and varying 

speed due to internet infrastructure services. 

Table 1. Processing parquet file with BlazingSQL 

.... 

# Create table from parquet file  

bc.create_table(deletions, '/content/deletions.parquet') 

# SQL Query processing 

result = bc.sql('SELECT count(*) FROM main.deletions GROUP BY 

creator(key)').get() result_gdf = result.columns 

#Showing results print(result_gdf) 

.... 
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BlazingSQL, on the other hand, offers the convenience of performing the same operations on the 

GPU that cuDF does on the GPU with the SQL interface instead of the DataFrame functions of ETL 

raw data performed on the GPU with cuDF (RAPIDS). As in cuDF, the Python language in BlazingSQL 

offers ease of use and supports many SQL functions, although it cannot perform all the SQL functions. 

It is easier to create tables with BlazingSQL because Parquet holds metadata. Table 1 shows an example 

of using BlazingSQL with Python language. The last component of our study is the data, which is 

approximately 8GB in size and consists of 62,000,000 rows of deletion activity logs for March 2013 

provided by the Freebase API under the CC-BY license. 

     Table 2.  The specification of Tesla T4 GPGPU 

Specs  

GPU Architecture NVIDIA Turing 

Number of NVIDA Tensor Core 320 

Number of NVIDIA Cuda Core 2560 

Single Precision  8.1 TFLOPS 

Mixed Precision (FP16/FP32) 65 TFLOPS 

INT8 130 TOPS 

INT4 260 TOPS 

GPU Memory (GPU Belleği) 16 GB GDDR6 300 GB/sec 

ECC Yes 

Interconnect Bandwidth 32 GB/sec 

System Iterface x16 PCIe Gen3 

Form Factor Low-Profile PCIe 

Thermal Solution Pasif 

Compute APIs CUDA, NVIDIA TensorRT™, ONNX 

Since cuDF and BlazingSQL libraries are compatible with this GPU card, Tesla T4 Graphics 

processing unit (GPU) is preferred. Additionally, T4 puts forward the benefits of high throughput and 

lower power consumption as well. 

For query performance to be realized in a shorter time in big data, it is necessary to use column-

oriented data, which is also suitable for the operation of the GPU. For this purpose, our activity records 

in CSV format have been converted to column-oriented Parquet format that can be used in both Apache 

Spark and our GPU application. Converting our 8GB raw CSV data into Parquet format resulted in a 

compressed data file of approximately 2GB. The reduction in data size is due to the fact that Parquet 

stores and compresses the data in binary format. 

The only difference between row-oriented databases and column-oriented databases is that when a 

row with row-oriented data is called, the data that is not needed in the row is included in the process, 

and then the target data can be reached by filtering the unwanted part. In column-oriented data, only the 

desired row of the relevant column is called (Figure 1) 

 

Raw-oriented data 

 
 Column 1 Column 2 Column 3 

Raw 1    

Raw 2    

Raw 3    

Raw 4    

Raw 5    
 

 

Column-oriented data 

 
 Column 1 Column 2 Column 3 

Raw 1    

Raw 2    

Raw 3    

Raw 4    

Raw 5    
 

Figure 1. Row and Column oriented databases 
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The types of queries to be performed for the data are given in Table 3. The reason why these queries 

were chosen is that they are widely used querries in many applications. The queries were executed at 

least 5 times at different times with both GPU and Apache Spark and the average execution time was 

taken into account for experimental results. 

 

Table 3. Query types 

1. Selection of top 10 records with all fields 

2. Sort by any field 

3. Top 10 records with selected specific fields. 

4 Number of total records in any domain 

5. Number of different records in any domain 

6. Grouping by a specific field and the number of records in that group 

7. Choosing according to a certain condition 

 

The details of the query types mentioned in Table 3 for SQL, Spark DataFrame and cuDF DataFrame 

queries in our Python implementation can be seen in Table 4.  

 

Table 4. Queries for SQL, cuDF, and Apache Spark 

1. 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT * FROM Deletions LIMIT 10 

cuDF.head(10) 

sparkDF.limit(10) 

2. 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT * FROM Deletions ORDER BY creation_timestamp 

cuDF["creator"].sort_values(['creator']) 

sparkDF.orderBy("creation_timestamp") 

3. 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT creator, deletor FROM Deletions LIMIT 10 

cuDF[["creator","deletor"]].head(10) 

sparkDF.select("creator","deletor").limit(10) 

4 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT COUNT(*) FROM Deletions 

cuDF["creator"].count() 

sparkDF.count() 

5. 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT COUNT(DISTINCT creator) FROM Deletions 

cuDF["creator"].unique().count() 

sparkDF.select("creator").distinct().count() 

6. 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT COUNT(*) as NumOfEvents, creator FROM Deletions 

GROUP BY creator 

cuDF.groupby("creator").agg({"creator":"count"}) 

sparkDF.groupBy("creator").count().select("creator","count") 

7. 

SQL 

cuDF DataFrame 

Spark DataFrame 

SELECT * FROM Deletions WHERE deletor = '/user/funderhill' 

cuDF. query(‘deletor == '/user/funderhill’) 

sparkDF.where("deletor == '/user/funderhill'") 

 

While processing with Apache Spark, the database is selected through the Driver, then the queries 

are interpreted with the help of SparkContext, and the related calculations are performed with the help 

of the Cluster Manager, and the task is completed by performing the tasks on the JVM Nodes where the 

executors are located (Figure 2). 
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Figure 2. Apache Spark query workflow [28]. 

 

After BlazingSQL makes the SQL query compatible on cuDF, Python functions are converted to 

PTX (the pseudo-assembly language used in CUDA programming) code. The request is then converted 

to PTX code with CUDA JIT, and finally, the query is executed on the CUDA device using Python 

Numba and CUDA driver API, and the results are transferred to the CPU (Figure 3). 

 

 

Figure 3. GPU query workflow 
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Figure 4. The execution times of the queries 

 

In Figure 4, where the performances of two different computing technologies are examined, the 

execution times of the query operations are considered. No significant difference was observed in the 

1st query, where there was no calculation process, and the 6th query, in which conditional filtering was 

performed. On the other hand, in sorting, grouping, and conditional sorting, the GPU completed the 

process as little as 3 times faster than Apache Spark (Figure 4). 

Moreover, the potential of the GPU in parallel computing is used in the analysis of big data, and its 

effects on performance are examined. For this purpose, Apache Spark, which stands out due to its 

success in in-memory computation, and GPU's SQL query execution times are evaluated. For the 

effective use of GPU, it is of great importance that the application is developed in accordance with the 

structure and functioning of GPU. While no significant difference was observed in the execution times 

of requests for simple queries, the GPU had positive effects on the performance increase for 

computationally demanding queries.   

The large volume characteristic of big data also requires high-capacity memory allocation. The 

limited GPU memory causes the used data size to be within these limits. At this point, in GPU 

workstations with multiple GPUs, GPUs can be parallelized among themselves to work with larger data. 

4. Results and Future Work 

In this study, the characteristics of big data, GPU's potential in computational operations, and 

Apache Spark's power in big data processing are discussed. We used a column-oriented data storage 

format that both reduces unnecessary work assigned to the CPU and fits the GPU's architecture. In terms 

of the performance of queries performed with the GPU, it was examined whether the computational 

power of the GPU would have the same effect on data querying as Apache Spark queries performed 

with the CPU. For this purpose, activity (log) records kept for different purposes in many sectors were 

used. The same queries were executed at different times with certain periods and the average execution 

times for each query type were compared. 

Queries were executed on both CPU and GPU, and the same queries were executed in different time 

periods and a certain number of times, and each query was compared separately. Overall, no significant 

performance difference was observed in basic queries, but in queries that required sorting, grouping, 
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and conditional computation, the GPU completed the query in approximately 3x less time. As a result, 

it was seen that it is possible to perform operations in a shorter time by using GPU in data querying as 

in many computationally demanding operations. 

Nowadays, there are more and more studies on the use of GPUs in terms of computational success 

and energy-efficient use of big data. Deep learning, machine learning graphics applications, engineering 

applications, and applications used extensively in scientific research also have GPU support. Recently, 

there has been much scientific research on the use of GPU in big data solutions such as distributed 

computing and networking. It will not be a surprise that large-scale data solutions such as Hadoop, 

Spark, and Hive will have GPU support in the near future. 
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