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Introduction

Making predictions for planning and strategy formulation is essential and can be achieved by collecting data and
constructing a model that best fits the available data. In the literature, various stochastic and non-stochastic
methods have been proposed. The type of data available dictates the methods to be used if no transformation is
applied. One type of data encountered is interval-valued data, which is observed in several applications. Like, the
lower and higher values of stock prices, the systolic and diastolic measurements of patients' blood pressure, and
the minimum and maximum measurement heights of a river for flood management. Direct methods that deal with
this type of data are necessaty to avoid losing information. If the data is recorded over time, Interval Time Series
(ITS) is one of the data types used to handle them. ITS is also employed when exact data is unavailable. For example,
a person's blood pressute over time can be represented as an interval, or a sensor can measure and record a device's
minimum and maximum values each hour. Although such data can be modeled using classical time series methods,
converting interval data to crisp values can result in information loss. When a group of people is observed to
measure the same variable over time, ITS can be obtained (Arroyo & Mate, 2006). I'TS is prevalent in various fields,
such as finance (the daily price range of a company's stock), engineering (the daily voltage range in electric cutrents),
medicine (the daily systolic and diastolic blood pressure of patients), meteorology (the monthly minimum and
maximum precipitation in a location), and relative humidity (the monthly measured range).

Interval data, which plays a crucial role in symbolic data analysis (SDA), has found extensive applications across
diverse fields. In 1996, Ichino et al. introduced a symbolic classifier using a region-oriented methodology tailored
for symbolic interval data. Lissoir and Rasson (2000) developed a symbolic kernel classifier that employed
appropriate dissimilarity functions. Lechevallier and Périnel (2000) proposed a tree-growing algorithm designed
specifically for classifying symbolic interval data. Subsequently, Bock (2002) presented a range of clustering
algorithms suited for interval variables and introduced a Self-Organizing Map (SOM) for their visual representation.
Lechevallier and Chavent (2002) introduced a dynamic clustering algorithm for interval data, utilizing a modified
Hausdorff distance to represent class representatives. Measures of dispersion and central tendency were expanded
upon by Diday and Billard (2003) and Saracco and Chavent (2008). Irpino (2006) delved into factorial methods,
while Groenen et al. (2006) focused on multidimensional scaling. Hierarchical clustering has been explored by
several researchers, including Diday and Gowda (1991), Yaguchi and Ichino (1994), Ravi and Gowda (1995, 1999),
Guru et al. (2004), and Chavent (2000). Recognizing the correspondence between interval sets and fuzzy sets, their
fuzzy aspect was studied by Ismail and El Sonbaty (1998), Yang et al. (2004), and De Carvalho (2007). Hard partition
clustering has been researched by De Carvalho et al. (2009), Lechevallier and De Carvalho (2009a, 2009b), De
Carvalho et al. (20006), De Carvalho and De Souza (2004), and Verde and Irpino (2008). Regression modeling for
interval data has been examined by De Carvalho and Lima Neto (2010) and Arroyo and Mate (2009). De Carvalho
and Souza (2004) proposed segregative clustering methods that utilize both adaptive and non-adaptive city block
distances. De Carvalho et al. (2006) developed an algorithm specifically for this purpose. De Carvalho (1995)
recommended the use of histograms for interval-valued data. Principal component analysis for interval-valued data
was suggested by Palumbo and Lauro (2000) and Cazes et al. (1997). Diday (1987) highlighted that statistical units
defined by range data can be considered special cases of Symbolic Objects (SO).

In the realm of univariate statistics, Diday and Billard (2003) and Goupil and Bertrand (2000) introduced measures
of dispersion and central tendency for symbolic interval data. Diday and Billard (2000) proposed an approach for
fitting linear regression models to interval-valued data sets. De Carvalho and Neto (2008) enhanced this method
by introducing a novel approach based on two distinct linear regression models. Factorial Discrimination Analysis
(FDA) for Interval Time Series (ITS) was adapted by Lauro et al. (2000) and Palumbo and Verde (1999). In the
context of ITS, Maia et al. (2008) introduced methodologies including an artificial neural network (ANN), an
autoregtressive integrated moving average (ARIMA), and a hybrid model combining both ANN and ARIMA. De
Carvalho and Maia (2011) proposed three different approaches to forecasting ITS, with the first two relying on
multilayer perceptron neural networks (MLP) and Holt’s exponential smoothing methods. The third approach
combines both the MLP and Holt methods into a hybrid methodology. Chang, Chuang, and Jeng (2023) proposed
the Interval Improved Fuzzy Partitions Fuzzy C-Means (IIFPFCM) clustering algorithm, which uses Euclidean and
city block distance measures and achieves faster convergence than traditional Interval Fuzzy C-Means IFCM). The
algorithm also addresses group division issues in symbolic interval data and is robust against outliers. Experimental
analysis with nine datasets shows that the IIFPFCM algorithm, particularly with the city block distance, outperforms
IFCM in convergence speed, efficiency, and handling outliers, offering superior overall performance.
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Silva (2011) employed the copula approach for regression models. Initially based on conventional mathematical
tools such as differential equations, the Adaptive Neuro-Fuzzy Inference System (ANFIS), first introduced by Jang
in 1993, has recently been the subject of numerous studies aiming to hybridize linear and nonlinear methods to
construct models. Carvalho and Maia (2011) introduced three approaches to predicting I'TSs. Xiong et al. (2017)
recommended a hybrid model framework that combines Holt’s method with the MSVR.

These studies explored various advanced methodologies for handling interval data and forecasting, demonstrating
their effectiveness in different domains such as energy, finance, and agriculture. Xiong et al. (2014a) proposed FA-
MSVR, a Firefly Algorithm-based approach. Xiong et al. (2014b) introduced a model combining Support Vector
Regression (SVR) with BEMD for intermittent electricity demand. Rodrigues and Salish (2015) suggested threshold
models for Interval Time Series (ITS) analysis. Sun et al. (2018) employed Interval Data Envelopment (IDE) to
estimate crude oil prices, showing superior performance. Xiong T. et al. (2015) combined Vector Error Correction
Model (VECM) with MSVR to predict range-valued agricultural commodity prices. Sakaori and Park (2014) applied
MSVR with a Memetic Algorithm based on the Firefly Algorithm for interval load estimation. Poczeta and
Papageorgiou (2017) introduced a two-stage prediction model using Artificial Neural Networks (ANNs) and
evolutionary Fuzzy C-Means (FCM) for multivariate time series prediction. Jiang et al. (2021) proposed a combined
forecasting system with four components: optimal sub-model selection, point prediction using a modified multi-
objective optimization algorithm, interval forecasting through distribution fitting, and system evaluation. The
system leveraged the strengths of sub-models to deliver precise point and interval forecasts. Experimental results
showed absolute percentage errors of 2.92%, 3.17%, and 4.84% at Site 1, and 2.27%, 2.59%, and 3.48% at Site 2
for 1-step, 2-step, and 3-step forecasts, respectively. The proposed system outperformed benchmark models,
making it highly effective for electric power system scheduling and management. Chinnadurrai et al. (2024)
presented a deep-learning ensemble model combining wavelet transformation, Long Short-Term Memory (LSTM),
and Elman neural networks for wind speed forecasting using data collected from coastal areas of Western India.
The data were pre-processed through wavelet transformation to decompose them into sub-layers, and then trained
and tested with the proposed model. The results demonstrated that the proposed method outperformed other
models in terms of error metrics, offering an effective solution for integrating wind energy systems and ensuring
reliable power system operation. Wu et al. (2023) proposed a novel hybrid approach for short-term power demand
prediction, combining the Elman neural network (ELM) and the adaptive network-based fuzzy inference system
(ANFIS). By integrating these methods, the hybrid model overcomes their limitations while leveraging their
strengths, particularly in handling non-linear data. The approach utilized an enhanced bioinspired algorithm, the
improved parasitism-predation algorithm, to optimize the weight coefficients for greater accuracy. Simulation
results confirmed that the hybrid method outperformed both ELM and ANFIS individually, as well as other
advanced models, delivering superior predictive performance. Wan and Dong (2020) defined the possible degree
of comparison between two interval-valued intuitionistic fuzzy numbers (IVIFNs) using a two-dimensional random
vector. A new ranking method for IVIFNs was developed based on this concept. The approach employed the
Otdered Weighted Average (OWA) and Hybrid Weighted Average (HWA) operators, which are derived using the
Karnik-Mendel algorithms, to address multi-attribute group decision-making problems. The method calculates
individual overall attribute values of alternatives using the weighted average operator for IVIENs. The collective
values are obtained with the hybrid weighted average operator and used to rank the alternatives.

A numerical example is provided to demonstrate the effectiveness and flexibility of the proposed method. Haiyun
etal. (2021) analysed innovation strategies for green supply chain management using Quality Function Deployment
(QFD) from a multidimensional perspective. The novelty lies in defining green supply chain criteria for each stage
of QFD and proposing a hybrid model combining Interval-Valued Intuitionistic Fuzzy (IVIF) DEMATEL
(Decision-Making Trial and Evaluation Laboratory) and IVIF MOORA (Multi-Objective Optimization by Ratio
Analysis). The findings reveal that the most crucial innovation strategy for green supply chain management in the
energy industry is understanding customer expectations through customer relationship management, followed by
benchmarking the competitive market environment. Therefore, energy companies are advised to focus on effective
customer relationship management by analyzing customer needs and aligning their products and services
accordingly. The study also emphasized the importance of new product and service development, suggesting that
companies establish research and development departments and employ qualified personnel while gathering input
from customers, employees, and suppliers. Satistied customers will help energy companies increase their market
share.

225



Ali et al. (2021) introduce the principle of Complex Interval-Valued Pythagorean Fuzzy Sets (CIVPES), a valuable
tool for handling inconsistent and uncertain real-world data. CIVPEFS combines complex fuzzy sets and interval-
valued Pythagorean fuzzy sets, using complex numbers where the real and imaginary parts are sub-intervals of the
unit interval. The main advantage of this approach is that the sum of the squates of the real and imaginary parts is
constrained within the unit interval. The article explores the algebraic operational laws of CIVPES and develops
Einstein operational laws using t-norm and t-conorm. It also introduces two new operators: Complex Interval-
Valued Pythagorean Fuzzy FEinstein Weighted Geometric (CIVPFEWG) and Complex Interval-Valued
Pythagorean Fuzzy Einstein Ordered Weighted Geometric (CIVPFEOWG). These operators are applied to Multi-
Criteria Decision-Making (MCDM) problems. Examples are provided to demonstrate the consistency and reliability
of these operators. A comparative analysis and graphical representations are also included to highlight the
effectiveness and superiority of the proposed approach.

Garg and Kumar (2020) introduce a novel Multi-Attribute Decision Making (MADM) method in an interval-valued
intuitionistic fuzzy (IVIF) set environment by integrating the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) method. The study applies Set Pair Analysis (SPA), a modern uncertainty theory, which
considers "identity," "disctepancy," and "contrary" degrees of connection numbers (CN) to handle data
uncertainties. The paper presents exponential-based distance measures using CNs of IVIF sets to enhance the
theory of information measurement. A TOPSIS method based on these distance measures is then developed to
solve MADM problems in the IVIF context. The approach is validated through a real-life numerical example and
compared to existing methods, demonstrating its effectiveness and supetiority.

In this research, a new hybrid forecasting method called ERNN-MANFIS, which combines the ERNN and
MANTFIS models, is recommended for modeling ITS data. The MANFIS model is enhanced and employed in
conjunction with ERNN in a hybrid strategy, providing a better alternative for time series forecasting. Membership
values are systematically obtained using the fuzzy c-means clustering technique during the fuzzification step of
input values, which increases the accuracy of forecasting and makes the approach more systematic. During the
training stage, ERNN is utilized, and MANFIS is optimized via particle swarm optimization, thus enhancing the
forecasting performance of ITS.

The rest of the manuscript is organized as follows: Section 2 briefly provides the basic concepts of I'TS. Section 3
introduces MANFIS, ERNN, and the proposed algorithm to forecast ITS along with auxiliary methods used in the
approach. Section 4 presents the novel hybrid ERNN-MANFIS algorithm. Section 5 practices the novel algorithm
with different ITS datasets and compares the results with those obtained from existing methods. The conclusion
is presented in Section 6.

Preliminary
In this section, a brief introduction to ITS is provided, which is mainly used in Symbolic Data Analysis dealing
with multiple analyses, sample recognition, and artificial intelligence. Observations of I'TS consist of closed
intervals. Considering that the methods using ITS data and fuzzy time series data are different, for example, I'TS
does not contain membership values. ITS data are often encountered as a new type of data to deal with since they
are generally transformed into real numbers. The values of observations are changed quickly in the time domain
so they are represented by an interval that contains all values of the observations. The components of ITS data
include 4 terms defined as follows:

XUy, t=1, 2, 3-+- refers to the upper bound values of the time series,

XL, t=12, 3--- refers to the lower bound values of the time series,

XC,, t=1, 2, 3-+- shows center series,

XR,, t=1, 2, 3--- shows range series,

where the range-valued data are ordered sequentially.

The ITS data for t = 1, 2, 3, ..., n is denoted by (Xj; Xy,), Kiz; Xy,), ---» Xi,; Xu,)- The concept of I'TS was
first introduced by Bock and Diday (2000) to be employed in the field of Symbolic Data Analysis. This type of
data naturally arises in many situations. Due to its unique structure, most research efforts addressing it are related
to artificial intelligence, pattern recognition, and multivariate analysis. I'TS data can be used in all types of
exploratory data analysis and statistical methods (De Carvalho & Maia, 2011; Liu et al., 2013). I'TS histograms
were studied by De Carvalho (1995). Basic components analysis methods were recommended by Lauro and
Palumbo (2000) and Cazes et al. (1997). Furthermore, appropriate central tendency and dispersion measures were
introduced by Bertrand and Goupil (2000) and Billard and Diday (2003). Four novel approaches to model and
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estimate I'TS were recommended by Maia et al. (2008), including AR, ARIMA, ANNs, and Hybrid Models. Monte
Carlo simulation was utilized for the evaluation of these four new approaches. By employing ANNs to analyze
ITS data in the stock market, the process and applications of the exponential smoothing model were examined
(Maia et al., 2008). In the study, two approaches were used. The first approach was based on ANNSs, while the
second approach involved the exponential smoothing method. Parameters were obtained using nonlinear
optimization techniques. These approaches were then applied to daily I'TS data. It was observed that the approach
employing the exponential smoothing model was superior to the ANNs approach. The center and range methods

were applied to the data with symbolic intervals. A new approach was introduced based on the linear regression
model (Neto & De Carvalho, 2008).

A linear regression model was applied using midpoints and ranges. The midpoint and the range of the dependent
variable were obtained from the estimation of the upper and lower limits. Also, Monte Carlo simulation was used
for the evaluation of the recommended estimation methods. A regression model based on the Copula approach
for range-valued variables was introduced by Silva et al. (2011). Regression models were used with optimization
in interval-valued data. Also, Neto (2011) recommended bivariate symbolic regression models based on
Generalized Linear Models. Residual analysis and diagnostic measurements were used to prepare the ground for
this regression approach for interval-valued variables. Besides, a regression model based on copula theory was
recommended for symbolic interval-valued data. ANNs and Holt methods were applied to forecast I'TS by Maia
and De Carvalho (2011). Three approaches were used to forecast the I'TS. MLP and Holt methods were used.
Smoothing parameters in the Holt method with limit constraints were estimated using nonlinear techniques. The
third approach was based on a hybrid method that combined the Holt method and MLP to estimate stock market
time-seties data.

Methodology

Adaptive Neuro-Fuzzy Inference System (ANFIS) excels at managing uncertainty by combining neural networks
with fuzzy logic. It creates fuzzy inference rules that can handle imprecise or vague input data, making it robust
for problems with noisy or incomplete datasets. The fuzzy rules generated by ANFIS are human-readable,
providing insights into the underlying patterns and decision-making process. This interpretability is valuable in
applications where understanding the "why" behind predictions or decisions is crucial. ANFIS adapts its
parameters through learning algorithms, typically backpropagation for the fuzzy rule parameters and least squates
for the consequent parameters, ensuring optimal performance for specific datasets. This adaptability allows it to
model nonlinear relationships effectively. Elman Recurrent Neural Network (ERNN) is designed to model
dynamic and sequential data by maintaining a context layer that stores information from previous time steps. This
makes ERNN particularly effective for time-series forecasting, where historical data influences future predictions.
ERNN can learn complex, nonlinear relationships in data through its hidden and recurrent structure.

The recurrent connections in ERINN enable it to retain a "memory" of past inputs, making it better equipped to
handle problems where historical trends and patterns are essential. ANFIS handles uncertainty and
interpretability, providing a robust framework for feature extraction and rule-based reasoning. ERNN handles
temporal dependencies and nonlinear dynamics, making it ideal for modeling sequential relationships.
To combine these strengths, a hybrid model can leverage ANFIS given its ability to simplify and clarify complex
input relationships while using ERNN to capture and predict dynamic patterns over time, offering a
comprehensive solution for challenging forecasting problems.

In this section, we briefly portray the tools used in the recommended method called ERNN-MANTFIS. If readers

would like to pay more attention to the details of the tools, the books have provided detailed accounts of the tools
(Clerck, 2005; Krose & van der Smagt, 1996; Siddique & Adeli, 2013).

Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a heuristic optimization technique proposed by Eberhart & Kennedy
(1995). In PSO, each individual is represented as a particle within a swarm. The method improves upon the
original concept introduced by Shi & Eberhart (1999).

Initialization: Positions ( X, ) and velocities (V, ) for each particle k (k=1,2,...,pn) are randomly determined.
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Evaluation Function: Determines p-best (pbesty) and g-best(gbest) particles based on their performance.
Parameters Update: At each iteration, parameters such as inertia (w), cognitive coefficient (C;), and social

coefficient (C, ) are updated according to predefined intervals.

Velocity and Position Update: Update equations for velocity (Vilf;'l) and position (Xikdﬂ) are applied using the
current parameters and random values.
Iteration: Steps 3 to 5 are repeated until a maximum number of iterations (max?) is reached.

PSO is utilized for optimization problems where the goal is to find the best solution by iteratively adjusting the
particles' positions within a search space.

The Modified ANFIS Model

The Adaptive Neuro-Fuzzy Inference System (ANFIS) learns membership functions and rules using data. In the
system, circular shapes represent fixed nodes, while square nodes denote parameters (Jin, 2013). Both input and
output parameters were trained by Jang (1991, 1992). Sen (2004, 2009) utilized a combination of artificial neural
networks (ANNs) and the Sugeno approach. When applying the Sugeno inference system in ANFIS, only the
input section of the dataset is fuzzified (Takagi & Sugeno, 1985; Sugeno, 1985). The number of rules corresponds
to the number of membership functions, known as a one-input-one-output system. In the Sugeno fuzzy system,
weights “w1” and “w2” range between [0, 1]. The output variable, y, is calculated as a weighted average of inputs,
aiming to minimize errors during training. In the Sugeno fuzzy system, rules apply only to "low normal" cases,
but the ANFIS approach can be applied to four rules covering the entire domain, such as high, normal-high,
normal, and low, to determine the best model (Gucli et al., 2014). The Modified ANFIS model was first
introduced by Egrioglu et al. and redesigned for time series forecasting. When using ANFIS for time series
modeling, the input variables must be lagged variables, and time series data should be clustered before
constructing the input-output relationship. Clustering facilitates the generation of rules, similar to various fuzzy
time series approaches. The parameters of the consequent part are trained by the improved PSO algorithm.

The widely used measure, RMSE, was employed to evaluate the effectiveness of the forecasting techniques.

1 ntrain
E= —%)?
ntrain ,Zﬂ: (% =%) 1)

1 ntrain
RMSE = - %)
\/ntrain ;(X‘ %) )

where “ntrain” in the denominator denotes the length of the training data set, X; is called the forecast for tth
observation of the time series data. Finally, an algorithm is provided below to explain how to compute the output
of the recommended ANFIS. The output value of the recommended ANFIS can be calculated by following the
steps outlined in the algorithm below.

The Modified ANFIS
The computation of the output of the new ANFIS. The architecture of the modified ANFIS (for two inputs:

%1 %2 204 two rules: If X1 i L and -2 L, then b= PX + 0%, + rl, if it s L, and X2 L
then fo = PpXy + 0%, + r2>

Step 1. Membership values are calculated based on fuzzy c-means clustering. The notations are expressed by
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My (Xt_]-) : The membership value for the j* lagged variable to i fuzzy set.

br, (Re—1)s M, (Ke—1), M, (Xe—2), M, (Xe—2) - Membership values are calculated for the new ANFIS.

Step 2. The computation of weights is defined by

w; = min (p, (xeo1), e, (%e2) ), W = min((ug, (k1) e, (%e—2))

Step 3. Normalization

J— Wi
W, =

i=1.2 ©)

- wit+w, !
Step 4. The computation of the output of each rule is defined by

Wifi = Wi(piXe-1 + QiXe—2 +17) )
Step 5. The combined output of all rules is defined by

Xe = Ziw f ®)

Stepl: Determine
C ,ntest

'

StepZ: Apply FCM
for Trian Data

it

Step3: Determine Step6: Obtain Step7: Calculate
Model Order Forecasts for Test Data Performance Criteria
l Values

Step4: Determine Step5: Trian ANFIS
fuzzy rules By using PSO @

Figure 1. Depicts the Flow Chart of The Algorithm
(Egrioglu, et al. 2014)

Fuzzy C-Means Clustering

The fuzzy c-means clustering (FCM) algorithm is used for calculating the membership values of inputs. The main
purpose is to minimize the distance between centers of clusters and observations so more homogenous clusters

can be generated. The FCM needs to assign the number of clusters, ¢, in advance. X= {Xl,XZ,...,Xn} the
observation values, (V;) the cluster center vector, (U) the membership value matrix, (M € (L,0)) the fuzziness

parameter, (n) the number of observations, (A) the norm matrix, (44 ) the membership value, (V) the matrix of

cluster centers and are all set. The objective function is defined by

minJ(X;U;V):chzn:(/uik)mdz(xk,vi)A ©)

i=1 k=1

Firstly, c and m are determined. In general, m is chosen where 1.5<M <3 as a rule of thumb for Eqgs. (7)-(9)
are used in the FCM algorithm.
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(Z (ﬂ.t)) X)
Z(,Ui(kt))m

(t-D o
) = {Z(‘“Xk’v CCAURES } ®

d(x,, v

vl =

E = Zc:HVi,(Hl) —Viy H ©)
i=1

Algorithm 3. Fuzzy C-Means
Initialize the membership matrix U randomly.2) Initialize ¢, m, and € . 3) Calculate the vector of the cluster center

Vi by using Eq. (7). 4) Calculate the membership values by using Eq. (8). 5) Calculate E, by using Eq. (9).
E <

6)If t & so, then stop. Otherwise, return to Step 3.

ERNN Model

The ERNN, similar to a three-layer feed-forward neural network, is a simple recurrent neural network proposed
by Elman (1990). It consists of three primary components: an input layer, a hidden layer, and an output layer.
Additionally, it includes a context layer that provides feedback from the hidden layer outputs of previous time
steps. Neurons in each layer transmit information to the next layer (Chandra, 2012; Zhang, 2012; Cacciola, 2012;
Megali, 2012; Pellicano, 2012; Morabito, 2012).

Si() = Q(ZV.kS (t- 1)+ZW., i(t=1))

(10)

Sk (t) and I;(t) denote the output of the context state and input neurons. vy and w;; denote their corresponding
weights. g(.) denotes the logistic transfer function or linear transfer function. Figure 2 depicts a typical structure
of an Elman network (Wang et al, 2014).

The Proposed Method: ERNN- MANFIS

Egrioglu et al. (2014) proposed a modified ANFIS (MANFIS) to improve predictive accuracy in time series
forecasting by employing fuzzy rules. Both ANFIS and MANFIS are tailored to model non-linear relationships
between inputs and outputs. Linear models are commonly used in time series estimation because they effectively
capture straightforward input-output relationships, but they do not inherently identify whether relationships
among lagged variables are linear or nonlinear.

In this manuscript, a hybrid strategy combining ERNN and MANFIS is proposed as an enhanced approach for
time series forecasting. The method integrates membership values derived systematically from fuzzy c-means
clustering during the fuzzification of input values. In the training phase, ERNN is employed, while MANFIS is
optimized using particle swarm optimization (PSO). The training of ERNN-MANFIS involves sequential steps
with PSO to achieve improved performance across all computational processes. The hybridization of ELMAN
and ANVFIS in a single stage introduces a novel approach, termed ERNN-MANFIS.

Step 1. Membership values for fuzzy sets are computed based on the cluster centers determined by Fuzzy C-
Means (FCM). Eq. (17) is used to calculate these membership values. Assuming two entries
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(X1 Xi2)
O = 4,(x),i =12 (11)
Of = u ,(x),i=34 (12)

Step 2. Each firing strength rule corresponds to the outputs of the second layer, which are computed based on
the membership values. The outputs of the second layer are determined as follows:

O} =w, =min(0;,0;) (13)
07 =w, =min(0;,03) (14)
In this layer, the number of outputs is equal to the number of rules.

Step 3. The rule of fire strengths is normalized. The normalized rule fire strengths for the network, the structure
is calculated as follows:

Of:v_vizL,izl,z (15)
W, +W,

Step 4. Output values of the linear functions are given as follows:

)A(tl = P X F QX+ (16)

)A(tz =P X 0%, 1 )

The set of the parameters {pl, P,.d;.9,, 1, I’z} in Eq. (15) and Eq. (16) will be denoted as consequent parameters.
Step 4. The output of the MANFIS is calculated using Eq. (17).

o ool | o o2
Xeanpis = WoXp W5 X (18)
Step 5. The output of ERNN is calculated as follows:

X e = P X+ PoX o (19)

Step 6. The output of ERNN-MANFIS is calculated as follows:
)A(t = Vl)A(t.ANHs +V, )A(t.ERNN +Vs; (20)

The mathematical expression of the hybrid method is presented with a closed form in Eq. (20). The ERNN-
MANTFIS is a linear combination of ERNN and MANFIS models, but the combination weights are estimated
with other model parameters in the single optimization processes by employing PSO.
Training ERNN-MANFIS with PSO
1. Initialization of PSO Parameters: Define social, cognitive, and inertia parameters, along with the
number of particles and maximum iterations.
2. Random Initialization: Initialize velocity values and the initial positions of particles randomly,
corresponding to parameters in the ERNN-MANFIS.
3. Evaluation Function: Calculate the Mean Square Error (MSE) for each particle using the formula
provided in Eq. (10).
4. Initialization of Best Positions: Establish initial values for personal best (pbest) and global best (gbest).
Update pbest and gbest iteratively during each iteration, checking termination criteria.
5. Update Parameters: Calculate cognitive, social, and inertia parameters using Eqs. (5)-(7) respectively.
Update indices of failure and success.
6. Update Velocity and Positions: Determine new velocity and position values for particles using Eqs.
(8) -(9). Recalculate evaluation values for the new particles as described in Step 3, and return to Step 4.
These steps outline the process of the Particle Swarm Optimization (PSO) method within the context of
optimizing parameters in the ERNN-MANFIS framework for forecasting interval time series data.
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The main advantages of the recommended method can be summarized as follows:

1. Implementing the fuzzy clustering method in the fuzzification step leads not to dealing with subjective
judgments.

2. By implementing EANN in the identification of fuzzy relations, complex fuzzy relation tables, and complex
matrix operations are not needed. Besides, the advantage of the flexible modeling of EANN is obtained.

3. By implementing the recommended model called ERNN-MANTFIS, there is no need to use fuzzy numbers for
input memberships, as the parameters of the output membership function are determined using the particle swarm
optimization method.

4. The proposed method also removes both seasonality and trend.

5. In the recommended method, membership values were systematically obtained using the fuzzy c-means
clustering method during the fuzzification step.

Application
In this study, seven different time series data in the form of interval representations were analyzed by using the
MATLAB program to assess the forecasting performances of the recommended method called ERNN-MANFIS.
All-time series comprise daily data from 2013 to 2020 with the lowest and the highest values. Time series are S&P
500, NASDAQ 100, NIKKEI 225, DAX, FTSE 100 and DOW 30, US Index. The index data was obtained from
the Yahoo Finance website. The FTSE 100 index comprises stocks traded on the London Stock Exchange, the
NIKKEI 225 index includes stocks traded on the Tokyo Stock Exchange, and the S&P 500 index consists of
stocks traded on the New York Stock Exchange. The London Stock Exchange represents Europe's largest stock
exchange, the Tokyo Stock Exchange represents Asia's largest, and the New York Stock Exchange is the largest
in the world. Weekly closing prices of the NASDAQ 100 index are used, and the data was sourced from the
Refinitiv Eikon database. The DAX index, from the Frankfurt Stock Exchange (Germany) (DAX Classic All
Share), represents mid-efficient market types. The Dow 30 index represents the United States stock market, while
the US Index refers to the US Dollar Index.
Table 1. Performance evaluations of MANFIS-ERNN utilizing seven different data sets based on RMSE

DAX DOW 30 NASDAQ 100  S&P 500 NIKKEI225 FISE 100  US Index
The Lowest 0,02069 0,02727 0,0315 0,00155 0,02443 0,0165 0,26547

The Highest  0,14384 0,03361 0,03345 0,00425 0,03229 0,01395 0,25931

ERNN-MANFIS prediction of testing data
0,045
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Figure 2. Time series graph of the test data and ERNN-MANFIS forecasts for the highest DAX series.
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Figure 3. Time series graph of the test data and ERNN-MANFIS forecasts for the lowest DAX series

Table 2. Details of the ERNN-MANTFIS for predicting time series

Parameters Desctiption/Value
Number of Clusters 5
Number of Particles for Each Population 30
Number of Iterations 100
Test data for the Modified ANFIS 15
Number of Input Layers 12
Number of Hidden Layers 12
Test Data for Elman Artificial Neural Network 144
Test Data for ERNN-MANFIS 139
Hybrid Optimization Method ERNN and The Modified ANFIS
Activation function of the input layer Logarithmic
Activation Function of The Hidden Layer Linear

Table 3. The comparison of the results for the lowest DAX index data

Song & Song &
Methods Chissom (?;1 96 161) Huz';u;% Se)t al. ANFIS Chissom Th;/{llﬁ)l}())zsed
(1994) (1993b)
MSE 0.5114 0.0370 0.0055 0.0588 0.0776 1,24617E-06

Table 4. The comparison of the results for the highest DAX index data

Song & Song &
Methods Chissom ?;1962 Hua?glg gzt al. ANFIS Chissom Thi/[ Pr;)lpzsed
(1994) (1999 (1599 (1993b) ctho
MSE 1,058 1,026 1,056 1,245 1,0045 0,0085
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Discussion and Conclusions

A novel method called ERNN-MANFIS is proposed to improve forecasting accuracy when the time series data
are in the form of I'TS. Many datasets generated across various disciplines naturally take the form of interval data,
which are often forced to be transformed into other forms, especially real numbers, leading to inevitable
information loss. By directly addressing interval data, the proposed method offers an efficient alternative for
processing such datasets, enabling deeper insights and more accurate analyses. The hybrid ERNN-MANFIS
method demonstrates significant potential in terms of solution quality and efficiency.

An adopted hybrid strategy combines ERNN and MANFIS to obtain time series forecasting. The method
integrates membership values derived systematically from fuzzy c-means clustering during the fuzzification of
input values. In the training phase, ERNN is employed, while MANFIS is optimized using particle swarm
optimization (PSO). The training of ERNN-MANFIS involves sequential steps with PSO to achieve improved
performance across all computational processes. The hybridization of ELMAN and ANFIS in a single stage
introduces a novel approach.

The advantages of the ERNN-MANFIS model include systematic derivation of membership values, elimination
of complex fuzzy relationship tables, and elimination of effects such as seasonality, trend, etc. This model offers
a flexible and efficient approach to increasing the forecast accuracy in interval-valued time series.

The proposed method used the seven different time series data in the form of interval representations and
compared them with the most implemented methods in the literature, namely, Song & Chissom (1993b, 1994),
Chen (1996), Hurang et al. (1998), ANFIS (2015). The results suggest that a fraction of the MSE score is attained
by the proposed method when compared to highly implemented methods.
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Ekler
MATLAB Codes
Song & Chissom (1994)

function [Ong, Defong,Onggl]=songchissom(la,salt,x,ss,U)

% la:aralik uzunlugu

% salt: Evrensel kiimenin alt sinir

% x: zaman serisi

% ss: stnuf sayist

n=length(x); % n:veri biyiklion

for i=1:ss
ualt(i)=salt+(-1)*la;
uust(i)=salt+i*la;
mb(i)=(ualt()) +uust(i))/2;

end

% A'lart tanimliyor.

A=eye(ss);% ss*ss lik birim matris olusturur.

A(1,2)=0.5;A(ss,ss-1)=0.5;
for i=2:(ss-1)
A(L,i+1)=0.5;
A(1,i-1)=0.5;
end
fs=umax(U");% veriyi fuzzifike ettik.
fs1=fs(1:(n-1));
fs2=fs(2:n);
for j=1:ss
for i=1:ss
fr(i,j)=0;
end
end
for j=1:ss
for i=1:(n-1)
if fs1()==j
fr(fs1(),fs231)=1;
end
end
end
k=0;
for i=1:ss
for j=1:ss
if fr(1,j)==1
k=k+1;
if k==
Q=minop(A(,),AG,);
else
R=minop(A(,:),A(,));
Q=matmax(Q,R);
end
end
end
end
% Bulanyk dederleri buluyoruz.
Ong=U(1,y);
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fori=1:n
ong=bileske(U(i,:),Q);
Ong=[Ong;ong];
end
%Defuzzyifike adymy
Ong=0ng(2:(n+1),);
Sumong=sum(Ong");
fori=1:n
for j=1:ss
Song(i,)) =Ong(i,j) / Sumong(i);
end
end
Defong=mb*Song';
mb
size(Defong)
e=Defong'-x;
MSE=sum(e.*¢)/n
Ongl=umax(Ong
for i=1:n
Onggl({)=mb(Ongl (i));
end
RMSE=MSE"0.5

Chen(1996)
function [rmsetest,mapetest,rmseegt,mapeegt|]=chen5(x,salt,ss,ntest)
%This program can be used to apply Chen (1996) method.
%lnputs:
% la=length of interval
% x = all data of time series (training and test set, it should be nx1
%dimension)
% salt= Lower bound for universe of discourse
% ss= number of fuzzy sets, it should be given 100 at least. Actual number
%of fuzzy sets are computed in program. ss should be given as very big.
% ntest = test set length, the test data are taken by end of the time
% series.
%Outputs:
% ongegt: Forecats for training set
% ongtest: Forecasts for test set
% rmseegt and rmsetest: Root of mean square error values for train and test
% sets, respectively.
% fr: The matrix for fuzzy logic group relation table
% fs: fuzzy sets
la=(max(x)-min(x))/ss;
nl=size(x,1);
n=nl-ntest;
xegt=x(2:n);
xtest=x((n+1):n1);
for i=1:ss
ualt(i)=salt+(i-1)*la;
uust(i)=salt+i*la;
mb(i)=(ualt(i)+tuust(i))/2;
end
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fori=1:n
for j=1:ss
IF ((x() <=uust())&(x()>=ualt(j))
fs(i)=j;
end
end
end
fs1=fs(1:(n-1));
fs2=fs(2:n);
for j=1:ss
for i=1:ss
fr(i,j)=0;
end
end
for j=1:ss
for i=1:(n-1)
if fs1()==j
fr(fs1(i),fs231)=1;
end
end
end
ongoru=fr*mb';
agr=sum(fr");
for i=1:ss
if agr())==0
ong())=mb(i);
else
ong(i)=ongoru(i)/agr(i);
end
end
ong?2(1)=nan;
for i=2:n
ong2(i)=ong(fs(i-1));
end
for i=(n+1):nl
for j=1:ss
if (x(@-1)<=uust())) &&(x(i-1)>=ualt(j)))
fs(i-1)=j;
end
end
ong2(i)=ong(fs(i-1));
end
ongegt=ong2(2:n);
ongtest=ong2((n+1):n1);
mseegt=(xegt'-ongegt)*(xegt'-ongegt)'/ (n-1);
msetest=(xtest'-ongtest)*(xtest'-ongtest)'/ (ntest);
rmseegt=power(mseegt,0.5);
rmsetest=power(msetest,0.5);
mapeegt=mean(abs((xegt'-ongegt) /xegt'));
mapetest=mean(abs((xtest'-ongtest) /xtest"));
end
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Huarng et al. (1998)

function[RMSEtest, MAPEtest,DAtest, RMSEegt, MAPEegt, D Aegt,Ong,Defegt,Deftest,yegt,ytest] =hwang98tv(

w,y,88,1test)
% Hwag et al.(1998)
% la:aralik uzunlugu
% salt: Evrensel kiimenin alt sinir
% x: zaman serisi
% ss: synyf sayysy
x=diff(y);
la=(max(x)-min(x))/ss;
salt=min(x);
n=length(x)-ntest; % n:veri buyikligi
for i=1:ss
ualt(i)=salt+(-1)*la;
uust(i)=salt+i*la;
mb(i)=(ualt() +uust(i))/2;
end
for i=1:(n+ntest)
for j=1:ss
if ((x()<=uust())&e(x()>=ualt(})
()=
end
end
end
for i=1:(n+ntest)
if fs())==
U(1,))=zeros(1,ss);
U@,n=1;
U(1,2)=0.5;
elseif fs(i)==ss
U(1,))=zeros(1,ss);
U(,ss-1)=0.5;
U(,ss)=1;
else
U(,:)=zeros(1,ss);
U(,fs(i)+1)=0.5;
UG, ts(1)=1;
U(,fs()-1)=0.5;
end
end
A=eye(ss);
A(1,2)=0.5;A(ss,ss-1)=0.5;
for i=2:(ss-1)
A(1,i+1)=0.5;
A(1L,i-1)=0.5;
end
n=n-+ntest;
Ong=U(1,y);
for itv=w+1:n
fs1=fs(itv-w:itv-2);
OM=zeros(1,ss);
for il=1:w-1
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ifil==
OM(1,:)=A(fs1(w-i1),:);
end
OM=[OM;A(fs1(w-il),)];
end
CM=A(fs(itv-1),:);
CM2=CM;
for i=1:w-1
CM2=[CM2;,CM];
end
R=OM.*CM2;
ong=max(R);
Ong=[Ong;ong];
end
Ong=0ng(2:end,:);
[Defong]|=matrmax3(Ong,mb);
n=n-ntest;
Defegt=Defong(1:(n-w));
Deftest=Defong(n-w+1:(n+ntest-w));
yegt=Defegt+y(w:n-1)';
ytest=Deftest+y(n:n+ntest-1)";
n=length(y);
yl=y(w+2:n-ntest);
y2=y(n-ntest+1:n);

[RMSEegt, MAPEegt,D Aegt|=kriter(yegt,y1);
[RMSEtest, MAPEtest, D Atest|=kriter(ytest,y2);

End

Song & Chissom (1993b)

function

[RMSEegt, MAPEegt,DAegt, RMSEtest, MAPEtest,D Atest,Defong,0Ong,mb,RR1,Q]=songch1993b(x,ss,ntest)

%This program is written for Song & Chissom (1993b) method

% Inputs:
% x: Time Series
% ss: Number of Fuzzy Sets

% ntest: test set length, the test data are taken by end of the time

% series.
salt=min(x);
la=(max(x)-min(x))/ss;
n=length(x)-ntest;
for i=1:ss
ualt(i)=salt+(1-1)*la;
uust(i)=salt+i*la;
mb(i)=(ualt(i)+uust(i))/2;
end
for i=1:(n+ntest)
for j=1:ss
if ((x() <=uust() &&(x()>=ualt())
)=
end
end
end
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for i=1:(n+ntest)
if fs())==1
U(,:)=zeros(1,ss);
U@ n=1;
U(1,2)=0.5;
elseif fs(i)==ss
U(,:)=zeros(1,ss);
U(i,ss-1)=0.5;
U(@,ss)=1;
else
U(i,))=zeros(1,ss);
U(l,fs()+1)=0.5;
UG, fs()=1;
U(,fs()-1)=0.5;
end
end
A=eye(ss);
A(1,2)=0.5;A(ss,ss-1)=0.5;
for i=2:(ss-1)
A(,i+1)=0.5;
A,i-1)=0.5;
end
fs1=fs(1:(n-1));
fs2=fs(2:n);
for j=1:ss
for i=1:ss
fr(i,j)=0;
end
end
for j=1:ss
for i=1:(n-1)
if fs1()==j
fr(fs1(),fs231)=1;
end
end
end
k=0;
for i=1:ss
for j=1:ss
if fr(1,j)==1
k=k+1;
if k==
Q=minop(A(,),AG,);
else
R=minop(A(,:),A(,));
RR1{k,1}=R;
Q=matmax(Q,R);
end
end
end
end
n=n-+ntest;
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Ong=U(1,y);
fori=1:n
ong=nbileske(U(i,:),Q);
Ong=[Ong;ong];
end
Ong=0ng(2:(n+1),);
[Defong]=matrmax2(Ong,mb);
n=n-ntest;
xegt=x(2:n);
xtest=x(n+1:(n+ntest));
Defegt=Defong(1:(n-1));
Deftest=Defong(n:(n+ntest-1));
[RMSEegt, MAPEegt, D Aegt|=kriter(Defegt,xegt);
[RMSEtest, MAPEtest,DAtest|=kriter(Deftest,xtest);

ANFIS

function

[RMSEtest], MAPEtest], RMSEtest2, MAPEtest2, RMSEtest3, MAPEtest3,RMSEtest4, MAPEtest4,0ng] =ANFI

Scoz(xy,m,ntest)
x=(xy-min(xy))/ (max(xy)-min(xy));
M=lagmatrix(x,m);
ns=size(M,1);
nsut=size(M,2);
M=M(max(m)+1:ns,);
ns=size(M,1);
Megt=M(1:ns-ntest,:);
Mtest=M(ns-ntest+1:ns,:);
Mtest(:,nsut)=Mtest(:,nsut)*(max(xy)-min(xy)) +min(xy);
numMFs=[2 3 4 5];
fori=1:4
% 'gbellmf'
in_fis = genfis1(Megt,numMFs(i),'gbellmf’);
out_fis = anfis(Megt,in_fis,50);
Ong{i,1}=evalfis(Mtest(:,1:nsut-1),out_fis);
Ong{i,1}=0ng{i,1}*(max(xy)-min(xy))+min(xy);
[RMSEtest1 (i), MAPEtest1 (i)] =kriter(Ong{i,1 } ,Mtest(:,nsut)");
%'gaussmf’
in_fis = genfis1(Megt,numMFs(i),'gaussmf’);
out_fis = anfis(Megt,in_fis,50);
Ong{i,2} =evalfis(Mtest(:,1:nsut-1),out_fis);
Ong{i,2} =Ong{i,2} *(max(xy)-min(xy)) +min(xy);
[RMSEtest2(i), MAPEtest2(i)] =kriter(Ong {i,2} ,Mtest(:,nsut)");
Yotrapmf
in_fis = genfis1(Megt,numMFs(j), trapmf’);
out_fis = anfis(Megt,in_fis,50);
Ong{i,3} =evalfis(Mtest(:,1:nsut-1),out_fis);
Ong{i,3} =Ong{i,3} *(max(xy)-min(xy))+min(xy);
[RMSEtest3(1), MAPEtest3(i)]=kriter(Ong {i,3 } ,Mtest(;,nsut)");
Yotrimf
in_fis = genfis1(Megt,numMFs(i),'trimf");
out_fis = anfis(Megt,in_fis,50);
Ong{i,4} =evalfis(Mtest(:,1:nsut-1),out_fis);
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Ong{i,4}=0Ong{i,4}*(max(xy)-min(xy)) +min(xy);
[RMSEtest4 (i), MAPEtest4(i)]=kriter(Ong{i,4} ,Mtest(;,nsut)");
end
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GENISLETILMIS OZET

Aralik degerli zaman serileri, verilerin zamanla belirli araliklar halinde toplandigt ve 6zellikle finans, mihendislik,
tip ve meteoroloji gibi bircok alanda énemli uygulamalara sahip bir tekniktir. Tlk olarak Bock ve Diday (2000)
tarafindan tanitilan bu kavram, klasik veri analizini ve istatistiksel yontemleri aralik degerli veriler gibi sembolik
verilere genisleterek, yapay zeka ve desen tanima alanlarinda daha kapsamli analizler yapilmasina olanak tanir.
Aralik degerli serilerin analizi icin cesitli yontemler gelistirilmistir. Bunlar arasinda aralik degerli zaman serileri
histogramlart (De Carvalho, 1995), temel bilesen analizi (Lauro & Palumbo, 2000; Cazes et al., 1997) ve merkezi
egilim ile yayilma 6lcileri (Bertrand & Goupil, 2000; Billard & Diday, 2003) bulunmaktadir. Ayrica, Maia ve atk.
(2008) tarafindan 6nerilen dort farklt yaklasim, aralik degerli zaman serilerinin modellenmesi ve tahmin edilmesi
icin AR, ARIMA, yapay sinir aglart (ANN) ve hibrit modelleri kullanmaktadir. Yapay sinir aglari (ANN) gibi
modeller, borsa tahmini gibi uygulamalarda yaygin olarak kullanilmis ve Gstel diizeltme modellerinin Gstinligi
vurgulanmustir. Bu ¢alisma ERNN-MANFIS adt verilen yeni bir hibrit model énermektedir. Bu model Parcacik
Sird Optimizasyonu (PSO) ile optimize edilmis, Adaptif Neuro-Fuzzy Cikarim Sistemi (ANFIS) ve Elman
Tekrarlayan Sinir Agt (ERNN) birlesimi ile olusturulmustur. ERNN, zaman serisi verilerinin zamansal desenlerini
yakalamaya olanak tanirken, MANFIS bulanik mantig1 kullanarak dogrusal olmayan iliskileri modellemektedir. Bu
hibrit model, verilerdeki karmasik iliskileri daha iyi anlamak ve tahmin dogrulugunu artirmak amactyla PSO ile
optimize edilmektedir. ERNN-MANFIS modelinin avantajlart arasinda tiyelik degerlerinin sistematik bir sekilde
tiretilmesi, karmasik bulanik iliski tablolarinin ortadan kaldirilmast ve mevsimsellik, trend gibi etkilerin giderilmesi
yer almaktadir. Bu model, aralik degerli zaman serilerindeki tahmin dogrulugunu artirmak icin esnek ve verimli bir
yaklastm sunmaktadir. Model, S&P500, NASDAQ100, NIKKEI225 gibi finansal endeksler dahil olmak tizere
yedi farklt veri setine uygulanmis ve sonuclar, ERNN-MANFIS'in mevcut yontemlere gére daha iyi 6ngdri
dogrulugu sagladigin1  géstermistir. Ortalama Karekék Hatast (RMSE) kullanilarak yapilan performans
degerlendirmesi, 6nerilen modelin dogrulugunun arttifini ortaya koymustur. Calismada, aralik degerli zaman
serilerinin dogru tahmin edilmesinin, planlama ve strateji olusturma gibi ¢esitli alanlarda kritik 6neme sahip oldugu
vurgulanmaktadir. Literatlr, tahmin i¢in stokastik ve stokastik olmayan bir¢ok yéntem sunmakta olup, yéntem
secimi genellikle verilerin niteligine baghdir. Aralik degerli zaman serileri, kesin degerler yerine araliklar olarak
toplanan verilerle ilgili bir tekniktir. Klasik zaman serisi yontemleri bu tiir verilere uygulanabilse de, aralik verilerini
tek nokta verilerine doniistiirmek bilgi kaybina yol agabilir. Aralik degerli veriler, 6zellikle finansal fiyat araliklari,
mithendislikte voltaj araliklari, tipta kan basinct araliklar ve meteorolojide yagis araliklari gibi uygulamalara sahiptir.

Ichino ve arkadaslarinin (1996) erken calismalart, aralik verileri igin bélge odaklt metodolojiyi kullanarak sembolik
siniflandiricilar gelistirmistir. Sonraki yillarda, aralik zaman serileri tahmini i¢in yapay sinir aglari (ANN), ARIMA
ve hibrit modeller kullantlarak daha kapsamli yontemler gelistirilmistir. Bu ¢calismada, ERNN-MANFIS ad: verilen
yeni bir hibrit model 6nerilmektedir. Bu model, Elman Tekratrlayan Sinir Agi (ERNN) ile Degistirilmis Adaptif
Neuro-Fuzzy Cikarim Sistemi (MANFIS)'ni bitlestirerek, aralik degerli zaman serilerini modellemekte daha etkili
bir yontem sunmaktadir. MANFIS modeli, ERNN ile bitlestirilerek aralik degerli zaman serileri tahmini i¢in yeni
bir yaklasim getirilmistir. Hibrit model, bulanik c-ortalamalar kiimeleme teknigi kullanarak tyelik degerlerini
sistematik olarak tiiretir, bu da tahmin dogrulugunu artirir. Egitim agamasinda, PSO ile optimize edilen MANFIS
parametreleri modelin genel performansint artirmaktadir. Calisma, araltk degerli zaman serilerinin tahmini icin
gelistirilen bu yeni hibrit modeli farkli veri setlerinde test etmekte ve bu yontemin dogrulugunu mevcut
yontemlerle karsilastirmaktadir. Son olarak, calismanin sonuglart ve gelecekteki arastirma alanlarina dair tartigmalar
yer almaktadir. Aralik degerli zaman serileri, sembolik veri analizi kapsaminda 6nemli bir yer tutar ve zaman
icindeki veri degiskenligini basitce temsil eder.
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