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 Falls among older adults pose significant health risks, making their prevention 

and detection critical areas of research. This review examines fall detection and 

prevention systems, categorizing them based on sensor types and utilization 

methods: wearable sensors, environmental sensors, radio-frequency-based 

sensors, and hybrid systems. Additionally, it explores the methods employed 

within these systems. Given the limitations of traditional linear approaches in 

accurately detecting falls, recent research emphasizes artificial intelligence (AI) 

techniques, particularly machine learning (ML) and deep learning (DL), to 

enhance detection accuracy and system functionality. The review provides an 

overview of the sensors and algorithms used in fall detection and prevention 

systems, alongside their outcomes. Key findings and challenges related to 

specific sensors and systems are discussed in detail. This analysis offers 

researchers a comprehensive understanding of current technologies, highlights 

the contributions of AI methods, and outlines potential future directions in the 

field. By evaluating sensors, methodologies, and system sensitivities, the aim is 

to contribute to the development of effective solutions tailored to specific 

sensitivities. 
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Yaşlı bireylerde düşmeler, önemli sağlık riskleri oluşturmakta ve bu durum, 

önleme ve tespit çalışmalarını kritik bir araştırma alanı haline getirmektedir.  

Bu derleme, düşme tespit ve önleme sistemlerini kullanılan sensör türleri ve 

yöntemlerine göre sınıflandırarak incelemektedir: giyilebilir sensörler, 

çevresel sensörler, radyo frekansı tabanlı sensörler ve hibrit sistemler. Ayrıca, 

bu sistemlerde kullanılan yöntemler ele alınmaktadır. Geleneksel doğrusal 

yaklaşımların düşme olaylarını doğru bir şekilde tespit etmedeki sınırlamaları 

göz önüne alındığında, son yıllarda makine öğrenmesi (ML) ve derin öğrenme 

(DL) gibi yapay zeka (YZ) teknikleri üzerine yapılan araştırmalar ön plana 

çıkmaktadır. Bu derleme, düşme tespit ve önleme sistemlerinde kullanılan 

sensörler ve algoritmalar ile bunların sonuçlarına dair kapsamlı bir bilgi 

sunmaktadır. Belirli sensörler ve sistemlerle ilgili temel bulgular ve zorluklar 

detaylı bir şekilde tartışılmaktadır. Çalışma, mevcut teknolojiler hakkında 

araştırmacılara geniş bir bakış açısı kazandırmayı, YZ yöntemlerinin 

katkılarını vurgulamayı ve alanın gelecekteki yönelimlerini ortaya koymayı 

hedeflemektedir. Sensörler, metodolojiler ve sistem duyarlılıkları 

değerlendirilerek, etkili ve hassasiyetlere uygun çözümlerin geliştirilmesine 

katkı sağlanması amaçlanmaktadır. 

Anahtar Kelimeler: 
Düşme algılama 

Düşme önleme 
Makine öğrenmesi 

Derin öğrenme 

Düşme sensör tipleri 
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1.  Introduction

Advancements in medicine and global population growth contribute to an increase in the proportion of 

the elderly population. The World Health Organization (WHO) predicts that by 2050, the number of 

elderly individuals will exceed 1.5 billion. According to a report from 2015 by WHO, the elderly 

population (aged 60 and above), which was 900 million at the time, accounted for 22% of the world's 

population. Furthermore, it is indicated that the annual fall rate among adults aged 70 and above is 

expected to increase from 32% to 42%. Falls have both physical and psychological effects that restrict 

the quality of life for the elderly (Qiu et al. 2019). Serious injuries resulting from falls, such as fractures, 

bruises, and head traumas, or even mild injuries that limit daily activities, can diminish a person's quality 

of life (Faes et al. 2010). The fear of falling leads to a decrease in engaging in physical activities, 

resulting in a decline in mobility and muscle strength, and an increased risk of falling. The development 

of a fear of falling can reduce one's joy of life and diminish their commitment to life (Kuzuya et al. 

2006), (Zhu et al.2021). Consequently, it is an essential need for the elderly to detect falls in order to 

provide timely assistance if falls cannot be prevented or to issue warnings by predicting falls in order to 

improve overall quality of life (Yu et al. 2008). 

Falls can be divided into two main categories: fall detection and prevention. Fall detection involves 

using data obtained from sensors or cameras to detect a fall event and make a distress call. Fall 

prevention aims to predict and prevent falls by observing human movements. Various strategies, such 

as combinations of different sensors, artificial intelligence methods, and threshold-based approaches, 

are being explored in fall detection and prevention studies. 

Over the past twenty years, fall detection and prevention strategies have become a significant focus in 

addressing the issue of falls among the elderly. Particularly, fall detection methods have been 

extensively investigated by researchers. These systems aim to obtain more data by utilizing different 

types of sensors and process the data using statistical and artificial intelligent methods. Efforts have 

been made to achieve more successful results through the use of artificial intelligence algorithms and 

analysis techniques. Sensor types used in fall detection and prevention systems are classified and shown 

in Figure 1. 
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Figure 1. Fall detection and prevention systems classified with sensor type. 

Fall detection and prevention systems work by measuring sensor data in three basic time periods: before 

the fall, during the fall and after the fall. While fall prevention systems generally focus on pre-fall sensor 

data from these time intervals, fall detection systems focus on sensor data during and after the fall. One 

of the fall detection studies only considers the large acceleration effect (Hwang et al. 2004). In some 
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systems, more successful results have been achieved with different combinations of sensor number and 

type. Among these, studies were found in which a three-axis accelerometer and gyroscope were 

preferred for fall detection (Li et al. 2009). In another study, to improve the performance, the authors 

proposed a multi-modal fall detection, which is a three-step fall detection strategy consisting of multiple 

signal sources, including an accelerometer, audio and video techniques (Zhang et al. 2013). Fall 

detection studies have been carried out using different sensors such as accelerometer and microphone 

sensors in the smartphone (Shakeri 2017). In articles (Shahzad et al. 2018) and (Quadros et al. 2018), 

the authors effectively detected falls using machine learning, one of the artificial intelligence methods. 

Finally, in recent years, attention has been drawn to studies using Radio Frequency (RF)-based Wi-Fi 

and Bluetooth technologies, which are carried out on the principle of measuring the strength of the signal 

weakened after the absorption of wireless network signals (Wang et al. 2016; Yusuf et al. 2021). 

The categorization of sensor types and combinations applied to enhance the efficacy of fall detection 

systems is examined in this review under the following subcategories: 

 Studies utilizing wearable (inertial) sensors, 

 Studies employing environmental sensors, which include both image-based approaches (RGB, 

depth sensors, Kinect cameras) and non-image-based methods (such as passive infrared (PIR) 

sensors and vibration sensors), 

 Measurements and studies based on Radio Frequency (RF) signals, including Wi-Fi and custom 

RF configurations, 

 Studies employing combined sensor systems, involving various sensor types and combinations, 

such as cameras, accelerometers, PIR sensors, and pressure sensors. 

In the second section, sensors are described in terms of their material properties, while the methodology 

section outlines the literature review approach. The third section classifies fall detection and sensing 

systems based on the types of sensors employed. The reviewed studies are analyzed to identify the 

strengths and limitations of each sensor type and system approach. In the fourth section, a 

comprehensive discussion is provided on the advantages and disadvantages of these studies. Finally, the 

fifth section presents recommendations derived from the review findings and proposes future research 

directions in this field. 

 

2. Materials and Methods 

This section explains the types of sensors encountered in the literature review and their fundamental 

operating principles. The methodology section provides an overview of the study's position within the 

literature along with some explanation. 

 

2.1 Materials 

The fundamental definitions, sensor types, primary categorization, and working principles of fall 

detection and prevention systems are detailed in this section. 
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2.1.1 Sensor Types 

In studies on fall detection and prevention systems, various approaches have been proposed using 

different sensor types and artificial intelligence (AI) techniques. The sensor types frequently 

encountered in literature can be divided into four main categories: wearable sensors, environmental 

sensors, radio frequency (RF)-based sensors, and hybrid systems (Figure 2). 

Wearable sensors directly measure body movements using sensors such as accelerometers, gyroscopes, 

and magnetometers. These sensors are placed on different parts of the body to detect joint movements 

and body dynamics. 

 

Figure 2. Fall detection and prevention systems classified with sensor type. 

Wearable sensors, which are commonly used in fall detection systems, are attached to the body to 

continuously monitor and analyze movements (Fig. 3). 

 

Figure 3. Wearable sensors in fall detection and prevention systems 

Accelerometers are sensors that measure body movement acceleration along three axes (x, y, z). In fall 

detection systems, they are used to continuously monitor an individual's movement dynamics and 

identify fall events. Accelerometers can analyze parameters such as step count, duration of physical 



1493 

 

activity, energy expenditure, and posture changes (Kangas et al., 2012). Due to their lightweight, low 

cost, low power consumption, and small size, they are widely used in wearable devices. 

Gyroscopes measure the angular velocity of the body and are typically used in conjunction with 

accelerometers to enable a more detailed analysis of movements. They play a crucial role in detecting 

sudden rotational movements during falls, helping to determine the direction and intensity of the motion. 

Studies indicate that integrating gyroscopes with accelerometers enhances the accuracy of fall detection 

systems (Liu et al., 2020). However, gyroscopes have high power consumption and, when used alone, 

may result in a high rate of false positives (Najafi et al., 2003). 

Magnetometers measure magnetic fields to provide orientation information. In fall detection systems, 

they are used to determine the body's spatial orientation and detect sudden position changes during a fall 

(Ojetola et al., 2015). Magnetometers are commonly found in smartphones and wearable devices. 

However, they can be influenced by environmental magnetic fields, which limits their accuracy when 

used alone. For more reliable results, they are typically combined with accelerometers and gyroscopes 

(Yang and Hsu, 2010). 

Pressure sensors measure the force applied to the body and are used to detect pressure changes that 

occur during a fall. They are particularly placed in shoe soles or other body regions to detect impact 

forces and assess fall severity (Tong et al., 2018). In fall detection systems, pressure sensors are often 

integrated with other sensors to analyze physical contact and pressure distribution. However, their 

accuracy may vary depending on their placement on the body. 

Barometers are sensors that measure atmospheric pressure to detect changes in altitude. In fall detection 

systems, they are used to identify sudden drops in elevation. Rapid altitude changes occurring during a 

fall can be detected by barometric sensors, contributing to fall event identification. They play a 

significant role in detecting falls in environments with elevation differences, such as multi-story 

buildings and staircases (Ejupi et al., 2016). However, their sensitivity can be affected by atmospheric 

conditions, limiting their reliability when used alone. Therefore, they are often integrated with 

accelerometers and gyroscopes to develop more accurate fall detection systems (Lin et al., 2017). 

Inclinometers are sensors that measure the tilt angle and deviation from the vertical axis. In fall 

detection systems, they are used to detect sudden angular changes in body posture. By utilizing gravity-

based measurements, they analyze postural changes and detect angular differences during a fall. 

Additionally, they can be employed to monitor postural abnormalities and balance disorders (Sun et al., 

2018). 

Due to their low power consumption and small size, these sensors can be easily integrated into portable 

devices. However, their sensitivity to movement can lead to a high rate of false positive alarms, and 

their accuracy in fall detection is limited when used alone. Therefore, they are typically combined with 

other sensors, such as accelerometers and gyroscopes, to achieve more reliable results. 

Environmental sensors that are not positioned on the body, include camera-based (RGB, depth, 

thermal) systems and passive infrared (PIR) sensors. Camera-based systems detect falls using image 
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processing techniques, while PIR sensors operate by detecting thermal changes caused by the movement 

of living beings. They are strategically placed in living spaces (e.g., residences, care facilities) to detect 

falls and identify factors that increase the risk of falls. The performance and features of different camera 

types used in fall detection systems play an important role in increasing the effectiveness of these 

systems. In this context, RGB cameras, Kinect cameras (depth cameras), and thermal cameras, which 

are evaluated within the scope of environmental sensors, are among the basic imaging systems used in 

the detection of falls (Figure 4). 

 

 

Figure 4. Fall detection and prevention systems classified with environmental sensors. 

RGB cameras are widely used in fall detection systems due to their low cost and widespread availability 

(Mastorakis and Makris, 2014). These cameras provide three-channel (red, green, blue) imaging, 

allowing for a detailed visual analysis of the environment. In studies utilizing a single camera, fall 

detection is achieved by analyzing changes in the human silhouette over time (Rougier et al., 2011). 

Image processing techniques are used to detect fall instances, analyze movement patterns, and identify 

abnormal situations. However, RGB cameras are sensitive to ambient lighting conditions, and their 

detection accuracy decreases under low or variable light levels (Kwolek and Kepski, 2014). To address 

these limitations, they have been integrated with deep learning-based object detection algorithms such 

as YOLOv5, resulting in more reliable fall detection systems (Redmon et al., 2016). Additionally, to 

mitigate privacy concerns, techniques such as 2D skeleton estimation are employed instead of raw RGB 

images (Shotton et al., 2011). To improve reliability, multi-camera systems capable of capturing images 

from different angles have been proposed (Stone and Skubic, 2011). 
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Thermal cameras operate solely based on temperature distribution data and offer high accuracy rates 

regardless of ambient lighting conditions (Feng et al., 2014). These systems detect falls by recognizing 

body temperature variations and allow the use of simpler deep learning models due to their low-

resolution thermal images (Feng et al., 2014). Thermal imaging systems provide significant advantages 

in privacy-sensitive environments since they do not contain personal identifying information such as 

facial recognition and rely solely on heat distribution data (Feng et al., 2014). However, due to their low 

resolution, detailed body movement analysis becomes challenging. Therefore, integrating thermal 

cameras with additional sensors or other imaging systems is recommended for fall detection. 

Kinect Cameras (Depth Cameras) provide RGB-D data, enabling distance measurements between a 

person and the ground, as well as motion analysis (Zhang, 2012). Depth sensors generate three-

dimensional maps of the environment using active infrared light projection to obtain distance 

information. This enhances accuracy by analyzing body posture and key joint movements during a fall 

(Stone and Skubic, 2011). Microsoft Kinect is one of the most widely used depth cameras and serves as 

a valuable tool for detailed analysis of fall events by performing 3D skeleton joint estimation (Shotton 

et al., 2011). Kinect systems address some privacy concerns associated with RGB cameras by utilizing 

depth information. However, these systems require high computational power, while their low-cost 

versions allow for in-home gait assessments (Clark et al., 2012). Nevertheless, the primary drawbacks 

of Kinect systems include higher costs compared to RGB cameras and their superior performance at 

shorter distances (Khoshelham and Elberink, 2012). 

Vibration sensors detect vibrations caused by falls or sudden movements. They are used to identify 

vibrations occurring on the ground during a fall and to analyze an individual's gait pattern. Vibration 

data can provide information on step length, walking speed, and balance (Jenkins et al., 2016). These 

sensors offer comfortable, contact-free monitoring but may generate false alarms depending on the 

surface characteristics. Additionally, installation costs can be high. 

Light sensors measure ambient light levels and help assess fall risk. They can analyze fall risks under 

low-light conditions since inadequate lighting can cause elderly individuals to lose their balance (Santos 

et al., 2013). These sensors can also track daily activities by analyzing light variations to estimate wake-

up and sleep times or movements between rooms. Although light sensors are easy to install and cost-

effective, they may be affected by external factors such as sunlight and artificial lighting. Their accuracy 

in fall detection is limited when used alone. 

Pressure sensors analyze fall events by measuring pressure applied to the surface. They can detect 

sudden pressure changes on the ground during a fall and work in conjunction with vibration sensors. 

Additionally, they are used for monitoring in-bed movements, analyzing sleep duration, sleep patterns, 

and mobility levels (Al-Nashash et al., 2015). Pressure sensors can also assess gait balance by analyzing 

step pressure changes and provide reliable data since they directly measure pressure variations. 

However, they have a limited detection area, and the presence of pets or other individuals may lead to 

false alarms. 
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Motion sensors are used to detect an individual's movements, with passive infrared (PIR) sensors being 

the most used type. They are employed for: 

 Detecting falls by identifying sudden movement changes, 

 Evaluating an individual’s mobility level, 

 Identifying prolonged inactivity, which may indicate a potential fall (Pannurat et al., 2014). 

These sensors can cover large areas, are easy to install, and are cost-effective. However, they may 

generate false alarms due to pet movements or other individuals and can be affected by environmental 

factors such as temperature changes. 

In contrast, non-body-worn environmentally positioned sensors include camera-based (RGB, depth, 

thermal) systems and passive infrared (PIR) sensors. Camera-based systems detect falls using image 

processing techniques, while PIR sensors work by detecting thermal changes resulting from the 

movements of living beings. 

RF-based systems, which use wireless communication technologies, track the movements of individuals 

and detect falls using Wi-Fi signals. Hybrid systems integrate different sensor types to provide more 

comprehensive monitoring and detection capabilities. RF sensors utilize radio frequency waves to 

analyze transmitted and received waveforms during communication. Additionally, they leverage 

channel state information (CSI) obtained from Wi-Fi wireless networks to detect movements. These 

detection systems can be categorized into three primary groups (Figure 5). 

 

Figure 5. RF sensors for Fall detection and prevention systems 

Wi-Fi is an RF-based technology that operates within the framework of IEEE 802.11 standards, enabling 

wireless data transmission (IEEE, 2020). This widely used technology functions in the 2.4 GHz and 5 

GHz frequency bands to facilitate local network and internet access. However, wireless data exchange 

in such networks is continuously subjected to signal attenuation, reflections, and occasional data packet 

loss (Figure 6). 
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Fig.6 Multipath propagations, received signals, and channel responses (Yang et al., 2013) 

Channel State Information (CSI) is used to determine wireless channel characteristics. CSI represents 

a set of parameters that define the amplitude and phase properties of a wireless channel. On the receiver 

side, it measures the impact of the signal on different subcarriers, thereby reflecting the physical state 

of the channel (Xie et al., 2019). CSI data is applied in various domains, including environmental 

sensing, indoor localization, motion recognition, and wireless communication optimization (Wang et 

al., 2017). 

2.2. Method 

In this section, existing literature on sensor-based fall detection and prevention systems has been 

evaluated based on review articles published by leading academic publishers (Mohan et al., 2024; Costa 

Junior et al., 2021; Purwar and Chawla, 2024; Usmani et al., 2021; Anonymous, 2022). Each cited paper 

in these reviews was assessed for accessibility and content, and similar or unavailable studies were 

excluded from the scope. Additionally, the literature was expanded and updated by searching for articles 

published after the review papers through Google Scholar. When selecting articles, preference was given 

to those published in reputable journals by publishers such as IEEE, Elsevier, Wiley, and Springer. To 

ensure comprehensive coverage and avoid overlooking unique contributions in the literature, a limited 

number of conference papers and articles published in SCI-indexed journals were also included. 

3. Sensors in Fall Detection and Prevention Systems 

Many different studies in the field of fall detection and prevention have been carried out using various 

sensor types and combinations. The data obtained was processed with different methods and fall 

detection and prevention systems were developed. Among these methods, solutions have been produced 

by using threshold value, artificial intelligence methods without threshold value and artificial 

intelligence approaches with integrated threshold value. Studies on sensors and their combinations 

continue to be carried out to increase the effectiveness of fall detection and prevention systems and to 

obtain more reliable results. 
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3.1. Wearable Sensors 

It is well established that the majority of fall detection studies utilize accelerometers, gyroscopes, or 

other sensor types capable of detecting sudden impacts, changes in body orientation, or tilts. To monitor 

these variations in the human body, one or more sensors are strategically placed on different body parts 

of older adults, enabling the identification and differentiation of falls from Activities of Daily Living 

(ADL). 

Wearable inertial sensors, including accelerometers, gyroscopes, and magnetometers, are commonly 

employed to detect and measure physical movements. These sensors are widely used to capture motion 

data from various body regions due to their compact size, affordability, and real-time data processing 

capabilities. They can be integrated into specially designed devices, general-purpose development 

boards, smartphones, and smartwatches. When attached to the body, these devices can detect abrupt 

changes, analyze gait patterns, monitor body posture, and capture muscle control signals. Consequently, 

falls and other physiological changes can be effectively detected (Figure 7). 

 

Figure 7. ADL and fall detection with multiple wearable sensor (Boutellaa et al. 2019) 

A significant portion of research on fall detection and prevention leverages inertial sensors to monitor 

body movements and identify fall events. These sensors are recognized as effective tools for early 

detection and prevention by accurately tracking individual movements. Currently, two- or three-axis 

accelerometers and gyroscopes are widely utilized, and some studies suggest that integrating these 

sensors with additional inertial sensors can enhance accuracy (Table 1). 

Wang et al. proposed an approach that combines the threshold-based screening method with machine 

learning models such as Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Decision Tree, 

Random Forest (RF), and XGBoost for fall detection (Wang et al. 2024). The study by Otanasap et al. 

also contributes to the research in this field (Otanasap et al. 2023). Salah et al. developed a fall prevention 

system that uses only accelerometers and has a high accuracy rate (Salah et al. 2022). Casilari et al. 

proposed a gyroscope-based fall detection method (Casilari et al. 2020). Kostopoulos et al. developed a 

fall detection method based on inertial sensors for elderly individuals (Kostopoulos et al. 2016). Su et 

al. performed fall detection using gyroscopes in their studies (Su et al. 2016) (Table 1). 
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Table 1. Fall detection and prevention system studies using inertial sensors. 

Sensor 

Class 

Sensor Sensor 

Location 

Activity Classification 

Algorithm 

Performance Reference 

WSHAR 3A Wrist-Waist-

Neck 

FD Treshold with 

KNN, SVM, DT, 

RF, XGBoost 

ACC 

(avarage):99,65% 

Wang et al. 2024 

WSHAR 3A Chest FP LR ACC: 99,48% 

S:  95,31% 

Otanasap et al. 

2023 

WSHAR 3A NA FD CNN ACC:95,55% Salah et al. 2022 

WSHAR 2G Arm FD CNN S:99% Casilari et al. 2020 

WSHAR 3A Arm FD DT ACC: 93,75% Yacchirema et al. 

2018 

WSHAR 3A Hip, back of 

calf and foot 

FD k-NN 

SVM 

ACC: 81,2% 

ACC: 88,77% 

Suriani et al. 2018 

WSHAR SW 3A Wrist FD SVM and NB ACC: 86% Mauldin et al. 

2018 

WSHAR 3A Chest, Arm FD k-NN F-Score: Chest 

98% 

F-Score: Arm 92% 

Putra et al. 2018 

WSHAR 3A Between l3 

and l5 

vertebrae 

FP BBS RMSE=1,66 Shahzad et al. 

2017 

WSHAR G Right Calf 

and Arm 

FP Hierarchical 

classifier 

ACC: 97,5% 

S: 98,1% 

Sue et al. 2016 

WSHAR 3A Body, Left 

and Right 

Body 

FP Visual classification S: 76,1-89.4% Fino et al. 2015 

WSHAR 3A Lever FP LR ACC: 90-100% Liu et al. 2014 

WSHAR 3A All Body 

Part 

Segmented 

FP ICA and NN ACC: 95,4% Martelli et al. 2014 

WSHAR 3A Rear Tread FP BBS-task based 

method 

ACC: 87,2% 

S: 89,5% 

Simila et al. 2014 

Wearable Sensor-based Human Activity Recognition (WSHAR), 3 axis accelerometer (3A), Not Available (NA), convolutional 

neural network (CNN), Fall Detection (FD), Fall Prevention (FP), k-Nearest Neighbors (k-NN), Naïve Bayes (NB), Support 

Vector Machine (SVM), Accuracy (ACC), 2-axis gyroscope (2G), 2-axis gyroscope (2G), 3-axis gyroscope (3G), 

microgyroscope (uG), Sensitivity (S), Root Mean Square Error (RMSE), Scoreberg balance scale (BBS), Logistic Regression 

(LR), Smart Watch (SW), Neural Network (NN), Independent Component Analysis (ICA), Decision Tree (DT) 

 

Figure 8. Pressure sensor-based fall detection system (Guo et al. 2024) 
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Fall detection and fall prevention systems with pressure sensors presented on table 2. In the study of 

(Guo et al. 2024) a pressure-based fall detection system for the elderly placed a pressure sensor on each 

insole equipped with 5 × 9 resistive films and uses the ResNet3D algorithm. The 2023 paper by Wang 

et al. aims to recognize human movements using a shoe-based triboelectric nanogenerator (TENG) for 

fall detection application. The researchers use a TENG system integrated into the sole of the shoe to 

generate electrical signals from the friction between the human body and the shoe. These signals are 

used to distinguish different human movements such as walking, running, jumping, and falling (Wang 

et al. 2023). In another Lu et al., it was stated that only pressure sensors were used to detect prevent falls 

(Lu et al. 2019). Similarly, in the study of Chaccour et al., it was stated that only pressure sensors were 

used to detect or prevent falls in Figure 8 (Chaccour et al. 2016) (Table 2). 

Table 2. Pressure sensors for fall detection and fall prevention systems 

Sensor 

Class 

Sensor Sensor 

Location 

Activity Classification 

Algorithm 

Performance Reference 

WSHAR Resistive 

Pressure Sensor 

Insole 

(Shoe) 

FD ResNet(2+1)D ACC (fall 

detection): 91%  

ACC (activity 

recognition): 94% 

Guo et al. 

2024 

WSHAR Triboelectric 

Nanogenerator 

(TENG) 

Shoe-

Surface 

Interface 

Fall 

Detection 

AI-Based 

Anomaly 

Detection 

Not Specified Wang et al. 

2023 

WSHAR Barometer Neck FD DMAF and KF S: 95,2% Lu et al. 2019 

WSHAR Resistance-

Based Pressure 

Shoe Sole FP Threshold Risk level from 

0,256 to 0,27 

Chaccour et 

al. 2016 

WSHAR Foot Pressure 

Sequence 

Under 

Foot 

FD SLR P: 0,658-0,889 Light et al. 

2015 

WSHAR Pressure  FP Quantitative 

Gait Markers 

Slow walking 

speed risk ratio: 

69,95% 

Verghese et 

al. 2009 

Wearable Sensor-based Human Activity Recognition (WSHAR), 3 axis accelerometer (3A), Fall Detection (FD), Fall 

Prevention (FP), Stepwise Logistic Regression (SLR), Differential Moving Average Filter (DMAF), Kalman Filter (KF), 

Sensitivity (S), Precision (P) 

Siwadamrongpong et al. developed a low-cost fall prevention system utilizing EEG and EMG sensors, 

integrating machine learning algorithms such as the K-nearest neighbors (KNN) classifier to detect 

postural stability and identify instances of unbalanced walking (Siwadamrongpong et al. 2022). The 

EEG sensor detected movement intentions by recognizing Movement-Related Cortical Potential 

(MRCP) patterns with an accuracy of 83,3%, while the EMG sensor analyzed muscle conditions and 

classified movement safety with an accuracy of 80%. The KNN model further distinguished between 

stationary, walking, and unbalanced walking states with an accuracy of 89%. Similarly, ZiYing et al. 

employed IMU sensors and EMG signals for fall prediction and detection, utilizing the Random Forest 

algorithm to classify abnormal gait, normal gait, and fall events, with results indicating superior 

accuracy for IMU-based detection compared to EMG signals (ZiYing et al. 2021). Additionally, 

previous research has explored fall detection using only electromyography (EMG) (Han et al., 2017), 
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(Xi et al., 2017), as illustrated in Figure 9.a. Other studies, though limited, have employed inclinometers 

exclusively for fall detection (Sun et al., 2016), as shown in Figure 9.b. The range of sensor technologies 

used in fall detection is not confined to these examples, as further studies integrating EMG and 

inclinometers are summarized in Table 3. 

 

Figure 9. a) EMG sensor-based fall detection system (Leone et al. 2015) b) Inclinometer based fall 

detection system (Sun et al. 2016) 

Table 3. EMG and inclinometer sensors for fall detection and prevention systems 

 Sensor 

Class 

Sensor Sensor Location Activity Classification 

Algorithm 

Performance Reference 

WSHAR IMU + EMG 

Sensors 

Lower Limb (Leg 

Muscles) 

FD Random Forest 

(RF) 

IMU: 94,72% 

(3-class), 
87,70% (4-

class); EMG: 

71,91% (3-

class), 67,76% 
(4-class) 

Siwadamrongpong et 

al. 2022 

WSHAR EEG (Cz 
position) + 

EMG Sensors 

Scalp (EEG), 
Muscles (EMG) 

FP K-Nearest 
Neighbors 

(KNN) for 

posture, Match 

Filter for EMG, 
MRCP detection 

83,3% (EEG), 
80% (EMG), 

89% (KNN for 

posture) 

ZiYing et al. 2021 

WSHAR sEMG Gastrocnemius 
and Tibilias 

Muscles 

FD LDA S:91,3% Leone et al. 2018 

WSHAR sEMG 

Electrodes 

Left Lower 

Extremity 

FD FMMNN S: 98,7% Xi et al. 2017 

WSHAR sEMG 

Electrodes 

Two-Way FD BEMG  S: 69,2% Han et al. 2017 

WSHAR Ag/AgCl 

electrodes 

Lower Extremity FP Markov Random 

Field based 

Fisher-Markov 

selector 

S: 89,1% Leone et al. 2017 

WSHAR Inclinometer Shoe Sole FD Threshold Risk level 0,27 Sun et al. 2016 

WSHAR Inclinometer - FD Quantitative gait 
markers 

Slow walking 
speed risk ratio: 

69,95% 

Sun et al. 2015 

Wearable Sensor-based Human Activity Recognition (WSHAR), 3 axis accelerometer (3A), Fall Detection (FD), Fall 

Prevention (FP), Bidirectional EMG (electromyographic sensor network model), Fuzzy Min-Max Neural Network (FMMNN), 

Linear Discriminant Analysis (LDA), Sensitivity (S) 
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However, the accelerometer remains the most widely utilized sensor in fall detection and prevention 

systems, either independently or in combination with other sensor types. Its widespread preference is 

attributed to its ability to offer feasible, rapid, real-time, and effective solutions for fall detection while 

capturing various critical parameters. Furthermore, as demonstrated in Tables 1, 2, and 3, accelerometer-

based fall detection and prevention systems exhibit superior performance compared to those employing 

pressure sensors, electromyography, or inclinometers. 

3.2. Environmental Sensor Based Systems 

Having established a classification framework based on sensor types (single or mixed) in preceding 

sections, this section delves into environment-based fall detection and prevention systems. These 

systems, encompassing both wearable and environmental sensors, share the core functionalities of 

tracking body movements, capturing environmental data, and ultimately aiming to detect or sense falls. 

The research examined in this category employs a diverse range of sensors, including microphones, 

ground pressure sensors, infrared sensors, cameras, and thermal sensors. Notably, these environmental 

sensors are strategically placed within living spaces such as bedrooms, living rooms, kitchens, and 

bathrooms. To facilitate a more granular analysis, the studies pertaining to this section will be further 

explored under two distinct subheadings: environmental and visual perception. 

3.2.1. Non-Visual Environmental Sensing 

In environment-based systems, environmental sensors collect acoustic, vibration and pressure signals of 

the body. Data is used try to detect situations before, during and after a fall by using computer non-

visual data-based approaches (Figure 10). 

 

Figure 10. Environmental sensors for fall detection (Birku et al. 2018) 

Chen et al. (2024) proposed a fall detection system called FA-Fall based on acoustic signals. In this 

system, a pair of audio transceivers capable of passive and active acoustic detection were used (Chen et 
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al. 2024). The algorithm used is based on a multimodal classification framework that includes an 

attention mechanism and an anomaly detection mechanism. 

Table 4. Nonvisual environment-based sensors for fall detection and fall prevention 

Sensor 

Class 

Sensor 

Type 

Sensor 

Location 

Activity Classification 

Algorithm 

Performance Reference 

ASHAR 

Acoustic 

Sensors 

(Passive and 
Active) 

Indoor 

(Various) 

FD 
Multimodal 

Classification 

(Attention + 
Anomaly Detection) 

Accuracy: 98,97% in 

typical conditions, 

>90% in challenging 

environments with 
background noise 

Chen et al 2024 

ASHAR 

MEMS PIR 
and 

Thermopile 

IR Array 

Sensors 

Bathroom 

(Indoor) 

FD 
(Bathroom 

Falls) 
BP Neural Network 

(3-layer) 

Precision: 94,45%, 

Recall: 90,94%, 

Accuracy: 92,81%, F1-

Score: 92,66% 

He at al 2023 

ASHAR 
Pressure 
Sensors 

Bed, 
Mattress 

FD 

(On/Off-
Bed) 

Random Forest (RF) ACC: 100%  

Youngkong et al 

2021 

ASHAR Sensor Pad Ground FD NB, SVM, DTJ48 
ACC: 96,2% 

S: 95% 

Muheidat et al. 

2018 

 

ASHAR 
Acoustic 

sensor 
Floor FD 

Mel-Frequency 

Cepstral Coefficients 

and SVM 

F1-Score: 98,66%-100% 

Droghini et al. 

2017 

ASHAR 
Audio 
Signals 

Microphone FD Acoustic-LTP ACC: 97,41% Irtaza et al.- 2017 

ASHAR 
Infrared 

Sensor Array 
Wall FD SVM ACC:97,1-0,99% Fan et al. 2017 

ASHAR 
Piezoresistive 

Pressure 

Sensor 

Floor FD Custom Method S: 88,8% 
Chaccour et al. 

2015 

ASHAR Infrared laser 
Not 

Available 
FP Logistic Regression 

Effective elderly at high 

risk 

Nishiguchi et al. 

2013 

ASHAR 

Resistive 

Pressure 

Sensor Array 

Ground FP Multi Resolution Fall Easily predicted. 

Morgado et al. 

2012 

ASHAR 3A Rear tread FP 

CHAT and MOP are 

reliable in 
distinguishing fall 

Not Available 

McGrath et al. 

2012 

Ambient Sensor-based Human Activity Recognition (ASHAR), 3 axis accelerometer (3A), Fall Detection (FD), Fall Prevention 

(FP), Naïve Bayes (NB), Support Vector Machine (SVM), Centroid of Heel and Toe points (CHAT), Centre of Pressure (COP), 

Accuracy(ACC), Sensitivity(S), Specificity(SP) 

Similarly, He et al. developed a fall detection system using Micro-electromechanical Systems 

Pyroelectric Infrared (MEMS PIR) sensor and a thermopile IR array sensor (He et al. 2023). As an 

algorithm, a three-layer BP (Backpropagation) neural network was used along with image processing 

techniques, including a low-pass filter and double boundary scans. 

Youngkong et al. utilized pressure sensors in their study (Youngkong et al. 2021). In their previous 

research, the authors monitored and classified bed movements with a single pressure sensor. Since fall 

events are more dynamic, they proposed a new system incorporating a dual pressure sensor in this study. 
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Additionally, machine learning algorithms were applied, with the Random Forest algorithm achieving 

100% accuracy as the most effective fall detection model. 

Droghini and Irtaza designed a fall detection mechanism using acoustic signals by extracting Mel-

Frequency Cepstral Coefficient (MFCC) features (Droghini et al., 2018; Irtaza et al., 2017). Since falls 

and daily activities exhibit different vibration patterns, this system can be used for both fall detection 

and daily activity classification. 

In ground-based measurements, vibration signals are typically obtained through piezoresistive pressure 

sensors (Chaccour et al., 2015; Muheidat et al., 2018) or sensor pads/mats (Morgado et al., 2012; 

McGrath et al., 2012). Infrared sensors have also been used in fall detection (Fan et al., 2017) and 

prevention systems (Nishiguchi et al., 2013) (Table 4). 

The most employed strategies for fall detection involve the use of both acoustic and pressure signals. 

However, research indicates that sound-based approaches demonstrate superior performance compared 

to pressure-based methods. Additionally, the integration of pressure and infrared sensors-whose use has 

increased in recent years has also been widely adopted in fall detection and prevention systems. 

Although environment-based fall detection systems offer several advantages, they also present certain 

limitations. A primary challenge stems from the inherent constraints of these systems. Since sensors are 

installed within a specific indoor environment, they are limited by their detection range and the presence 

of passive areas where falls may go undetected. Moreover, these systems often assume that the 

monitored individual is alone, which may not always be the case. Environmental sensors are also highly 

susceptible to external noise and erroneous data. Factors such as falling objects, variations in flooring 

materials, and background noise can negatively affect system performance, potentially triggering false 

alarms. Consequently, these limitations can undermine the overall reliability and effectiveness of the 

system. 

3.2.2. Visual Sensing Based Systems 

Cameras, which have become an integral part of daily life for security and communication purposes, 

can be integrated into environment-based fall detection and prevention systems as visual data sources. 

Camera-based solutions may incorporate various imaging technologies, including RGB cameras, depth 

cameras (e.g., Kinect), thermal sensors, and multi-camera configurations. The primary information 

extracted from these camera systems in fall detection studies includes tracking head trajectories, 

analyzing body shape changes, and assessing posture (Figure 11). 
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Figure 11. Different vision sensor-based fall detection model (Rastogi et al. 2022) 

In the study conducted by Denkovski et al., various video sensors, including RGB, infrared, and thermal 

cameras, were employed for fall detection (Denkovski et al. 2024). Autoencoder-based algorithms and 

their variants were utilized for anomaly detection, and a novel multi-objective loss function, termed 

"Temporal Shift," was introduced. This function was designed to enhance network structures that 

process visual information flow. The analyses demonstrated that the proposed method significantly 

improved the performance of different models, including 3D convolutional autoencoders, attention-

based U-Net CAE, and multi-modal neural networks. This approach has potential applications not only 

in fall detection but also in broader anomaly detection tasks. 

Similarly, in the study by Ke et al., the YOLOv5 model was implemented for fall detection (Ke et al. 

2023). Given its ability to process video data via a webcam, the model can be integrated into smart home 

systems using IoT devices. Various YOLOv5 variants were tested on the CAU CAFall dataset, 

specifically designed for home environments, and the results indicated that the YOLOv5s model was 

the most suitable for fall detection applications. 

A more straightforward application of image-based methods was proposed by Tian et al. (2022), who 

analyzed silhouette changes over time using the k-Nearest Neighbor (kNN) algorithm based on a single-

camera image. This approach was considered a low-cost solution; however, a major limitation of image-

based techniques is their sensitivity to viewing angles, which can significantly impact performance. To 

mitigate this issue, multi-camera systems have been utilized to expand the detection area and capture 

images from multiple perspectives. For instance, Fan et al. (2013) achieved high fall detection accuracy 

by deploying eight cameras within a room. 

In addition to conventional camera-based approaches, depth cameras have demonstrated potential for 

enhancing system accuracy. Devices such as Kinect improve fall detection performance by measuring 

the distance between individuals and the ground. Studies by Zhao et al. (2019) and Li et al. (2018) have 

shown that detecting fundamental joint movements using depth cameras contributes to the overall 

effectiveness of fall detection and prevention systems. Furthermore, thermal sensors, which can achieve 
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accuracy rates of up to 99,7%, represent another widely adopted imaging technology. Compared to other 

methods, depth camera-based approaches have garnered increased attention in recent research. An 

overview of various imaging systems is provided in Table 5. 

Table 5. Visual sensors for fall detection and prevention system 

Sensor 

Class 

Sensor 

Type 

Sensor 

Location 

Activity Classification Algorithm Performance Reference 

ASHAR RGB, 

Infrared, 

Thermal 
Cameras 

Home 

(Multi-
Modal) 

FD Autoencoder Variants (3D 

Conv, U-Net, Multi-Modal 

NN) 

AUC ROC +0,20 

(U-Net CAE 
with Temporal 

Shift) 

Denkovski 

et al 2024 

ASHAR RGB Camera 

Home (IoT) 

FD YOLOv5 (YOLOv5s and 

YOLOv5x) 
P: 82,2% 

(YOLOv5x) / 

P:79,6% 

(YOLOv5s) 

Ke et al 

2023 

ASHAR RGB Camera 
Camera 

FD Machine Vision with Fall 

Logic 
ACC: 94,5% 

Tian et al. 

2022 

ASHAR Depth 

Camera 

Kinect V2 / 

Orbbec 

Astra depth 

camera 

FD Up Body Extraction  

ACC: 92,3% 
Zhao et al. 

2019 

ASHAR 

Kinect Sensor 
Kinect 
Sensor 

FP Two feet movement tracking  

Risk level from 0,256 to 

0,27 

 
Li et al. 
2018 

ASHAR 

Multiple 
Kinect 

sensors 

Active area 

FP Slow walking speed risk 

ratio: 106,995% for every 

10 cm/s reduction 

Confidence Interval 1,001-

1,142 

 

Li et al. 

2018 

ASHAR RGB Camera 8 cameras 
built into 

the room 

FD LR 

ACC: 95,2% 
Fan et al. 

2017 

ASHAR Thermal 

imaging 

camera 

Active area 

FP 

SVM 
ACC: 99,7% 

Song et al. 

2017 

ASHAR Depth 

Camera 

Depth 

camera 

FD Fall Vector Algorithm 
ACC: 97,1% 

Kong et al. 

2017 

ASHAR Depth 

Camera 

Depth 

videos 

FD SOV ACC: 89,63-

100% 

Akagündüz 

et al. 2017 

ASHAR 
RGB camera 
and line laser 

in shoes 

FP Reducing the risk of falling 

by detecting objects on the 
ground 

 
Li et al. 
2017 

ASHAR Thermal 
sensor 

ceiling-wall 
corner 

FD STIP and Fisher vector 
framework 

ACC: 99,61% 
Vadivelu et 
al. 2016 

ASHAR Smart camera 
with 

embedded 

system 

wall 

FP 
Custom smart camera and 

framework 

 
Kutchka et 

al. 2016 

ASHAR Thermal 

visual imager 

ceiling FD 
FDP ACC: 68% 

Rafferty at 

el. 2016 

ASHAR Microsoft 

Kinect 

Camera 

Active area 

FP 
Successful enough to be 

used in fall prediction 

 
Dubois et al. 

2014 

Ambient Sensor-based Human Activity Recognition (ASHAR), 3 axis accelerometer (3A), Fall Detection (FD), Fall Prevention 

(FP), Naïve Bayes (NB), Support Vector Machine (SVM), Accuracy(ACC),Precision (P), Logistic Regression(LR), Silhouette 

Orientation Volume (SOV), Fall Detection Process (FDP), Spatio-Temporal Interest Points (STIP) 
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With the widespread adoption of cameras, particularly in security systems and mobile devices, their 

costs have declined, facilitating the expansion of camera-based fall detection systems. However, despite 

their advantages, such systems also present several challenges. First, camera-based solutions require 

substantial computational and storage resources to execute real-time algorithms effectively. The 

interpretation of images necessitates sophisticated computer vision techniques that demand high 

processing power, leading to additional hardware costs. Second, privacy concerns arise due to the need 

to capture and store actual images of individuals. Lastly, system calibration and performance may be 

compromised by the limited field of view and fixed camera angles, potentially reducing detection 

accuracy over time. 

3.3. Radio Frequency Based Sensing 

In fall detection, Radio Frequency (RF) based systems could be classified by including environment-

based systems. However, in this section, it was deemed appropriate to evaluate RF-based systems in a 

separate category due to signal type, data size, special antenna and positioning methods. Considering 

the latest developments and trends in this category, it was found more appropriate to evaluate it in a 

different category. RF signals are reflected or absorbed following an abnormal distribution path 

according to body movement speed. Studies in the literature have shown that fall detection and 

prevention can be achieved when RF signal attenuation or fluctuations in wireless channel status 

information are applied as input to a fall detection system (Figure 12). 

 

Figure 12. Radio frequency-based fall detection system working principle (Lubna et al. 2022) 

Wireless frequency (RF) based systems can be classified as single-type sensor systems and mixed-sensor 

systems as shown in Table 6. Chi et al. developed a Wi-Fi-based fall detection system called XFall, 

which minimizes the impact of environmental variables by utilizing an environment-independent feature 

known as the velocity distribution profile (Chi et al. 2024). To enhance classification accuracy, an 

attention-based encoder was designed to distinguish different fall types, while a cross-modal learning 
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framework was implemented to facilitate large-scale model training with limited Wi-Fi data. When 

tested in a real-world environment, XFall demonstrated high accuracy and a low false alarm rate. 

Table 6. Fall detection and prevention systems with RF signals 

Sensor 

Class 

Sensor 

Type 

Sensor 

Location 

Activity Classification 

Algorithm 

Performance Reference 

ASHAR Uniform 

Sensors 

Wi-Fi signals 

FD Attention-Based 

Encoder + Cross-

Modal Learning (Pre-

Trained Visual Model) 

ACC: 96,8%, 

Miss Alarm 

Rate: 3,1%, 

False Alarm 

Rate: 3,3% 

Chi et al 2024 

ASHAR Uniform 

Sensors 
Wi-Fi (CSI-

Based) 

FD Deep Learning-Based 

Image Classification 

Accuracy: 96% 

(All 
Environments), 

99% (Specific 

Combinations) 

Chu et al 2023 

ASHAR Uniform 

Sensors Wi-Fi (CSI-
Based) 

FD Deep Learning-Based 

(DNN Generative 

Model + User 
Identification Network) 

False Alarm 

Rate: 5,7%, 

Missed Alarm 

Rate: 3,4% 

Yang et al 2023 

ASHAR Uniform 

Sensors Wi-Fi signals 

FD DTW barycenter 

averaging (DBA) 

algorithm 

Accuracy: 95% Hu et al. 2021 

ASHAR Uniform 

Sensors 

Multi-

antenna 
FMCW radio 

FD CNN 

Accuracy: 92% Tian et al. 2018 

ASHAR Hybrid 
Sensors 

802,11n NIC FD Singular Value 
Decomposition 

Precision: 94% Wang et al. 2018 

ASHAR Uniform 
Sensors 

Radar FD Deep Learning 
Accuracy: 92% Jokanovic et al. 2017 

ASHAR Uniform 

Sensors 

Microwave 

doppler 

sensor 

FD Deep Learning 
 Accuracy: 95% 

 
Shiba et al. 2017 

ASHAR Uniform 

Sensors 

FMCW radar FP 
FMCW Not available Tang et al. 2017 

ASHAR Hybrid 

Sensors 

Wi-Fi device FD SVM 
Sensitivity: 92 Wang et al. 2016 

ASHAR Uniform 

Sensors 
FMCW radar 

FP GaN HEMT Doherty 

amplifier with FMCW 
Not available Tang et al. 2016 

ASHAR Uniform 

Sensors 

RF Detection 

Device 

FP 
WISP sensor Not available 

Visvanathan et al. 

2012 

Fall Detection (FD), Fall Prevention (FP), Fall prevention with wearable radar (FMCW) 

Yang et al. introduced FallDar, a Wi-Fi-based deep learning-supported fall detection system (Yang et 

al. 2023). FallDar aims to mitigate performance degradation caused by environmental variability by 

incorporating features resistant to environmental factors, such as fall speed. By simulating diverse fall 

scenarios with a deep neural network (DNN)-based generative model, motion diversity was enhanced. 

Additionally, a user identification network was employed to extract person-independent features without 

requiring new user data. FallDar was implemented on commercial Wi-Fi devices and tested over a six-

month period. Chu et al. proposed a novel deep learning-based method for fall detection using Wi-Fi 

channel state information (CSI) (Chu et al. 2023). Their study evaluated various Wi-Fi CSI collection 

tools and assessed their effectiveness in fall detection. The researchers compiled a comprehensive 

dataset containing over 700 CSI samples encompassing different fall types and daily activities across 
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four distinct indoor environments. This dataset was utilized to train a deep learning classifier based on 

an image classification algorithm. Unlike other approaches, the proposed method requires only sampling 

and reshaping in the preprocessing stage, simplifying data preparation. 

 Hu et al. developed a system that investigates the impact of body speed variations on Wi-Fi signals 

during a fall (Hu et al. 2021). Their study analyzed changes in wireless signals by considering the 

physiological effects of falling on movement patterns. Wang et al. demonstrated that commercial Wi-Fi 

devices could be effectively used for fall detection by leveraging wireless CSI to differentiate falls from 

fall-like activities (Wang et al. 2016).  

Tian et al. employed multi-antenna Frequency Modulated Continuous Wave (FMCW) radio signals for 

fall detection (Tian et al. 2018). Their approach involved extracting complex spatial and temporal 

features from these signals and training a convolutional neural network (CNN) to perform fall detection 

with high accuracy. Tang et al. developed an FMCW radar-based fall prevention system that 

continuously measured the distance between the radar and the surrounding environment (Tang et al. 

2016). By analyzing the relationship between body movements and radar frequency, the system aimed 

to predict fall risks proactively. 

Overall, radio frequency (RF) signals, which are prevalent in daily life, offer a non-intrusive and 

privacy-preserving approach to fall detection and prevention. However, RF-based systems face several 

challenges, including signal interference from external sources, coexistence with multiple devices 

operating on different communication standards (e.g., Wi-Fi, Bluetooth), and the limited coverage of 

wireless networks. 

3.4. Systems with Hybrid Sensing 

Research indicates that fall detection systems based on a single sensor or homogeneous sensors can lead 

to low accuracy and high false alarm rates. To improve the performance of fall detection systems, the 

integration of various sensors with different functions is necessary. In this context, sensor fusion-based 

systems, consisting of either homogeneous or heterogeneous sensors, have been developed and 

examined in various studies (Table 7). 

In a study by Kavuncuoğlu et al., 10 different machine learning algorithms and 26 features were tested 

using the Sisfall dataset for fall detection (Kavuncuoğlu et al. 2024). The Random Forest Classifier 

(RFC) achieved 97.94% accuracy with the autocorrelation feature, while the Support Vector Machine 

(SVM) showed 98.60% accuracy with time series features. By combining features with the Quintuple 

approach and using Extremely Randomized Trees (ETC), the system achieved 98.69% accuracy, 

98,28% precision, and 99.08% specificity. These methods demonstrated high performance in fall 

detection and data transfer across age groups. 

Another study by Lin et al. proposed a wearable device system for fall detection and verification in 

elderly individuals. This system uses a nine-axis inertial sensor, including a three-axis accelerometer 

and gyroscope, to determine the user's postures (standing, sitting, lying) (Lin et al. 2023). The resulting 
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force is calculated using three-axis acceleration, while the gradient descent algorithm is used to 

determine the tilt angle. Barometer data is used to convert the height value, and postures (sitting, 

standing, walking, lying, and falling) are identified. The fall direction and acceleration changes can 

determine the fall severity. Additionally, through IoT and smart speakers, falls can be verified by asking 

the user questions via the smart speaker. The system aims to reduce maintenance times by real-time 

posture identification and fall reporting. 

Sensor combinations can consist of inertial sensor types, environmental sensors, or a heterogeneous mix 

of ambient and inertial sensors. For example, a novel fall detection system utilizing an accelerometer, 

microphone, and camera has been proposed (Silhouette Orientation Volumes for Efficient Fall Detection 

in Depth Videos - PubMed). Additionally, Quadros et al. suggested the use of inertial sensors such as a 

three-axis accelerometer, gyroscope, and magnetometer for fall detection (Quadros et al. 2018). 

Table 7. Uniform sensors for fall detection and prevention systems 

Sensor 

Type 

Sensor 

Type 

Sensor Location Activity 

Type 

Classification 

Algorithm 

Performance Reference 

WSHAR 
Uniform 

Sensors 

3A, 3G, 3M + 

Belly 
FD RF,SVM,ET 

ET 

ACC:98,69% 

ET S:98,28% 

Kavuncuoğlu et al 

2024 

ASHAR Uniform 

Sensors 
3A,3G and 3M 

FD SVC 
ACC: 98,3% Fawaz et al. 2023 

WSHAR Uniform 

Sensors 

3A, 3G, 3M and 

Barometer + 

Chest-Worn 

FD State Machine (Direct 

Posture Operation) 

Real-time fall 

recognition 

and report 

Lin et al 2023 

ASHAR Uniform 

Sensors 

A + P and 

Sensitive Insoles  

FP Fuzzy Mamdan 

 
ACC: 90% Amiroh et al. 2021 

ASHAR Uniform 

Sensors 
3A,3G and 3M 

FD Machine Learning 

Methods 

ACC: 99% 

S: 100% 
Quadros et al. 2018 

ASHAR Uniform 

Sensors 
3A and 3AA 

FD PCA with Threshold 
S: 94,8% Wu et al. 2018 

ASHAR 
Uniform 

Sensors 

4-probe 

Electromicrophone 

+ 3A on T-Shirt 

FP 
Vertical velocity 

measurement 
Over 75% Leone et al. 2018 

ASHAR Uniform 

Sensors 
3A and Barometric 

FD Wavelet-based ML 
ACC: 82-96% Ejupi et al. 2017 

ASHAR Uniform 

Sensors 
3A and G3 

FP 
MLP ACC: 83-90% 

Hemmatpour et al. 

2017 

ASHAR Uniform 
Sensors 

3A and 3G 
FD 

BN  
ACC: 95,67% 

S:99% 
He et al. 2017 

ASHAR 
Uniform 

Sensors 

3A + 3G Right 
Side and Side 

Waist Area 

FP 
Neural Network 

ACC:75% 

F1: 77,8% 
Howcroft et al. 2017 

ASHAR Uniform 

Sensors 
IR + Pressure 

FD FSM 
S: 88,2% 

Lu et al. 2016 

 

ASHAR Uniform 

Sensors 

iPhone– 4 pressure 

Sensors 

FP 
DT ACC: 97,2% 

Majumder et al. 

2014 

ASHAR Uniform 

Sensors 
3A and 3G 

FP 
  Thella et al. 2014 

Wearable Sensor-based Human Activity Recognition (WSHAR), 3 axis accelerometer (3A), 3 axis angular accelerometer 

(3AA), Not Available (NA), convolutional neural network (CNN), Fall Detection (FD), Fall Prevention (FP), k-Nearest 

Neighbors (k-NN), Naïve Bayes (NB), Support Vector Machine (SVM), Accuracy (ACC), Sensitivity (S),2-axis gyroscope 

(2G), 2-axis gyroscope (2G), 3-axis gyroscope (3G),  3-axis magnetometer (3M), Infrared (IR) and Pressure (P) Sensor , 

Decision Tree (DT), Multilayer Perceptron (MLP), Bayesian Network Classifier (BN), Support Vector Classification (SVC), 

Finite State Machine (FSM) 
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In fall detection and prevention research, sensor fusion approaches have been employed to enhance the 

accuracy and efficiency of detection systems. 

Table 8. Hybrid sensors for fall detection and prevention systems with. 

Sensor 

Type 
Sensor Type 

Sensor 

Location 
Activity Type 

Classification 

Algorithm 
Performance Reference 

ASHAR 
Hybrid 
Sensors 

Thermal Array 

Sensors + 

mmWave 

Radar Sensor 
+ 

Indoor (Room, 

Ceiling, Wall, 

Corner) 

FD 

Random Forest 
(RF) 

Accuracy: 97,9%, 

F1-Score: 0,945; 

RF: ACC: 92,2%, 

R: 0,881, P: 

0,805, F1-Score: 

0,841 

Rezaei et al 2023 

ASHAR 
Hybrid 

Sensors 

Vision-Based, 

RF Signals, 

Acoustic 

Sensors + 

Indoor (Smart 

Homes) 

FD 

Machine 

Learning, 

Pattern 

Recognition 

Fall Detection: 

High accuracy in 

detecting falls; 

Raeis et al 2021 

ASHAR 
Hybrid 
Sensors 

3A + KDC 
FD 

LSVM 
ACC: 98,9% 

S: 99% 
Kepski et al. 2018 

ASHAR 
Hybrid 
Sensors 

Wi-Fi + 
3A 

FD SVM and 
Adaboost 

ACC: 95% Ramezan et al. 2018 

ASHAR 
Hybrid 

Sensors 

3A + KDC + 
micro-doppler 

radar 

FD 
SVM ACC: 91,3% Li et al. 2017 

ASHAR 
Hybrid 

Sensors 

Line laser 

(shoe size), 

RGBC (upper 
side of shoes) 

FP 

SAD 
Successful 

indoors. 
Li et al. 2017 

ASHAR 
Hybrid 

Sensors 

KDC, 

WSHAR 

FP 

NN 

Sensor-based self-
assessment can be 

applied for fall 

risk. 

Ejupi et al., 2015 

ASHAR 
Hybrid 

Sensors 

Pulse-Doppler 

radar, one 

Microsoft 
KDC, 2 pieces 

RGBC 

FP 

Correlation with 

Kinect (p<,01) 

Radar speed 

correlation 

(p<,05) 

Rantz et al. 2015 

ASHAR 
Hybrid 

Sensors 

3A + RGBC + 

microphone 

FD 
Not Available ACC: 94% Zhang et al. 2013 

Kinect Depth Camera (KDC), RGB camera (RGBC), Summing Absolute Difference (SAD), Neural Network (NN), Linear 

Support Vector Machine (SVM), Fall Detection (FD), Fall Prevention (FP), Accuracy (ACC), Sensitivity (S) 

Rezaei (2023) conducted a study utilizing millimeter-wave (mmWave) radar technology for fall 

detection in elderly individuals, eliminating the need for wearable devices. Radar sensors were 

strategically positioned in two different locations within a room (sidewall and ceiling), and data 

collected from these sensors were used to manually extract features. Various machine learning 

algorithms, including multilayer perceptron (MLP), random forest, k-nearest neighbor (kNN), and 

support vector machines (SVM), were applied to classify falls. Additionally, a convolutional neural 

network (CNN)-based deep learning model was developed using an "occupancy grid" input derived 

from 3D point cloud data. Experimental results demonstrated that the random forest algorithm achieved 

the highest accuracy (92.2%) when the sensor was ceiling-mounted, while the CNN model provided a 
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slight improvement with an accuracy of 92.3%. These findings indicate that mmWave radar technology 

is an effective and viable approach for fall detection. 

Raeis et al. (2021) explored device-free sensors and their applications in human activity recognition 

(HAR) for well-being assessment in smart home environments. Unlike wearable or object-attached 

sensors, device-free sensors operate without direct physical contact, allowing for passive monitoring of 

individuals' movements. This study examined the applications of device-free sensors in fall detection, 

cognitive assessment, respiratory monitoring, and dementia diagnosis (Table 7). 

Leone et al. (2018) integrated electromyography and accelerometer sensor data to detect pre-fall trauma, 

achieving a pre-detection time of over 750 milliseconds before a fall event. Similarly, Rantz et al. (2018) 

developed a comprehensive fall prevention system by combining pulse-Doppler radar, Microsoft Kinect 

2, and webcam data. Their system provided detailed insights into human activities and gait balance 

characteristics, demonstrating that sensor fusion-based approaches yield high-accuracy detection and 

prediction outcomes (Table 8). 

With continuous technological advancements, the diversity of sensors has increased, prompting 

researchers to explore various sensor combinations to enhance fall detection performance and minimize 

false alarm rates. However, despite the progress in fall detection and prevention research, these systems 

have not yet been widely adopted in daily life. This limited adoption is attributed to practical challenges 

associated with high-accuracy fall detection methods. Many of these systems require the continuous use 

of environmental and inertial sensors, which is often impractical. Additionally, the vast amount of data 

generated complicates the design of information processing systems, presenting challenges in terms of 

portability and usability in everyday settings. 

4. Discussion 

In this study, the classification of sensor types was carried out according to sensor types, and their 

strengths and weaknesses are summarized below according to sensor type classes. 

4.1 Challenges and Solutions in Wearable Sensors 

High False Positive Rate: Wearable sensors, particularly accelerometers, often exhibit high false 

positive rates due to their sensitivity to motion. This issue arises when routine activities generate 

movement patterns similar to falls, leading to erroneous fall detection. 

Solution, To address this challenge, integrating accelerometers with additional sensors such as 

gyroscopes and magnetometers can enhance motion analysis accuracy. The fusion of data from multiple 

sensors enables more precise movement characterization, thereby reducing false alarms. 

Power Consumption: Certain wearable sensors, such as gyroscopes, exhibit high power consumption, 

which reduces battery life and necessitates frequent recharging. 

Solution: Optimizing power consumption by selecting low-power sensors or implementing duty-cycling 

techniques can extend battery life. Instead of continuous data collection, sensors can be activated at 

predefined intervals or in response to specific events. 
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Susceptibility to Environmental Magnetic Fields: Magnetometers are vulnerable to external magnetic 

field interference, which can compromise sensor accuracy and lead to erroneous readings. 

Solution: To enhance reliability, magnetometers should be used in conjunction with accelerometers and 

gyroscopes. This multi-sensor approach compensates for environmental influences, improving the 

robustness of motion detection. 

Placement Sensitivity: The accuracy of pressure sensors is influenced by their placement on the body, 

which can lead to variability in measurement accuracy. 

Solution: To improve measurement precision, pressure sensors should be integrated with 

complementary sensors that analyze physical contact and pressure distribution. Strategic placement in 

areas such as shoe insoles can facilitate more accurate fall impact detection. 

Limited Accuracy in Standalone Use: Some sensors, such as inclinometers, exhibit high motion 

sensitivity, limiting their effectiveness in fall detection when used independently. 

Solution: While inclinometers can detect abrupt angular changes, their reliability improves when 

combined with accelerometers and gyroscopes. This multi-sensor fusion enhances the accuracy of fall 

detection algorithms. 

User Convenience and Portability: Continuous use of wearable sensors may not be practical for all 

users, and employing multiple sensors simultaneously increases system complexity, reducing user-

friendliness. 

Solution: Designing sensors to be compact, lightweight, and seamlessly integrated into commonly used 

devices such as smartwatches or smartphones can enhance usability and user acceptance. 

Challenges in Data Collection: The infrequency and unpredictability of real-world falls make data 

collection challenging. Most available datasets are derived from controlled environments or simulated 

falls by younger individuals, limiting their generalizability. 

Solution: Collecting real-world fall data from elderly individuals using wearable devices in daily life is 

crucial for improving system accuracy and reliability. Incorporating diverse datasets can enhance the 

robustness of fall detection models. 

In summary, challenges associated with wearable sensors can be addressed through sensor fusion, power 

optimization, environmental interference mitigation, improved usability, and real-world data collection, 

ultimately leading to more reliable fall detection systems. 

4.2 Challenges and Solutions in Environmental Sensors 

Environmental sensor-based systems encounter several challenges, including limited detection range, 

false alarms, privacy concerns, high costs, and dependence on lighting conditions. The following 

solutions can mitigate these issues: 

Limited Detection Range and Passive Zones: Environmental sensors are restricted to a specific area, 

leading to coverage gaps where falls may go undetected. 
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Solution: Deploying multiple sensors, including acoustic, pressure, and infrared sensors, expands 

coverage and minimizes blind spots. Studies show that integrating accelerometers, microphones, and 

cameras enhances fall detection performance. 

High False Alarm Rate: Environmental sensors are susceptible to background noise and erroneous 

readings from falling objects, floor types, and environmental sounds. Additionally, these systems often 

assume the monitored individual is alone, which may not always be accurate. 

Solution: Implementing advanced noise filtering and signal processing techniques improves data 

quality. Adaptive systems that adjust to environmental changes further enhance reliability. 

Privacy Concerns: Camera-based systems raise privacy concerns due to continuous surveillance in 

personal spaces. 

Solution: Using privacy-preserving techniques such as 2D skeleton modeling instead of direct video 

recording allows effective motion analysis while safeguarding user privacy. 

High Cost: Certain environmental sensors, such as depth cameras, are expensive to acquire, install, and 

maintain. 

Solution: Cost-efficient alternatives, such as strategically placing standard cameras with optimized 

algorithms, can achieve similar results while minimizing expenses. 

Dependency on Lighting Conditions: RGB cameras struggle in low-light environments, affecting 

detection accuracy. 

Solution: Integrating thermal or depth cameras ensures consistent performance regardless of lighting 

conditions. Additionally, deep learning algorithms improve recognition in varying environments. 

By applying these solutions, environmental sensor-based fall detection systems can achieve higher 

reliability, accuracy, and user-friendliness. 

4.3. Challenges and Solutions in Vision-Based Systems 

Viewpoint Dependency: The performance of vision-based fall detection is influenced by camera angles, 

occlusions, and spatial constraints. 

Solution: Deploying multi-camera setups enhances coverage, reduces blind spots, and improves 

accuracy by capturing movements from multiple perspectives. 

High Computational Demands: Real-time image processing requires significant computational 

resources, increasing hardware costs and power consumption. 

Solution: Optimizing algorithms and employing edge computing can reduce processing overhead and 

enable efficient real-time analysis. 

Privacy Concerns: Direct video recording raises privacy concerns, limiting user acceptance. 

Solution: Techniques such as 2D skeleton tracking provide motion analysis while ensuring privacy 

protection by avoiding direct visual representation of individuals. 

Limited Field of View: Single-camera setups have restricted coverage, potentially missing falls 

occurring outside their field of view. 
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Solution: Integrating depth cameras (e.g., Kinect) improves spatial accuracy and complements 

traditional RGB cameras, increasing detection reliability. 

Performance in Low-Light Conditions: Standard RGB cameras perform poorly in dim lighting, leading 

to decreased detection accuracy. 

Solution: Combining deep learning-based detection algorithms with thermal cameras enhances 

recognition performance under varying lighting conditions. 

By incorporating these advancements, vision-based fall detection systems can achieve improved 

reliability, scalability, and privacy protection. 

4.4. Challenges and Solutions in RF-Based Systems 

Limitations of Single-Sensor Systems: Exclusive reliance on RF sensors may result in high false alarms 

and lower detection accuracy. 

Solution: Combining RF signals with inertial and environmental sensors enhances overall detection 

reliability by leveraging multiple data sources. 

RF Signal Processing Challenges: Environmental factors such as signal attenuation and interference 

affect detection performance. 

Solution: Advanced signal processing techniques can compensate for fluctuations and improve fall 

detection accuracy. 

Hybrid Sensor Integration: Standalone RF-based systems may not provide sufficient contextual data 

for accurate detection. 

Solution: Integrating RF technologies with sensors like Kinect and Doppler radar enhances overall 

system performance and robustness. 

Advantages of RF-Based Systems: RF-based solutions offer privacy-preserving, unobtrusive fall 

detection without requiring wearable devices, making them suitable for multi-occupant environments 

with minimal maintenance requirements.  

Disadvantages of RF-Based Systems: Challenges such as signal interference from Wi-Fi, Bluetooth, 

and limited coverage range impact reliability. 

Solution: Future research should focus on refining RF-based technologies, minimizing external 

interferences, and expanding detection capabilities. 

In conclusion, RF-based fall detection systems present a promising approach for privacy-preserving and 

unobtrusive monitoring. By integrating hybrid sensor solutions and refining RF signal processing 

techniques, these systems can become more effective and widely applicable. 

5. Conclusions 

Enabling a happy and secure life for the elderly necessitates addressing the critical aspects of fall 

detection and prevention. This study has systematically classified fall detection sensors based on their 

types and analyzed their respective strengths and weaknesses. The challenges encountered in wearable, 
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environmental, vision-based, and RF-based sensor systems have been examined, along with potential 

solutions to enhance their efficacy. 

Wearable sensors, particularly accelerometers, gyroscopes, and magnetometers, exhibit limitations such 

as high false positive rates, power consumption concerns, and environmental susceptibility. Addressing 

these challenges through sensor fusion, power optimization techniques, and improved placement 

strategies enhances their accuracy and practicality. Furthermore, the integration of wearable sensors into 

commonly used devices such as smartphones and smartwatches can significantly improve user 

convenience and adoption. 

Environmental sensor-based systems face issues related to limited detection range, false alarms, 

privacy concerns, and high costs. Multi-sensor deployment, advanced noise filtering, and privacy-

preserving techniques such as 2D skeleton modeling offer viable solutions to these challenges. 

Additionally, the strategic use of cost-efficient alternatives and the integration of thermal or depth 

cameras can enhance their effectiveness across various environmental conditions. However, it is 

essential to ensure that these solutions respect individuals' privacy and maintain their standard of living 

consistently throughout their daily routines. 

Vision-based fall detection systems are affected by viewpoint dependency, computational demands, 

privacy concerns, and performance limitations in low-light conditions. The deployment of multi-camera 

setups, algorithmic optimizations, and privacy-conscious approaches such as skeleton tracking can 

improve detection accuracy and user acceptance. Furthermore, integrating deep learning techniques with 

thermal imaging can ensure robust performance under diverse lighting conditions. 

RF-based fall detection solutions provide a non-intrusive and privacy-preserving alternative to 

traditional approaches. Unlike other sensor-based systems, RF-based solutions can monitor multiple 

individuals simultaneously without requiring wearable devices, minimizing disruption to daily life. 

These systems effectively address privacy concerns while eliminating the need for frequent maintenance 

or transportation of additional equipment. Furthermore, RF-based methods, when combined with 

advanced signal processing techniques, can significantly improve detection accuracy and reliability.  

Given the increasing emphasis on artificial intelligence (AI) in healthcare applications, future research 

should focus on integrating AI-driven methodologies with RF-based systems to enhance real-time 

processing capabilities while ensuring computational efficiency. While threshold-based analytical 

methods provide speed, they are often susceptible to false alarms. AI-based systems, on the other hand, 

offer superior accuracy but require significant computational resources. A promising future direction 

lies in hybrid approaches that leverage both AI and analytical models to balance efficiency, accuracy, 

and cost-effectiveness. 

Future Perspectives 

As fall detection technology continues to evolve, RF-based systems stand out as a promising approach 

due to their ability to provide unobtrusive, privacy-conscious monitoring. The integration of AI-based 

algorithms with RF technology is expected to enhance predictive analytics, allowing for more accurate 
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and timely fall detection. Future studies should focus on refining hybrid AI-RF solutions that optimize 

computational efficiency while ensuring robust real-world applicability. By leveraging these 

advancements, fall detection and prevention systems can become more adaptive, user-friendly, and 

effective in safeguarding the well-being of elderly individuals. 
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