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A BST R AC T  

Truss structures constitute integral components of civil engineering projects, necessitating engineers 

to achieve optimal designs balancing material cost and structural capacity. Traditional gradient-

based optimization methods often face challenges in nonlinear and non-convex optimization 

scenarios, leading to prolonged convergence times. Meta-heuristic algorithms present viable 

alternatives for optimizing the layout and dimensions of truss structures under such conditions. This 

study focuses on optimizing the sizes and configurations of three distinct planar benchmark truss 

structures using three different meta-heuristic optimization algorithms: Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), and Adaptive Geometry Estimation based MOEA (AGE-

MOEA). The optimization results for the Planar 10-bar truss structure indicated that PSO slightly 

outperformed GA and AGE-MOEA by achieving the lowest weight of 5065.33 lb. For the 15-bar 

truss structure, GA achieved the lowest weight of 79.74 lb, demonstrating its effectiveness. In the 

case of the 18-bar truss structure, PSO again showed superior performance with the lowest weight 

of 4523.57 lb. Through comparative analysis of convergence rates and optimal solutions derived 

from these algorithms, this research evaluates their effectiveness in addressing the complexities of 

truss structural optimization. The findings suggest that while all three algorithms are effective, PSO 

often provides the most efficient solutions in terms of weight minimization for complex truss 

structures. 
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1 Introduction 

Optimization of truss structures represents a well-established area of research encompassing various 

methodologies tailored to enhance structural efficiency. Optimization efforts typically fall within three 

primary categories: size optimization, which focuses on determining the optimal cross-sectional areas 

of structural members; shape optimization, aimed at identifying the optimal geometric coordinates of 

the structure; and topology optimization, which involves optimizing the layout or configuration of the 

structure [1]. Integrating optimization across these categories often yields superior results [2]. 

Meta-heuristic algorithms have emerged as preferred tools among researchers for optimizing benchmark 

truss structures. Unlike traditional gradient-based methods, meta-heuristic algorithms demonstrate 

advantages, particularly in scenarios where objective functions are highly nonlinear and multimodal, as 

commonly encountered in truss size and shape optimization problems [3]. Over the past decade, several 
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meta-heuristic algorithms have gained prominence in this domain, including Particle Swarm 

Optimization (PSO) [4], Genetic Algorithm (GA) [5], Differential Evolution (DE) [6], Teaching 

Learning Based Optimization (TLBO) [7], Harmony Search (HS) [8], Firefly Algorithm (FA) [9], 

Colliding Bodies Optimization (CBO) [10], Symbiotic Organisms Search (SOS) [11], Big Bang - Big 

Crunch Optimization (BB-BC) [12], and Evolution Strategy (ES) [13]. 

Despite these advancements, optimizing truss structures remains a challenging task, particularly when 

considering both sizing and layout variables simultaneously. The distinct nature and differing 

magnitudes of these variables pose significant challenges in achieving optimal designs [14]. Evaluating 

the performance of meta-heuristic algorithms in this context is crucial, as these algorithms offer robust 

solutions by balancing global exploration of the search space with local exploitation of optimal solutions 

[15]. 

To address the complexities and gaps in existing literature, this paper focuses on comparing the 

performance of three widely adopted meta-heuristic algorithms applied to planar benchmark truss 

structures. By evaluating these algorithms under consistent parameters, this study aims to provide 

insights into their computational efficiency and optimization efficacy across diverse structural 

configurations. 

The structure of this paper is organized as follows: Section 2 describes the optimization algorithms, 

including detailed formulations and pseudo-codes for the Genetic Algorithm, Particle Swarm 

Optimization, and Adaptive Geometry Estimation based MOEA (AGE-MOEA). Section 3 provides 

information about the planar benchmark truss structures used in this study, specifically the Planar 10-

bar, Planar 15-bar, and Planar 18-bar Truss Structures. Section 4 presents the results of the optimization, 

examining each truss structure in detail. Section 5 offers a discussion of the findings, emphasizing the 

convergence behaviors and practical implications of each algorithm in real-world applications. Finally, 

Section 5 concludes the paper, summarizing the key contributions and potential areas for future research. 

2 Optimization Algorithms 

In this section, three distinct meta-heuristic optimization algorithms used for optimizing truss structures 

are presented. Multi-agent techniques are employed by these algorithms to improve the quality of 

solutions based on a defined cost function.  

2.1 Genetic Algorithm 

The Genetic Algorithm (GA) was selected due to its robustness and versatility in handling a wide 

array of optimization problems. GA starts with an initial population 𝑃1 comprising randomly selected 

candidate solutions to the optimization problem. Iteratively, the algorithm progresses through the 

following steps until termination criteria are met : 

1. Initialization: Initialize the population 𝑃1. 

2. Iteration: Increment the iteration counter 𝑡. 

3. Fitness Calculation: Evaluate the fitness of each individual in 𝑃𝑡 using the fitness function. 

4. Selection: Select parents from 𝑃𝑡 based on their fitness. 

5. Reproduction: Generate offspring by applying crossover and mutation operations to the 

selected parents. 

6. Replacement: Introduce new individuals into the population to maintain its size. 

7. Evaluation: Evaluate the fitness of the new individuals. 
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8. Update Population: Update 𝑃𝑡 to 𝑃𝑡+1 and repeat until termination criteria are satisfied. 

GA effectively combines selection, crossover, and mutation operations to iteratively improve the 

population's fitness and converge towards optimal solutions. 

2.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart [16]  in 1995, was chosen for 

its simplicity and efficiency in handling continuous optimization problems. Each particle in the swarm 

maintains a position and velocity, influenced by the best solutions found locally and globally. The 

algorithm updates particle velocities and positions using the following equations (1) & (2): 

 

The velocity of the particles is updated by, 

𝑉𝑑
𝑖 = 𝜔 𝑉𝑑

𝑖 + 𝑐1𝑟1(𝑃𝑑
𝑖 − 𝑋𝑑

𝑖 ) + 𝑐2𝑟2(𝐺𝑑
𝑖 − 𝑋𝑑

𝑖 ) (1) 

 

Position of the particles are updated by, 

𝑋𝑑
(𝑖)

= 𝑋𝑑
𝑖 + 𝑉𝑑

𝑖 (2) 

where  𝐕𝑑
𝑖  represents the velocity of the 𝑖-th particle in the 𝑑-th dimension, 𝐗𝑑

𝑖  denotes its position, 𝐏𝑑
𝑖  

is the particle's personal best position, 𝐆𝑑
𝑖  is the globally (or locally) best solution found, 𝜔 is the inertia 

weight, 𝑐1 and 𝑐2 are acceleration coefficients, and 𝑟1 and 𝑟2 are random values. 

PSO leverages swarm intelligence to iteratively converge towards optimal solutions by balancing 

exploration (through global best solutions) and exploitation (through personal best solutions). 

2.3 Adaptive Geometry Estimation based MOEA (AGE-MOEA) 

AGE-MOEA [17] is a recent addition to meta-heuristic algorithms, inspired by the NSGA-II structure 

but with enhancements in diversity preservation. AGE-MOEA was selected for its advanced capabilities 

in handling multi-objective optimization problems. The algorithm proceeds as followss: 

• Initialization: Set the number of objectives 𝑀 and population size 𝑁. 

• Population Generation: Generate a random initial population 𝑃. 

• Iteration: Iteratively perform the following steps until termination criteria are met: 

o Generate children 𝑄 from the current population 𝑃 . 

o Perform fast non-dominated sorting (F) on 𝑃 ∪ 𝑄. 

o Normalize the fronts (F). 

o Select individuals from these fronts based on their survival scores to maintain 

diversity and quality. 

o Update the population 𝑃 with the selected individuals. 

AGE-MOEA adapts the geometry of non-dominated solutions dynamically to enhance convergence and 

diversity simultaneously. 
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These algorithms represent diverse approaches to solving optimization problems, each offering unique 

advantages suited to different types of truss structure optimization challenges. 

3 Planar Benchmark Structures 

In this section, three planar benchmark truss structures that undergo size and shape optimization using 

the previously discussed meta-heuristic algorithms are detailed. 

3.1 Planar 10-bar Truss Structure  

The Planar 10-bar truss structure is a widely recognized benchmark in structural optimization research. 

It consists of 10 members interconnected by joints, forming a triangular configuration. For this study, 

the structure is subjected to a specific loading condition: a 100 kips (445.1 kN) force applied at nodes 2 

and 4. The optimization task focuses exclusively on sizing the members to optimize structural 

performance while adhering to stress and displacement constraints. 

Geometric Details: 

• Nodes and Members: The truss comprises 6 nodes and 10 members. 

• Loading Condition: A concentrated load of 100 kips is applied at nodes 2 and 4. 

• Objective: Size optimization of member cross-sectional areas within predefined limits. 

• Constraints: Upper and lower limits for member cross-sectional areas are set between 0.1 in² 

(0.645 cm²) and 35 in² (225.8 cm²). 

• Initial Configuration: Figure 1 illustrates the initial geometry and loading configuration of 

the Planar 10-bar truss structure. 

 

 

Figure 1. Ten bar structure 

3.2 Planar 10-bar Truss Structure  

The Planar 15-bar truss structure is more complex, featuring 15 members and 8 nodes arranged in a 

geometrically intricate pattern. This structure is designed to test optimization algorithms across a 

broader spectrum of member sizes and layouts. 

Geometric Details: 

• Nodes and Members: The truss comprises 8 nodes and 15 members. 

• Loading Condition: A load of 10 kips (44.5 kN) is applied at node 8. 
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• Material Properties: Members are made from a material with a density of 0.1 lb/in³ (2767.99 

kg/m³). 

• Constraints: Members are constrained by stress limits of 25 ksi (172.369 MPa) in 

compression and tension. 

• Objective: Optimization includes both sizing member cross-sectional areas and adjusting the 

layout of nodes to optimize structural efficiency. 

• Initial Configuration: Figure 2 depicts the initial geometry of the Planar 15-bar truss 

structure. 

  

Figure 2. Fifteen bar structure 

3.3 Planar 18-bar Truss Structure  

The Planar 18-bar truss structure is the most complex of the three benchmarks, comprising 18 

members categorized into 4 groups based on their cross-sectional areas. This structure also 

incorporates variability in the coordinates of lower chords, presenting a multi-objective optimization 

challenge. 

Geometric Details: 

• Nodes and Members: The truss features 10 nodes and 18 members. 

• Cross-sectional Area Groups: Members are grouped into 4 categories based on their cross-

sectional areas. 

• Lower Chord Coordinates: The coordinates of the lower chords are variable, adding 

complexity to the optimization task. 

• Objective: Optimization aims to find the optimal distribution of member sizes within each 

group and adjust the lower chord coordinates to enhance structural robustness and efficiency. 

• Initial Configuration: Figure 3 illustrates the initial geometric configuration of the Planar 18-

bar truss structure. 
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Figure 3. Eighteen bar structure 

These benchmark structures are selected to represent varying levels of complexity in truss design 

optimization, enabling a comprehensive evaluation of the meta-heuristic algorithms' performance in 

tackling size and shape optimization challenges in structural engineering. The subsequent sections will 

analyze and compare the optimization results obtained for each structure using the selected algorithms. 

4 Results 

In this section, the optimization results for each benchmark truss structure are presented and discussed 

using the GA, PSO, and AGE-MOEA. The algorithms were configured with hyperparameters to ensure 

comparable computational times in finding the optimal solutions.  

4.1 Results of 10-bar Truss Structure 

The optimization results for the Planar 10-bar truss structure are summarized in Table 1. This structure 

focuses on size optimization of its 10 members under a specific loading condition, with the goal of 

minimizing weight while meeting structural constraints. 

Table 1. Optimization results for ten bar structure 

Design Variable (in2) (GA) (PSO) (AGE-MOEA) 

A1 30.830 30.203 29.838 

A2 0.13 0.107 0.108 

A3 23.315 24.721 22.705 

A4 13.058 14.99 15.13 

A5 0.12 0.146 0.108 

A6 0.134 0.595 0.54 

A7 8.672 7.31 7.575 

A8 21.124 20.7 21.981 

A9 22.35 21.398 21.491 

A10 0.147 0.143 0.109 

Weight (lb) 5092.68 5065.33 5065.47 
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The optimization results for the 10-bar truss structure indicate that all three algorithms—GA, PSO, and 

AGE-MOEA—achieved similar results in terms of the design variables (A1 to A10) and the overall 

weight of the structure. PSO slightly outperformed GA and AGE-MOEA by achieving the lowest weight 

of 5065.33 lb, compared to 5092.68 lb and 5065.47 lb for GA and AGE-MOEA, respectively. This 

outcome suggests that PSO was more effective in finding a configuration that minimized the structural 

weight while satisfying the specified constraints. 

4.2 Results of 15-bar Truss Structure 

The optimization results for the Planar 15-bar truss structure, detailed in Table 2, involve optimizing 

both member sizes and node coordinates under multiple loading conditions.  

Table 2. Optimization results for fifteen bar structure 

Design Variable (in2) (GA) (PSO) (AGE-MOEA) 

A1 1.174 0.954 0.954 

A2 0.954 0.954 0.954 

A3 0.287 0.27 0.44 

A4 1.081 1.081 1.081 

A5 0.539 0.954 0.954 

A6 0.141 0.27 0.141 

A7 0.111 0.111 0.111 

A8 0.22 0.111 0.111 

A9 0.44 0.22 0.539 

A10 0.111 0.44 0.347 

A11 0.27 0.347 0.27 

A12 0.22 0.22 0.141 

A13 0.539 0.174 0.287 

A14 0.141 0.287 0.141 

A15 0.287 0.287 0.44 

X2 100.044 105.437 123.77 

X3 250.688 220 220 

Y2 123.314 118 126.285 

Y3 105.479 115.437 124.798 

Y4 51.255 78.449 58.486 

Y6 15.431 -16.778 7.11 

Y7 -13.34 2.369 18.118 

Y8 51.493 38.216 58.479 

Weight (lb) 79.74 83.94 80.61 
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For the 15-bar truss structure, the optimization results show that GA achieved the lowest weight of 79.74 

lb, indicating its effectiveness in minimizing the structural weight while meeting the design constraints. 

PSO and AGE-MOEA also performed competitively, with weights of 83.94 lb and 80.61 lb, 

respectively. The adjustments in design variables (A1 to A15) and node coordinates (X2, X3, Y2, Y3, 

etc.) illustrate the optimization process's capability to find optimal configurations that balance structural 

stability and weight optimization. 

4.3 Results of 18-bar Truss Structure 

The optimization results for the Planar 18-bar truss structure, presented in Table 3, involve optimizing 

member sizes and node coordinates across 18 members and multiple load conditions. 

Table 3. Optimization results for eighteen bar structure 

Design Variable (in2) (GA) (PSO) (AGE-MOEA) 

A1 13.0 15.25 13.25 

A2 14.25 13.5 12.75 

A3 8.5 8.25 8.0 

A4 16.0 3.5 13.5 

X3 899.876 857.988 837.494 

Y3 180.946 157.01 102.089 

X5 611.868 554.32 608.825 

Y5 101.312 136.516 30.363 

X7 441.472 413.865 425.098 

Y7 41.997 116.4 52.308 

X9 177.891 199.119 205.231 

Y9 -18.369 62.774 3.485 

Weight (lb) 5702.134 4523.57 5424.542 

 

For the 18-bar truss structure, PSO achieved the lowest weight of 4523.57 lb, indicating its superior 

performance in optimizing the structural design for minimal weight. GA and AGE-MOEA also provided 

competitive results with weights of 5702.134 lb and 5424.542 lb, respectively. The adjustments in 

member sizes (A1 to A4) and node coordinates (X3, Y3, X5, Y5, etc.) demonstrate the algorithms' 

capability to handle complex optimization tasks involving multiple design variables and constraints 

effectively. 

5 Discussion 

This study aimed to compare the performance of three meta-heuristic algorithms—GA, PSO, and AGE-

MOEA on three distinct benchmark truss structures. Each algorithm was allotted 15 minutes to find the 

optimal solution, with all successfully converging to feasible solutions within this time frame. 
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The 10-bar truss structure was primarily optimized for weight reduction under specific loading 

conditions. Here, both PSO and AGE-MOEA achieved comparable results, yielding an optimal weight 

of approximately 5065 lbs. In contrast, GA performed slightly worse with a weight of 5092.68 lbs. This 

suggests that PSO and AGE-MOEA were more effective in minimizing weight by optimizing member 

sizes. 

Moving to the 15-bar truss structure, which required optimization of member sizes and node coordinates 

under various loading conditions, GA emerged as the top performer with a weight of 79.74 lbs. PSO 

and AGE-MOEA achieved weights of 83.94 lbs and 80.61 lbs, respectively. GA's success in this 

scenario indicates its ability to handle the complexity of optimizing both structural dimensions and node 

placements effectively. 

The 18-bar truss structure posed additional challenges due to its increased complexity. PSO 

demonstrated superior performance by achieving a weight of 4523.57 lbs, significantly lower than GA's 

5702.134 lbs and AGE-MOEA's 5424.542 lbs. This highlights PSO's strength in finding configurations 

that minimize weight while meeting all design constraints effectively. 

Table 4 summarizes the optimization results across all benchmark structures, showing the function 

values (weights) obtained by each algorithm. The results indicate varying performances of GA, PSO, 

and AGE-MOEA across different benchmark structures, with PSO often delivering competitive or 

superior results in weight optimization. 

 

Table 4. Comparison of the optimization results 

 

(GA) (PSO) (AGE-MOEA) 

10-bar 5702.134 5065.33 5065.47 

15-bar 79.74 83.94 80.61 

18-bar 5702.134 4523.57 5424.542 

 

These findings underscore the importance of selecting the appropriate meta-heuristic algorithm based 

on the specific characteristics and complexities of the optimization problem. Future research could 

explore hybrid approaches or further parameter tuning to enhance the efficiency and robustness of 

optimization algorithms across a broader range of structural configurations. 

In conclusion, this study compared the performance of GA, PSO, and AGE-MOEA on three benchmark 

truss structures: the 10-bar, 15-bar, and 18-bar trusses. The primary objective was to optimize these 

structures for minimal weight while ensuring structural integrity under specific loading conditions. Each 

algorithm was given 15 minutes to converge to an optimal solution, successfully achieving feasible 

designs within this time frame. The results revealed varying performances across the benchmark 

structures. 

PSO consistently demonstrated competitive performance, often achieving optimal weights that were 

lower compared to GA and AGE-MOEA. The superior performance of PSO can be attributed to its 

effective balance between exploration and exploitation, facilitated by the velocity and position update 

mechanisms. These mechanisms enable PSO to efficiently search the solution space and converge 

towards global optima, reducing structural weight effectively. Specifically, PSO outperformed in 

Benchmark 

Structures 

Algorithm 
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optimizing the 18-bar truss structure, highlighting its effectiveness in handling complex configurations 

and reducing structural weight effectively. 

However, GA showcased exceptional performance in optimizing the 15-bar truss structure, where it 

achieved the lowest weight among the algorithms tested. This indicates GA's capability in managing 

both member sizing and node placement complexities, essential for optimizing such intricate structural 

designs. Despite their successes, each algorithm exhibited limitations. GA, while effective in some 

scenarios, struggled with achieving competitive results in the 10-bar truss structure compared to PSO 

and AGE-MOEA. AGE-MOEA, while generally competitive, showed mixed performance across 

different structures, indicating sensitivity to problem complexity and configuration. 

The relevance of this research lies in its contribution to understanding the strengths and limitations of 

meta-heuristic algorithms in truss optimization, crucial for engineering design processes. By identifying 

algorithmic strengths and weaknesses across diverse structural configurations, engineers can make 

informed decisions when selecting optimization tools for specific design challenges. Moving forward, 

further research could explore hybrid approaches combining the strengths of different algorithms or 

refine parameter settings to enhance performance across a wider range of structural complexities. 

Additionally, exploring the applicability of these algorithms to other types of engineering structures 

beyond trusses could broaden their practical utility in civil engineering and beyond. 

In conclusion, this study underscores the importance of algorithm selection tailored to specific structural 

optimization tasks, aiming for efficient and effective designs that meet engineering requirements while 

optimizing performance metrics such as weight and structural integrity. 
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