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 DeepTFBS: Transkripsiyon Faktörü Bağlanma Bölgeleri Tahmini 

için Derin Öğrenme Yöntemleri Kullanan Hibrit bir Model 

DeepTFBS: A Hybrid Model Using Deep Learning Methods for 

Transcription Factor Binding Sites Prediction 

Önemli noktalar (Highlights) 

❖ Transkripsiyon Faktörlerinin DNA ile olan etkileşimi / Interaction of Transcription Factors with DNA  

❖ Transkripsiyon Faktörlerinin DNA şekli ile ilişkisi / Relationship of Transcription Factors with DNA shape 

❖ Derin öğrenme mimarilerin kombinasyonu / Combination of deep learning architectures 

Grafik Özet (Graphical Abstract) 

Protein dizileri ve DNA şekil bilgilerden Transkripsiyon Faktörü Bağlanma Bölgelerinin Tahmini / Prediction of 

Transcription Factor Binding Sites from protein sequences and DNA shape information 

 

Şekil. Uygulama mimarisi / Figure. Application architecture 

Amaç (Aim) 

Protein dizileri ve DNA şekil özelliklerinden Transkripsiyon Faktörü Bağlanma Bölgelerinin Tahmininde hibrit bir 

model geliştirme. / Development of a hybrid model for prediction of transcription factor binding sites from protein 

sequences and DNA shape features. 

Tasarım ve Yöntem (Design & Methodology) 

Transkripsiyon faktörü bağlanma bölgeleri tahmini için hibrit bir derin öğrenme mimarisi önerilmiştir. / A hybrid 

deep learning architecture is proposed for transcription factor binding site prediction.  

Özgünlük (Originality) 

Transkripsiyon faktörü bağlanma bölgeleri tahmini için literatürdeki başarılı yöntemlerden oluşan hibrit bir çalışma 

gerçekleştirilmiştir. Önemli derin öğrenme mimarileri birleştirilerek özgün bir yaklaşım sergilenmiştir. / A hybrid 

study of successful methods in the literature for transcription factor binding site prediction has been performed. A 

novel approach is demonstrated by combining important deep learning architectures. 

Bulgular (Findings) 

Çalışmada önerilen yöntem,  literatürdeki diğer yöntemler ile kıyaslandığında yüksek başarı elde etmiştir. / The 

method proposed in this study has achieved high success compared to other methods in the literature. 

Sonuç (Conclusion)  

Transkripsiyon faktörü bağlanma bölgeleri tahmini için derin öğrenme mimarilerinin kombinasyonundan oluşan 

başarılı bir yöntem geliştirilmiştir. / A successful method consisting of a combination of deep learning architectures 

has been developed for the prediction of transcription factor binding sites. 
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 ÖZ 

Moleküler seviyede genetik verinin oluşum, aktarım ve düzenlenme süreçleri anlaşılması zor karmaşık kombinasyonel süreçlerden 

oluşmaktadır. Bu süreçlerin temelini oluşturan transkripsiyon faktörleri genetik bilginin DNA'dan RNA'ya kopyalanmasını 

sağlayarak hücrelerin özellik ve fonksiyonlarını belirlemede kritik rol oynar. Özellikle sinir sistemi gibi karmaşık yapıları kontrol 

eden transkripsiyon faktörleri, gen ifadesini düzenleyerek hastalık, sağlık gibi durumların belirlenmesinde hayati rol oynarlar. 

Proteinlerin DNA üzerinde bağlandıkları bölgeler, gen ifadelerinin kritik noktalarını belirler ve hücrelerin çeşitli koşullara uyum 

sağlamasına katkıda bulunur.  Genetik hastalıkların teşhis edilmesi ve tedavi edilmesi süreçleri için önemli bir adım olan 

transkripsiyon faktörü bağlanma bölgelerinin tahmini amacıyla literatürde çeşitli yöntemler geliştirilmiştir. DNA’nın dizi ve şekil 

özelliklerinin beraber kullanımıyla başarılı sonuçlar elde edilen çeşitli çalışmalar geliştirilmiştir. Bu çalışmada DNA dizileri ve 

şekillerine dayalı olarak transkripsiyon faktörü etkileşimlerini belirlemek için farklı derin öğrenme teknolojileri birleştirilerek hibrit 

bir yöntem önerilmiştir. Çalışmada 165 doğrulanmış CHIP-Seq veri kümesi kullanılmıştır. 

Anahtar Kelimeler: Derin öğrenme, transkripsiyon faktörü, transkripsiyon faktörü bağlanma bölgeleri. 

DeepTFBS: A Hybrid Model Using Deep Learning 

Methods for Transcription Factor Binding Sites 

Prediction 

ABSTRACT 

The formation, transmission and regulation of genetic data at the molecular level are complex combinatorial processes that are 

difficult to understand. Transcription factors, which form the basis of these processes, play a critical role in determining the 

properties and functions of cells by copying genetic information from DNA to RNA. Transcription factors, which control complex 

structures such as the nervous system, play a vital role in determining conditions such as disease and health by regulating gene 

expression. The binding sites of proteins on DNA determine the critical points of gene expression and contribute to the adaptation 

of cells to various conditions.  Various methods have been developed in the literature for the prediction of transcription factor 

binding sites, which is an important step for the diagnosis and treatment of genetic diseases. Several studies have been developed 

with successful results obtained by using DNA sequence and shape features together. In this study, a hybrid method is proposed 

by combining different deep learning technologies to identify transcription factor interactions based on DNA sequences and shapes. 

165 validated CHIP-Seq datasets were used in the study. 

Keywords: Deep learning, transcription factor, transcription factor binding sites prediction. 

 
1. GİRİŞ (INTRODUCTION) 

Gen, genetik özelliklerin kuşaklar boyunca aktarılmasını 

sağlayan ve DNA (Deoksiribonükleik asit) molekülü 

üzerinde bulunan yapılardır. Temelde canlıların biyolojik 

işlevlerini ve fiziksel özelliklerini belirlemekte görevli 

olan genler protein üretiminde aktif rol almaktadır. 

Genler üzerinde meydana gelen mutasyonlar canlılarda 

çeşitli genetik hastalıklara neden olmaktadır. 

Transkripsiyon faktörü (Transcription factor, TF) olarak 

adlandırılan gen ifadelerini düzenleyen proteinler 

genomik verileri yorumlayarak DNA dizisinin kodunun 

çözülmesi için gereken ilk adımları gerçekleştirir. 

Transkripsiyon faktörleri ve bu faktörlerin bağlanma 

bölgelerindeki mutasyonlar canlılarda görülen birçok 

genetik hastalığın temelini oluşturmaktadır. Örneğin 

insan, fare, tavuk, deniz kestanesi gibi metazoan 

dünyasındaki türlerde bulunan Ets ailesi proteinleri 

transkripsiyon faktörleri ile iş birliği içerisinde 

çalışmaktadır. Ets proteinlerindeki düzensizlikler, çeşitli 

kanser türlerinin oluşumuna neden olmaktadır. Lösemi, 

Ewing tümörü ve meme kanseri gibi ölümcül sonuçlar 

doğurabilecek hastalıklar, Ets protein ailesine ait 

proteinlerin anormal regülasyonu ile 

ilişkilendirilmektedir [45]. 
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Genlerin çalışma mekanizmalarının anlaşılması 

transkripsiyonel süreçlerin anlamlandırılması için 

önemlidir. Transkripsiyon faktörlerinin gen 

düzenlenmesi üzerinde biyolojik olarak önemi oldukça 

açıktır. Transkripsiyon faktörleri, DNA dizilerini 

tanıyarak bağlanan ve kromatinlerin yapılarını 

değiştirerek transkripsiyonu düzenleyen proteinlerdir. 

Gen üzerinde bulunan ve promotör olarak adlandırılan 

bölgeye bağlanarak genin ifade seviyesini düzenlerler. 

Hücrelerin tipine, gelişim aşamasına, hastalık durumuna 

göre transkripsiyonun başlatılması ve düzenlenmesinden 

sorumludurlar. Transkripsiyon faktörü bağlanma 

bölgeleri ise transkripsiyon faktörleri ile DNA üzerindeki 

bağlanma alanları arasında oluşan birleşme 

pozisyonudur. Dolayısıyla bu bağlanma noktalarının 

başarılı bir şekilde tahmini genetik hastalıkların teşhis ve 

tedavisi için önemli bir adımdır. Son araştırmalar 

transkripsiyon faktörü bağlanma bölgelerinin 

belirlenmesinde önemli gelişmeler olmasına rağmen 

transkripsiyon faktörü bağlanmalarının çok daha 

karmaşık olduğunu ve başlangıçta bilinenden daha fazla 

düzenleyici ve yapısal değişiklik barındırdığını 

göstermektedir [7, 8, 9, 10]. 

Aynı yapısal ailelerden gelen transkripsiyon faktörleri 

çoğunlukla benzer DNA dizilerine bağlanma eğilimi 

gösterirler ancak her birinin kendine özgü işlevleri vardır. 

Şekil 1’de 3 faklı temel bHLH (basic helix-loop-helix) 

ailesi transkripsiyon faktörü örneği gösterilmektedir.  

 

Şekil 1. Transkripsiyon faktörü bağlanma mekanizmaları 

(Transcription factor binding mechanisms) [44] 

Bu yapılar benzer simetrik motifleri (örneğin CACGTG 

motifi) tanımakta ancak birbirlerinden farklı görevleri 

yerine getirmektedirler. Şekil 1’de ki yapılara 

bakıldığında MyoD proteini kas hücrelerini belirlerken 

Clock:Bmal1 sirkadiyen ritmini (uyku uyanıklık 

döngüsü, vücut ısısının ayarlanması, hormon salınımı vb. 

süreçler) düzenlemekte, Max ise hücre çoğalması ve 

farklılaşmasını kontrol etmektedir. Bu yapılarda 

meydana gelen anomaliler yalnızca canlının yaşam 

kalitesini etkilemekle kalmaz aynı zamanda hayati bir rol 

de oynayabilir. Ets ailesinden gelen Ets1 proteini de 

farelerde onkojenik potansiyeli olmasına rağmen 

insanlarda onkogenezde rol oynadığına dair bir kanıt 

bulunmamaktadır. Hatta Ets1’in bir varyantının insanda 

kolon kanserini baskıladığı bilinmektedir [45].  

Aynı yapısal ailelerden gelen, benzer DNA dizilerine 

bağlanma eğilimi gösteren ancak farklı canlılarda farklı 

işlevleri yerine getiren hatta bazı durumlarda zıt roller 

oynan Transkripsiyon faktörlerinin çalışma 

mekanizmalarını, fizyolojik rollerini anlamak, 

genomların spesifik özelliklerinin kodlarını çözmek ve 

haritalamak için önemlidir [4]. Transkripsiyonel 

süreçlerin anlaşılmasıyla potansiyel bağlanma 

mekanizmalarını ve sonraki hücresel fonksiyonların 

modellenmesini anlama sürecinde önemli bir adım 

atılmaktadır. Çeşitli makine öğrenmesi ve derin öğrenme 

yöntemlerinin kullanılması ile başarı oranı artırılan 

transkripsiyon faktörü bağlanma bölgelerinin tahmini, 

biyoinformatik alanındaki popüler ve zorlu çalışma 

konularındandır. Transkripsiyon faktörlerinin olası DNA 

bağlanma bölgelerini tahmin etmek, biyolojik sistemlerin 

karmaşık yapılar içermesi nedeniyle hesaplamalı 

biyolojide zor bir araştırma konusudur. Bu nedenle 

bahsedilen tahmin problemine hesaplama teknikleri 

kullanarak çözüm geliştirmek aktif bir çalışma 

konusudur [5]. 

Günümüzde yapay zekâ ve veri bilimi alanlarında 

yaşanan gelişmeler, bu alanlarla etkileşim halinde 

bulunan diğer bilim dalları üzerinde de önemli etkiler 

oluşturmuştur. Bu gelişmelerin etkilediği alanlar 

arasında tıp, genetik, biyoinformatik bilimi gibi insan 

sağlığı konusunda çalışmalar yapan alanlar da 

bulunmaktadır. Yapay zekâ ve veri bilimi alanındaki 

gelişmeler ve hızla artan veri miktarı, insan sağlığı için 

önemli olan hastalıkların teşhis ve tedavi süreçlerinde 

önemli yenilikler sunarken, biyoinformatik alanında ise 

genetik verinin anlaşılması ve biyolojik süreçlerin analizi 

gibi konulara katkı sağlamaktadır. Bahsedilen bu 

gelişmelerle beraber veri miktarının da hızla artması 

sonucu, geleneksel makine öğrenmesi yöntemleri yerini 

büyük veri konusunda oldukça başarılı çıktılar üreten 

derin öğrenme yöntemlerine bırakmıştır. Yüksek verimli 

teknolojilerin gelişimiyle genom dizileri, protein yapıları 

ve tıbbi görüntüleme alanındaki ilerlemeler sonucu 

biyoinformatik alanında birikmiş büyük miktarda 

biyomedikal verinin derin öğrenme uygulamaları ile 

birleşiminden elde edilecek çıktılar hem akademik 

camianın hem de endüstri camiasının dikkatini 

çekmektedir. Büyük miktardaki biyomedikal verinin 
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anlamlı bilgi haline dönüştürülmesi için, verilerin 

depolanmasından analiz ve yorumlanmasına kadar etkili 

ve verimli hesaplama araçlarına ihtiyaç duymaktadır. 

Derin öğrenme yöntemlerindeki karmaşık yapılar 

bahsedilen bu veri setlerinden özellik çıkarımı sürecini 

daha etkili hale getirmekte böylelikle tıbbi verilerin 

analizinde bu metotların tercih edilmesi giderek 

yaygınlaşmaktadır [1, 2, 3]. 

Transkripsiyonel süreçleri anlamak için gerçekleştirilen 

çalışmalarda gelinen son nokta henüz bu süreçleri 

tamamen anlamak için yeterli seviyede olmadığımızı 

gözler önüne seriyor. Bu sebeple Transkripsiyon Faktörü 

Bağlama Bölgeleri (Transcription Factor Binding Sites, 

TFBS) Tahmini alanında gerçekleştirilen çalışmalar hala 

geliştirilmeye açıktır. Ancak bu çalışmalar da karşılaşılan 

bir diğer problem ise biyolojik deneyler yapmanın pahalı 

olduğu ve uzun zaman gerektirdiği gerçeğidir. Bu gibi 

sebepler ve veri biliminin gelişimiyle artan biyolojik veri 

setlerinin varlığı, araştırmacıları gen dizilimlerini analiz 

etmek için derin öğrenme teknolojileri kullanmaya ve 

hesaplamalı modeller geliştirmeye yöneltmektedir [6].  

Bu çalışmada transkripsiyon faktörü bağlama bölgelerini 

tahmin etmek için farklı mimarileri birleştirdiğimiz hibrit 

bir yöntem öneriyoruz. DeepTFBS (Deep Transcription 

Factor Binding Sites) adını verdiğimiz modelde farklı 

derin öğrenme teknolojilerini kullanarak farklı 

mimarilerin güçlü yanlarını bir araya getiriyoruz. 

Modelimiz literatürde geliştirilen diğer yöntemlerle 

karşılaştırıldığında başarılı çıktılar elde etmektedir. 

 

2. LİTERATÜR TARAMA (LITERATURE REVIEW) 

Makine öğrenmesi ve derin öğrenme teknolojileri son 

yıllarda kullanıldığı birçok alanda olduğu gibi genetik 

alanında da büyük başarılar elde etmiştir. Tıbbi 

görüntülerin ve biyomedikal verilerin sağlık 

sektöründeki araştırma ve uygulama potansiyeli endüstri 

sektörüyle beraber akademik camianın da ilgi odağı 

haline gelmiştir. Transkripsiyon faktörü bağlanma 

bölgeleri tahmini için literatürde gerçekleştirilen 

çalışmalar incelendiğinde çeşitli yöntemler geliştirildiği 

ancak makine öğrenmesi ve derin öğrenme yöntemlerinin 

son yıllarda sıklıkla tercih edildiği gözlemlenmiştir.  

Alipanahi ve arkadaşları 2015 yılında DeepBind adını 

verdikleri metotla derin öğrenme teknolojilerini 

kullanarak DNA ve RNA bağlayıcı proteinlerin dizi 

özelliklerini tahmin etmeye yönelik bir çalışma 

sunmuşlardır. Çalışma hedef bağlanma motiflerinin 

tahmini için esnek ve birleşik bir hesaplama yöntemi 

sunmaktadır [11]. 

Hassanzadeh ve Wang 2016 yılında gerçekleştirdikleri 

çalışmayla protein bağlanma bölgeleri tahmini için 

başarılı derin öğrenme tekniklerinden biri olan Uzun kısa 

süreli bellek (Long Short-Term Memory,  LSTM) ve 

Evrişimsel sinir ağı (Convolutional Neural Network, 

CNN) mimarilerini kullandıkları bir model olan 

DeeperBind’ı önermişlerdir [12].  

Quang ve Xie 2016 yılında gerçekleştirdikleri çalışma ile 

CNN ve çift yönlü uzun kısa süreli bellek (BiLSTM) 

yapısını birleştiren hibrit bir yaklaşım önermişlerdir. 

Önerdikleri modele DanQ adını veren araştırmacılar 

evrişim katmanı ile düzenleyici motifleri yakalarken, 

yineleme katmanı sayesinde motifler arası uzun vadeli 

bağımlılıkları yakalamaktadır. DanQ çeşitli ölçümlerde 

diğer modellere kıyasla gelişme göstermiştir [13].  

Zhang ve arkadaşları 2018 yılında yaptıkları çalışmada 

HOCNN (High-order Convolutional Neural Network) 

adını verdikleri bir yöntem önermişlerdir. Önerilen 

çalışmada nükleotitler arasındaki yüksek dereceli 

bağımlılıkları ele almak için yüksek dereceli bir kodlama 

yöntemi ve farklı uzunluktaki motif özelliklerinin keşfi 

için yüksek dereceli bir evrişimsel sinir ağı mimarisi 

geliştirmişlerdir. Araştırmacılar çalışmalarını ChIP-seq 

(165 ENCODE chromatin immunoprecipitation 

sequencing) veri kümesi üzerinde değerlendirmişler ve 

elde ettikleri sonuçların en gelişmiş diğer mimarilerden 

daha iyi performans gösterdiğini belirtmişlerdir [14]. 

Trabelsi ve arkadaşları 2019 yılında DNA ve RNA dizisi 

bağlanma özellikleri tahmini için deepRAM adını 

verdikleri derin öğrenme aracını sunmuşlardır. 

Çalışmada derin ve karmaşık mimarilerin yeterli eğitim 

verileri sağlandığında avantajlı olduğunu ve CNN/RNN 

mimarilerinin diğer yöntemlere göre daha iyi performans 

gösterdiği kanıtlanmıştır [15].  

Abdollahyan ve arkadaşları 2018 yılında 

gerçekleştirdikleri çalışmalarında TFBS tahmini 

amacıyla grafik tabanlı bir yaklaşım önermişlerdir. 

Grafikleri hizalamak ve TFBS dizilerini belirlemek için 

dinamik bir programlama algoritması kullanmışlarıdır 

[16]. 

Zhang ve arkadaşları 2018 yılında WSCNN (Weakly-

Supervised Convolutional Neural Network) olarak 

adlandırdıkları bir mimariyi önermişlerdir. 

Çalışmalarında çok örnekli öğrenme (Multiple-Instance 

Learning, MIL) ile CNN yapısını bir araya getiren bir 

yaklaşım benimsemişlerdir. Çalışma DNA dizilerini 

birden fazla alt diziye böler ve CNN yardımıyla her 

örneği ayrı ayrı modeller. Son olarak Max, Avarage, 

Linear Regression ve Top-Bottom Instances olmak üzere 

dört füzyon yöntemiyle aynı torbadaki tüm örneklerin 

tahmin puanlarını birleştirir [17]. 

Zhang ve arkadaşları 2019 yılında yaptıkları çalışmada 

protein-DNA bağlanmasını modellemek için çoklu 

örnekli öğrenmeyi hibrit bir derin sinir ağı mimarisiyle 

birleştirdikleri bir yöntem tanıtmışlardır. Çalışmada 

DNA dizilerini dönüştürmek için K-mer kodlaması 

kullanmışlar ve yüksek dereceli bağımlılıkların görüntü 

benzeri girdilerine kodlamışlardır [18]. 

2019 yılında Chen ve arkadaşları yaptıkları çalışmada 

DeepGRN adını verdikleri derin öğrenme modelini 

tanıtmışlardır. Bu çalışma da evrişimli sinir ağlar (CNN), 

tekrarlayan sinir ağları (RNN) ve dikkat mekanizması 

gibi teknikleri birleştirerek hibrit bir yöntem 

geliştirmişlerdir. Yaptıkları testlerde sundukları modelin 

diğer başarılı modeller ile kıyaslandığında başarı 

performans ortaya koyduğu görülmektedir [19]. 
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Zhou ve arkadaşları 2019 yılında gerçekleştirdikleri 

çalışmada histon modifikasyon özelliklerine CNN 

uygulayarak daha yüksek dereceli bağımlılıkları 

çıkarmak için bir yöntem önermişlerdir. Düşük ve yüksek 

dereceli bağımlılıkları birleştiren modeli CNN_TF olarak 

adlandırmışlardır. Çalışma son teknoloji birkaç yöntem 

ile karşılaştırıldığında CNN_TF, AUPR'de diğer 

metotları %5,3 oranında geride bırakmaktadır [20]. 

Zhang ve arkadaşları 2020 yılında gerçekleştirdikleri 

çalışmada DeepSite adını verdikleri bir mimari 

önermişlerdir. DeepSite mimarisinde DNA'daki dizi 

motifleri arasındaki uzun vadeli bağımlılıkları 

yakalamak için çift yönlü uzun kısa süreli bellek (Bi-

LSTM) ve CNN yapısı beraber kullanılmaktadır. Sistem 

690 Chip-seq deneyleri ile test edilmiştir ancak 

araştırmacılar yöntemlerinin farklı DNA dizilerindeki 

DNA-protein bağlanma bölgelerini bulmak için de 

uygulanabileceği belirtmişlerdir [21]. 

Aziz ve Rashid 2021 yılında gerçekleştirdikleri TFBS 

tahmini çalışmasında Destek vektör makineleri (Support 

Vector Machine, SVM) ve Kernel Lojistik Regresyon 

(Kernel Logistic Regression, KLR) yöntemlerini 

kullanmışladır [22].  

Wang ve arkadaşları 2022 yılında yaptıkları çalışmada 

transkripsiyon faktörü bağlanma bölgeleri tahmini için 

Evrişimli Sinir Ağları (Convolutional Neural Networks, 

CNNs)  ile Tekrarlayan Sinir Ağlarının (Recurrent 

Neural Networks, RNNs) bir çeşidi olan Uzun kısa süreli 

bellek (Long short-term memory, LSTM) yapısını 

birleştirmişledir.  Araştırmacılar çalışmalarını başarılı 

diğer yöntemler ile kıyasladıklarında daha iyi performans 

elde etmişlerdir [23]. 

Song ve Du 2022 yılında DS-SSB adını verdikleri bir 

yöntem önermişlerdir. DS-SSB yöntemi Çift akışlı çoklu 

örnek ağını (Dual-stream multiple instance network) 

çoklu özelliklerle birleştirir. 690 ChIP-seq veri 

kümesiyle gerçekleştirilen deneyler, TFBS tahmininde 

başarılı sonuçlar elde edildiğini göstermiştir [24]. 

Cheng ve çalışma arkadaşları 2022 yılında AttBind adını 

verdikleri CNN, Bi-GRU ve Dikkat mekanizmasını 

birleştirdikleri bir öğrenme algoritması önermişlerdir. 

Deneysel sonuçlar modelin ENCODE DREAM 

Challenge’da mevcutta bulunan ilk 5 yöntemden daha 

başarılı olduğunu göstermiştir [25]. 

Li ve arkadaşları 2022 yılında TFBS tahmini için Yoğun 

ağ (Densely network) kullanan ilk çalışma olan ve 

DCNN-SH olarak adlandırdıkları çalışmayla yeni bir 

sinir ağı mimarisi önermişlerdir. Model mevcut 

yöntemlere kıyasla daha küçük evrişimsel çekirdekler 

kullanarak çok ölçekli özellikleri dikkate alınmasını 

sağlamakta ve diğer birçok yönteme göre daha başarılı 

performans gösterdiği belirtilmektedir [26]. 

Cao ve arkadaşları 2022 yılında DeepARC adını 

verdikleri dikkat tabanlı hibrit bir sistem önermişlerdir. 

DeepARC, DNA2Vec ve OneHot kodlamasını 

birleştirerek her iki yöntemin güçlü yanlarından 

faydalanmıştır. Dikkat tabanlı CNN-BiLSTM ağı 

mimarisini kullanan DeepARC'ın mevcut son teknoloji 

yöntemlerden daha başarılı performans ortaya koyduğu 

belirtilmektedir [27]. 

Yu ve arkadaşları 2023 yılında gerçekleştirdikleri 

çalışmada DSAC olarak adlandırdıkları model ile Öz 

Dikkat ve Konvolüsyonu birleştirerek sadece dizi 

özelliklerine dayalı TFBS tahmini işlemi 

gerçekleştirmişlerdir [28]. 

2023 yılında yaptıkları çalışmada Tariq ve Amin dizi 

özelliklerinin çıkarılması ve TFBS'lerin tanımlanması 

için k-mer kodlaması ile birleştirdikleri Evrişimli Sinir 

Ağı (Convolutional Neural Network, CNN) modelini 

önermişlerdir [5]. 

Ding ve arkadaşları 2023 sundukları çalışmada CNN, Bi-

LSTM, Transformer gibi teknolojileri birleştirdikleri 

DeepSTF modelini önermişlerdir. Bu hibrit model 

DNA’nın dizi ve şekil özelliklerini bir arada kullanarak 

transkripsiyon faktörü bağlanma bölgeleri tahmini için 

yüksek performans elde etmiştir [55]. 

2024 yılında Wang ve arkadaşları tarafından geliştirilen 

BERT-TFBS modeli transfer öğrenme yöntemini 

kullanarak sadece DNA dizilerine dayalı TFBS tahmini 

gerçekleştirmektedir. BERT-TFBS modeli DNA 

dizilerindeki uzun vadeli bağımlılıkları yakalamak 

amacıyla önceden eğitilmiş DNABERT-2 modülünü 

kullanırken özellik çıkarımı için CNN ve CBAM 

(Convolutional block attention module) yapısını 

kullanmaktadır [47]. 

Son yıllarda yapılan referans çalışmalar, derin öğrenme 

mimarilerinin biyoinformatik alanındaki problemlerin 

çözümünde sıklıkla kullanıldığını gösteriyor. Bu 

alandaki önemli zorluklardan birisi olan Transkripsiyon 

Faktörü Bağlanma Bölgeleri tahmini probleminde de 

DNA dizilerinin doğasının anlaşılması ve bağlanma 

bölgelerinin tahmini için derin öğrenme yöntemlerinin 

kullanımının popüler bir araştırma alanıdır. Ancak şu ana 

kadar geliştirilen yöntemlerin henüz yeterli düzeyde 

olmadığı ve gelecekte yapılacak çalışmaların umut 

vadedici olduğu görülmektedir. 

 

3. MATERYAL VE METOD (MATERIAL AND 

METHOD) 

3.1. Veri Seti (Data Set) 

Genomik alanında gerçekleştirilen öğrenme görevleri 

genellikle on binlerce ve üzerinde eğitim örneğine 

sahiptir. Bu kadar büyük veriler ile eğitim 

gerçekleştirilmesi aşırı uyum sağlamasının önüne geçer. 

Bu gibi büyük boyutlu eğitim örnekleri genellikle 

Encyclopedia of DNA Elements (ENCODE) projesi 

tarafından üretilenler gibi yüksek verimli verilerden 

çekilir [43]. Bu çalışmada da bu alanda popüler veri 

kümelerinden biri olan 690 ChIP-seq veri kümesinden 

elde edilen DNA dizisi verileri kullanılmıştır. Kullanılan 

165 ChIP-seq veri kümesi ENCODE projesi kapsamında 

gerçekleştirilen 165 farklı kromatin 

immünopresipitasyon dizileme (Chromatin 

Immunoprecipitation Sequencing, ChIP-seq) deneyini 

ifade eder [29]. 165 veri seti barındıran ChIP-seq, farklı 
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hücre dizilerinden gelen 29 transkripsiyon faktörüne ait 

bağlanma bölgesi verileri içermektedir. Veri setinin 

İnsan lösemi hücreleri, insan akciğer adenokarsinom 

hücreleri, insan embriyonik kök hücreleri, memeli epitel 

hücreleri ve daha birçok organizmadan oluşması, hücre 

farklılaşması, kanser biyolojisi, bağışıklık sistemi 

tepkileri ve hastalık patogenezi gibi geniş bir biyolojik 

süreci incelemeye ve anlamaya olanak tanır. Bu çeşitlilik, 

yalnızca belirli bir hücre veya hastalık türüne 

odaklanmak yerine, farklı dokular ve kanser türlerinde 

genetik ve epigenetik düzenleyici mekanizmaların 

karşılaştırmalı olarak analiz edilmesini mümkün kılar. 

Transkripsiyon faktörlerinin bağlanma bölgeleri ile ilgili 

DNA dizi özellikleri ve DNA şekil özellikleri birlikte bu 

çalışmanın veri setini oluşturmuştur. Bölüm 3.1.1 ve 

bölüm 3.1.2’de bu özellikler ve kullanımları ile alakalı 

detaylı bilgi verilmiştir.   

3.1.1. DNA sekansları (DNA sequences) 

DNA dizileme ilk olarak 1977'de tanıtılmıştır. Dizileme 

teknolojisinde geliştirilen teknikler sayesinde birçok 

deney daha kolay hale gelmiş ve hesaplamalı biyolojiye 

önemli katkılar sağlamıştır. Bir DNA dizisi A (Adenine), 

G (Guanine), C (Cytosine), T (Thymine) olmak üzere 4 

farklı nükleotitin farklı kombinasyonlarının bir araya 

gelmesi ile oluşan dizilerdir. Bu dizimler canlılara ait 

biyolojik özelliklerin belirlenmesini sağlar ve 

benzersizdir [30, 31]. DNA dizilerinin bu özgün yapıları 

transkripsiyon faktörü bağlanma bölgeleri tahmini 

işleminde de önem arz etmektedir. DNA’daki nükleotit 

yapılarının doğru yöntemlerle incelenerek, analiz 

edilerek işlev özelliklerinin anlaşılması bu TFBS tahmin 

işleminde kritik öneme sahiptir. Bu nedenle TFBS 

tahmin çalışmalarında DNA sekanslarının detaylı analiz 

edilmesi gerekmektedir. Literatürdeki çalışmalar 

incelendiğinde sadece DNA dizileri kullanılarak 

gerçekleştirilen tahmin çalışmaları olduğu gibi farklı 

DNA özellikleri ile birlikte kullanıldığı çalışmalara da 

rastlanmaktadır. 

3.1.2. DNA şekli (DNA shape) 

DNA şekli DNA moleküllerinin 3 boyutlu uzaydaki 

yapısı olarak bilinmektedir. Sadece DNA dizileri 

kullanılarak gerçekleştirilen transkripsiyon faktörü 

bağlanma bölgeleri tahmini çalışmalarının yanı sıra motif 

keşfi için DNA şekil özellikleri kullanan çalışmalara da 

rastlanmaktadır. Yapılan birçok araştırma transkripsiyon 

faktörleri ve bağlanma dizileri arasındaki etkileşimin 

yüksek oranda korunduğunu göstermektedir. Çalışmalar 

bu korunmanın DNA molekülünün üç boyutlu yapısıyla 

bağlantılı olduğunu göstermektedir. DNA şekli 

transkripsiyon faktörleri ile DNA-bağlayıcı proteinlerin 

bağlanma tercihlerini belirlemede önemlidir. Bu nedenle 

bu alanda yapılan çalışmalarda TFBS tahmin 

doğruluğunu artırmak için DNA dizisi ve şekli entegre 

edilmektedir [32, 22].  

DNA’nın birçok yapısal özelliği bulunmakta ve bu 

özellikler DNA şekline ait bazı verilerle 

ilişkilendirilmektedir. Dolayısıyla DNA şekil özellikleri 

bizlere DNA yapısı ve gerçekleştirdiği fonksiyonlar 

hakkında bilgiler verir. Bu şekil özelliklerinin doğru 

şekilde analiziyle transkripsiyon faktörlerinin bağlanma 

mekanizmaları hakkında detaylı bilgiler edinilebilir. 

Literatür incelemeleri transkripsiyon faktörü bağlanma 

bölgelerinin tahmininde DNA şeklinin belirlenmesi 

amacıyla beş temel DNA şekil özelliğinin yaygın olarak 

kullanıldığını ortaya koymaktadır. Aşağıda 

detaylandırılan bu beş DNA şekil özelliği, bazı 

çalışmalarda dörtlü kombinasyonlar [48, 49, 50, 51, 52, 

53] halinde, bazı çalışmalarda ise beş özellik [54, 55, 56] 

bir arada kullanılarak tahmin sürecine dahil edilmiştir.  

Çalışmamızda DNA şeklinin belirlenmesine yardımcı 

olan ve literatürde de transkripsiyon faktörü bağlanma 

bölgeleri tahmini için sıklıkla kullanımına rastlanılan 5 

özellik; 

1) Sarmal Büküm (Helix twist, HeIT): DNA'nın 

spiral yapısını tanımlayarak baz çiftlerinin 

birbirine göre dönme açılarını düzenlemektedir. 

DNA'nın üç boyutlu yapısındaki bu değişiklikler, 

proteinlerin belirli DNA bölgesine bağlanmasını 

etkilemektedir  [60].  

2) Küçük oluk genişliği (Minor grove width, 

MGW): MGW transkripsiyon faktörlerinin küçük 

oluğa erişimiyle ilişkilendirilir ve yüksek afiniteye 

sahip bağlanma bölgelerinde küçük oluktaki 

genişleme veya daralmalar transkripsiyon 

faktörlerinin bağlanma tercihini etkilemektedir 

[59, 61]. 

3) Pervane bükümü (Propeller twist, ProT): 

DNA'nın bükülme ve kıvrılma şeklini 

değiştirmekte ve bu sayede transkripsiyon 

faktörlerinin spesifik bağlanma motiflerini 

tanımasını sağlamaktadır [60].   

4) Yuvarlanma (Rolling, Roll): Roll açısı, baz 

çiftleri arasındaki eğimi tanımlamakta ve bu eğim 

transkripsiyon faktörlerinin bağlanma 

doğruluğunu etkilemektedir [60].  

5) Küçük oluk elektrostatik potansiyeli (Minor 

Groove electrostatic potential, EP): DNA'nın 

negatif yüklü omurgası, pozitif yüklü amino 

asitlere sahip proteinlerle elektrostatik çekim 

yoluyla etkileşime girer. Bu etkileşim 

transkripsiyon faktörleri gibi DNA'ya bağlanan 

proteinlerin bağlanma bölgelerini tanımasında 

etkilidir [59]. 

DNA şekil özelliklerinin TFBS tahmini için olumlu etkisi 

yapılan çalışmalarla kanıtlanmıştır [57, 58]. Bu özellikler 

DNA sekanslarından oluşan veri setindeki verilerin, 

DNAShaper kullanılarak hesaplanmasından elde 

edilmiştir [33]. Seçilen özellikler DNA’nın üç boyutlu 

yapısını belirlemekte ve transkripsiyon faktörü bağlanma 

bölgelerini etkileyen temel yapısal ve fiziksel özellikleri 

kapsamaktadır.  Dolayısıyla bu özellikler protein-DNA 

etkileşimini anlamak için kritiktir ve proteinlerin 

bağlanma motiflerini daha iyi tanımlamayı sağlayarak 

modelin tahmin performansını etkilemektedir.  
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Çalışmada kullandığımız DNA dizi özellikleri ve şekil 

özelliklerinden oluşan veri seti, modelin performansını 

değerlendirmek ve genel başarısını test edebilmek 

amacıyla eğitim veri seti ve test veri seti olarak 2 gruba 

ayrılmıştır. Tüm veri setinin %80'ini oluşturan eğitim 

verisi, modelin öğrenme sürecindeki ana veri grubudur. 

Eğitim verisi modelin özellikleri tanımasını ve doğru 

tahminler için gerekli kalıpları öğrenmesini sağlar. Tüm 

veri setinin %20'sini oluşturan test verisi ise modelin 

eğitim sırasında öğrenmediği yeni verileri içerir. Test 

veri seti, modelin eğitim sırasında öğrendiği bilgileri yeni 

verilere uygulama becerisini ölçer. Önerdiğimiz yöntem 

de DNA dizi özellikleri ile beraber DNA yapı özellikleri 

kullanılarak transkripsiyon faktörlerinin bağlanma 

bölgelerini tahmin işlemi için yüksek doğrulukta bir 

derin öğrenme mimarisi geliştirilmiştir. 

3.2. Uygulama Mimarisi (Application Architecture) 

DeepTFBS adını verdiğimiz mimaride, transkripsiyon 

faktörü bağlanma bölgelerinin tahmin edilmesi için farklı 

derin öğrenme mimarilerini birleştirdiğimiz hibrit bir 

yaklaşım benimsenmiştir. Bu yaklaşımda, DNA 

dizilerini alt parçalara bölmek için kullandığımız K-mer 

analizi, Evrişimli sinir ağı (Convolutional neural 

network, CNN), Geçitli yinelemeli birimler (Gated 

recurrent unit, GRU) ve dikkat mekanizması kullanan bir 

transformer mimarisi kombinasyonunu içermektedir. 

3.2.1. K-mer 

K-mer, biyoinformatik alanında kullanılan bir terimdir. 

Bir dizinin “k” uzunluğunda tüm alt parçalarını ifade 

etmektedir. DNA ya da RNA dizileri belirli k-mer 

uzunluğunda ardışık olan parçalara bölünerek 

biyoinformatik alanında kullanılır. Gen hataları, bireyler 

arasındaki genetik benzerliklerin ve farklılıkların analizi, 

tür çeşitliliği gibi alanlarda kullanımına rastlanılmaktadır 

[34, 35]. Çizelge 1’de 10 adet nükleotitten oluşan bir dizi 

için K-mer verileri gösterilmektedir. 

Çizelge 1: GTAGAGCTGT dizisi için k-mers (k-mers for the 

sequence GTAGAGCTGT) [6] 

1-mer G, T, A, C 

2-mer GT, TA, AG, GA, AG, GC, CT, TG 

3-mer GTA, TAG, AGA, GAG, AGC, GCT, CTG, TGT 

4-mer GTAG, TAGA, AGAG, GAGC, AGCT, GCTG, 

CTGT 

5-mer GTAGA, TAGAG, AGAGC, GAGCT, AGCTG, 

GCTGT 

6-mer GTAGAG, TAGAGC, AGAGCT, GAGCTG, 

AGCTGT 

7-mer GTAGAGC, TAGAGCT, AGAGCTG, GAGCTGT 

8-mer GTAGAGCT, TAGAGCTG, AGAGCTGT 

9-mer GTAGAGCTG, TAGAGCTGT 

10-mer GTAGAGCTGT 

DNA dizileri uygun alt parçalara bölündüğünde 

hesaplama açısından kolaylık sağlamaktadır. Ancak 

seçilen parça uzunlukları işlemin başarısını 

etkilemektedir. Bu nedenle çok uzun ya da çok kısa boyut 

seçmek her durumda işlevsel değildir. Problem uzayına 

göre uygun değerler belirlenmelidir. Farklı k değeri 

tercihi, dizinin ardışık motiflerle temsil edebileceği 

uzunluk miktarını belirler. Çalışmada DNA dizisi, belirli 

bir uzunlukta ve adım aralığında olan k-mer dizilerine 

bölünmüştür. Bu k-mer dizileri, kelime olarak ele alınıp 

bir kelime temsil modeli elde edilmiştir. Çalışmada farklı 

k değerleri için gerekli testler yapılmış ve optimal k 

değeri 5 olarak elde edilmiştir.  k değeri ardışık motiflerin 

anlaşılması ve özelliklerin öğrenilmesi için seçilmiştir. 

3.2.2. Geçitli yinelenen birimler (Gated recurrent 

unit, GRU) 

Geçitli yinelen birimler zamansal veriler ve uzun, sıralı 

veriler için başarılı sonuçlar üreten yapılardır. 2014 

yılında LSTM yapılarının karmaşıklığını azaltmak için 

geliştirilmişlerdir. Başarılarını mevcut girişin ve 

hafızalarından bulunan önceki bilgi akışının organize 

edilmesinden sorumlu olan geçit yapılarına borçludurlar. 

LSTM yapıları RNN yapılarının 3 kapı kullandığı ağlar 

iken GRU yapıları ise önceki durum ile ilgili işlemleri 

gerçekleştiren güncelleme kapısı (update gate) ve yeni 

giriş verileriyle önceki bilgileri birleştiren, silinmesi 

gereken verilere karar veren sıfırlama kapısı (reset gate) 

olmak üzere 2 kapıdan oluşmaktadır [36]. 

Bi-GRU yapıları ise iki GRU katmanından meydana 

gelmektedir. İleri ve geri yönlü olan bu GRU katmanları 

bilginin çift yönlü öğrenilmesini ve bağlamın daha iyi 

anlaşılmasını sağlar. LSTM, GRU gibi modeller 

geleneksel RNN yapılarını güçlendirirken parametre 

artışından dolayı hesaplama maliyetini artırırlar.  GRU 

yapıları LSTM yapılarına göre sade ve performansı 

artırılmış modellerdir. 

3.2.3. Evrişimli sinir ağları (Convolutional neural 

network, CNN) 

Evrişimli sinir ağları derin öğrenme alanındaki en önemli 

ağ modellerinden birisidir. Bilgisayarlı görü, yüz tanıma, 

otonom sistemler, akıllı ilaç tedavileri gibi geniş bir 

çalışma alanında kullanılmaktadırlar.  Barındırdıkları 

konvolüsyon yapılarıyla verilerden özellik çıkarabilen 

ileri beslemeli sinir ağlarıdır. Geleneksel yöntemlerden 

farklı olarak manuel özellik çıkarımına ihtiyaçları yoktur. 

En eski evrişimli sinir ağı modeli 1998’de önerilen leNet-

5 modelidir. CNN temelli yapılar yıllar içinde geliştirilen 

yöntemler ile üstün başarılı çıktılar sunmuştur. Temel 

olarak bir CNN modeli Konvolüsyon Katmanı 

(Convolution Layer), Havuzlama Katmanı (Pooling 

Layer) ve Tam Bağlı Katmanlar (Fully Connected 

Layers) olmak üzere 3 ana katmandan meydana 

gelmektedir. Evrişim katmanları CNN mimarilerinin 

temel öğeleridir. Giriş verisi üzerinde filtrelerin 

hareketiyle özellik haritalarının oluşturulmasını sağlar. 

Havuzlama katmanları yardımıyla özellik haritalarının 

boyutları azaltılarak öğrenilecek parametre sayısı ve 

dolayısıyla hesaplama maliyeti düşürür. Tam bağlantılı 

katman ise klasik yapay sinir ağı katmanıdır. Bu 

katmanda bulunan her nöron önceki katmanda bulunan 

tüm nöronlara bağlı olduğundan bu şekilde 

isimlendirilmiştir. [1, 37, 38]. 
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3.2.4. Transformer mimarisi (Transformer 

architecture) 

2017 yılında yayınlanan çalışma ile tanıtılan transformer 

mimarisi, yineleme ve evrişimden soyutlanan dikkat 

mekanizmasına dayalı bir ağ mimarisidir. Mimari Çok 

Başlı Dikkat Mekanizması (Multi-Head Attention 

Mechanism), Kodlayıcı (Encoder) yapısı, Kod Çözücü 

(Decoder) yapısı, Tam Bağlantılı Katmanlardan (Fully 

Connected Layers) oluşmakta ve derin öğrenme 

modellerinde birçok zorlu görevin başarı ile üstesinden 

gelmektedir.  Kodlayıcı giriş verilerini, embedding denen 

özel temsillere dönüştürür. Kod çözücü, elde edilen bu 

temsilleri bazı işlemlerden geçirerek yeni bir forma 

dönüştürür. Barındırdığı dikkat mekanizması yapısı ile 

uzun vadeli bağımlılıkları etkili bir şekilde ele alır ve 

başarılı çıktılar üretir [39]. Önerilen model eğitilirken 

kullanılan parametreler Çizelge 2’de gösterilmiştir. 
Çizelge 2: Model eğitim parametreleri (Model training 

parameters) 

Öğrenme Oranı Dinamik 

Optimizasyon Fonksiyonu Adam 

Dropout oranı 0.2 

Çekirdek Sayısı 128 

Eğitim Döngüsü  50 

Aktivasyon Fonksiyonu RELU, GELU 

Çalışmada dinamik öğrenme stratejileri kullanılarak 

modelin eğitim sürecinde hiper parametrelerin sabit 

tutulmadan, eğitim verisinin özelliklerine ve eğitim 

sürecine bağlı olarak sürekli değişmesi sağlanmıştır.  

Aşırı öğrenmenin önüne geçmek ve modelin genelleme 

kapasitesini artırmak amacıyla farklı dropout oranları test 

edilmiş ve en uygun oran belirlenmiştir. Eğitim döngüsü 

(epoch) sayısı belirlenirken erken durdurma (early 

stopping) yöntemi kullanılarak maksimum öğrenme 

sağlanmış ve en uygun noktada eğitim süreci otomatik 

olarak durdurulmuştur. Bu yöntemle ideal eğitim 

döngüsü sayısına dinamik olarak ulaşılmıştır. 

Optimizasyon algoritması olarak Adam optimizasyonu 

seçilmiş ve öğrenme oranı her parametre için otomatik 

olarak belirlenmiştir. 

Önerdiğimiz çalışmada Evrişimli sinir ağları özellik 

çıkarımı için DNA sekanslarının evrişimsel özelliklerini 

öğrenirken, Geçitli yinelenen birimler ardışık bilgiyi 

modellemekten sorumludurlar. Transformer yapısı, 

dikkat mekanizması aracılığıyla önemli bölgelere öncelik 

vererek daha geniş bir bağlamın dikkate alınmasını 

sağlayarak Transkripsiyon faktörü bağlanma 

bölgelerinin tahmininde daha yüksek performans ve 

hassasiyet sağlamaktadır. Bu hibrit çalışma mevcut 

genetik mekanizmaların anlaşılmasına katkı sağlamanın 

yanı sıra gelecekteki çalışmalarda karmaşık genetik 

düzenleme mekanizmalarının anlaşılmasına ve biyolojik 

süreçlerin analiz edilmesine katkıda bulunabilir.  

Özetle modelimiz Transkripsiyon faktörü bağlanma 

bölgeleri tahmini için DNA dizisinin özelliklerini 

çıkarırken Evrişimli sinir ağları kullanılmıştır. Bu yapı ile 

DNA üzerindeki motiflerin tanınması ve yapısal 

özelliklerinin çıkarılmasına imkân sağlanmıştır. Sonraki 

süreçte DNA şekil özelliklerinin kapsamlı bir şekilde 

çıkarılması ve TFBS tahmin doğruluğunu artırmak için 

Bi-GRU (Bidirectional Gated recurrent unit) ve 

Transformer mimarisi birleştiren bir yaklaşım 

geliştirilmiştir.  Bu hibrit yöntemle yinelenen sinir 

ağlarının DNA dizileri üzerindeki güçlü öğrenme 

kapasiteleri ve Transformer mimarisinin uzun vadeli 

bağımlılıkları yakalama özelliği birleştirilerek verimlilik 

artırılmıştır. Şekil 2’de DeepTFBS modeline ait genel 

sistem mimarisi gösterilmektedir

 

Şekil 2. DeepTFBS sistem mimarisi (DeepTFBS system architecture) 
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4. DENEYSEL SONUÇLAR (EXPERIMENTAL 

RESULTS) 

Derin öğrenme alanında geliştiren algoritma ve 

modellerin sonuçlarını doğru şekilde değerlendirebilmek 

adına herkesçe kabul gören ve mimariye uygun 

değerlendirme metrikleri seçimi kritik öneme sahiptir. 

Böylelikle benzer çalışmaların sonuçları doğru şekilde 

kıyaslanabilir. Çalışmamızda önerilen sistemi 

değerlendirmek için bu alanda sıklıkla tercih edilen ACC, 

ROC-AUC, PR-AUC değerlendirme metrikleri 

kullanılmıştır.   

ACC (Accuracy): Doğru tahmin edilen değerlerin 

sayısının toplam tahmin edilen değerin sayısına 

bölünmesiyle elde edilen değerlendirme metriğine 

doğruluk (accuracy) değeri denir. Denklem 1 doğruluk 

değeri formülünü göstermektedir. DP Doğru Pozitif, DN 

Doğru Negatif,  YP Yanlış Pozitif ve YN Yanlış Negatif 

anlamına gelmektedir [40]. 

Acc =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

   (1) 

ROC-AUC (Receiver Operating Characteristic, Area 

Under the Curve):  Bir ROC eğrisi ikili sınıflandırma 

modelinin her sınıflandırma eşiğindeki performansını 

özetleyen bir grafiktir. Bu eğri, farklı sınıflandırma 

eşiklerinde gerçek pozitif oran (TPR) ve yanlış pozitif 

oran (FPR) olarak bilinen iki ölçümün grafiğini çizer. 

AUC ifadesini açılımı ise Eğri Altındaki Alan (Area 

Under the Curve) anlamına gelmektedir. Bu alan her 

zaman 0 ile 1 arasında bir değer olarak temsil edilir [41].  

Denklem 2 ve denklem 3’te TPR ve FPR değerlerinin 

hesaplanması gösterilmektedir. Bu sonuçlar kullanılarak 

ROC eğrisi oluşturulur. 

TPR =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

   (2) 

FPR =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

   (3) 

 

PR-AUC (Precision-Recall Area Under Curve): 

Türkçeye kesinlik ve duyarlılık olarak çevrilen Precision-

Recall değerleri karmaşıklık matrisine dayanmaktadır. 

Precision-Recall eğrisinin oluşturduğu grafiğin altında 

kalan ise PR-AUC değerini ifade etmektedir. Modelin 

tüm veriler için başarısını tek bir değer ile ifade eder [42].  

Denklem 4 ve denklem 5’te Precision ve Recall 

değerlerinin hesaplanması gösterilmektedir. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

   (4) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

   (5) 

Modelimizin literatürde bulunan diğer başarılı modeller 

ile karşılaştırma sonuçları Çizelge 3’te gösterilmektedir. 

Çizelge 3: Deneysel sonuçlar (Experimental results) 

Model ACC ROC-AUC PR-AUC 

DeepBind 0.785 0.853 0.858 

DanQ 0.782 0.849 0.855 

DLBSS 0.793 0.865 0.871 

CRPTS 0.793 0.862 0.867 

D-SSCA 0.793 0.867 0.871 

DeepSTF 0.814 0.883 0.890 

DeepTFBS 0.794 0.891 0.895 

 

Çalışmada, transkripsiyon faktörü bağlanma bölgelerinin 

(TFBS) DNA sekanslarından tahmin edilmesi için 

Evrişimli sinir ağları, GRU ve Transformer yapılarını 

birleştiren hibrit bir yaklaşım benimsenmiştir. 

Çalışmada, modelimizin sınıflandırma performansını 

gösteren önemli metriklerden biri olan F1 skoru 0.813 

olarak elde edilmiştir. Ayrıca modelimizin performansını 

diğer modellerle kıyasladığımızda başarılı sonuçlar elde 

ettiğimiz gözlemlenebilir. Özellikle doğruluk skoru 

0.794, ROC-AUC değeri 0.891 ve PR-AUC değeri 0.895 

olarak hesaplanmıştır. Sayısal sonuçlar modelimizin 

sınıflandırma görevlerinde güçlü performans 

sergilediğini ve veri setindeki pozitif ve negatif sınıfları 

ayırt etme yeteneğinin yüksek olduğunu göstermektedir. 

Bu karşılaştırma, modelimizin diğer modellere göre 

avantaj sağladığını ortaya koymaktadır. 

Elde ettiğimiz sonuçlar, önerdiğimiz DeepTFBS 

yaklaşımının transkripsiyon faktörü bağlama bölgeleri 

tespiti için başarılı olduğunu göstermektedir. Gelecek 

çalışmalarda, modelin performansını artırmak için farklı 

veri setleri üzerinde kapsamlı değerlendirilmeler 

gerçekleştirilmesi ve genelleme yeteneğinin artırılması 

için daha karmaşık teknikler ile optimize edilmesi 

planlanmaktadır. 

5. SONUÇLAR VE TARTIŞMA (RESULTS AND 

DISCUSSION) 

Transkripsiyon faktörleri gen ekspresyonunun 

düzenlenmesinde önemli faktörlerden birisidir. Bu 

proteinler DNA üzerinde bağlanılacak bölgelerin 

tanınmasından ve bu bölgelere bağlanarak DNA’dan 

RNA’ya gen aktarımından sorumludur. Sonuç olarak 

hücrelerin adaptasyonu ve biyolojik süreçlerin düzgün 

şekilde ilerlemesini sağlarlar. Transkripsiyon faktörleri 

bahsedilen bu hayati görevlerinden dolayı tıp ve 

bilgisayar dünyasındaki birçok araştırmacının ilgisini 
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çeken bir konu olmuştur. Tıp biliminde deneysel 

çalışmalar üzerine odaklanılırken bilgisayar bilimlerinde 

daha çok hesaplamalı olarak çözümler geliştirilmiştir.  

Yapılan araştırmalar, zaman serisi verilerinde 

Tekrarlayan sinir ağlarının (RNN) diğer modeller ile 

kıyaslandığında daha başarılı sonuçlar ürettiğini ortaya 

koymaktadır. Bu çalışmada da RNN türlerden birisi olan 

çift yönlü geçitli yinelenen birimler (GRU), K-mer 

analizi, evrişimli sinir ağları ve transformer yapıları 

birleştirilerek hibrit bir yöntem geliştirilmiştir. 

Deneylerimizi gerçekleştirirken bu alanda popüler veri 

kümelerinden olan 690 ChIP-seq veri kümesinden elde 

edilen DNA dizisi verileri kullanılmıştır. Deneysel 

sonuçlar, geliştirdiğimiz yöntemin literatür de geliştirilen 

diğer birkaç yöntemle karşılaştırıldığında daha iyi 

performansa sahip olduğunu göstermiştir.  

Literatür araştırmaları ve gerçekleştirdiğimiz deneysel 

sonuçlar bu alanda hala geliştirmeye açık boşluklar 

olduğunu göstermektedir. Derin öğrenme modellerinde 

kısıtlı veri kümeleri ile çalışırken modelin performansı 

belirli aralıklar ile sınırlı kalabilmektedir.  Kullanılan 

DNA şekil özellikleri de modelin performansının 

belirlenmesinde kritik rol oynamaktadır. Daha fazla 

DNA şekil özelliğinin modele entegre edilmesi, daha 

kapsamlı bir analiz yapılmasına, modelin doğruluk, 

genelleme yeteneği ve başarısının artırılmasına katkı 

sağlayabilir. Çalışmamızın ilerleyen süreçlerinde, veri 

setini genişleterek daha fazla sayıda şekil özelliği 

üzerinde ayrıntılı çalışmalar gerçekleştirerek kapsamlı 

bir model oluşturulması planlanmaktadır. Bu 

geliştirmelerle, modelin sadece DNA dizilimlerine değil, 

aynı zamanda DNA’nın yapısal karakteristiklerine dair 

daha derin bir analiz sunan, kapsamlı bir araç haline 

getirilmesi amaçlanmaktadır.  

Bu çalışma, gelecekteki çalışmalarda daha karmaşık 

genetik düzenleme mekanizmalarının anlaşılmasına ve 

biyolojik süreçlerin derinlemesine analiz edilmesine 

katkıda bulunabilir. 
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