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Review of studies on NAO robot  

NAO robot üzerindeki çalışmaların incelemesi 
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Abstract  Öz 

Robots are reducing the various workload of humans in 

numerous fields, shaping many new scientific areas. This 

review provides an overview of research and developments 

conducted on the humanoid robot NAO between the years 

2020 and 2024. It encompasses a general examination from 

the robot's physical structure to its hardware and software 

components. The review categorizes studies related to 

NAO into three main areas: Human-Robot Interactions, 

Navigation, and Others. The  explanation of recent 

developments in NAO robot aims to facilitate a deeper 

understanding of potential advancements in the future of 

robotics. 

 Robotlar birçok alanda insanların çeşitli iş yükünü 

azaltarak birçok yeni bilimsel alanı şekillendirmektedir. Bu 

inceleme, 2020-2024 yılları arasında insansı robot NAO 

üzerinde yapılan araştırma ve gelişmelere genel bir bakış 

sunmaktadır. Robotun fiziksel yapısından donanım ve 

yazılım bileşenlerine kadar genel bir incelemeyi 

kapsamaktadır. İnceleme, NAO ile ilgili çalışmaları üç ana 

alanda kategorize etmektedir: İnsan-Robot Etkileşimleri, 

Navigasyon ve Diğerleri. NAO robotundaki son 

gelişmelerin açıklanması, robotiğin geleceğindeki 

potansiyel ilerlemelerin daha derinlemesine anlaşılmasını 

kolaylaştırmayı amaçlamaktadır. 

Keywords: NAO Robot, Robotics, Human Interaction, 

Navigation   

 Anahtar Kelimeler: NAO Robot, Robotik, İnsan 

Etkileşimi, Navigasyon 

1 Introduction  

Increasing need of information in today's world, the tasks 

undertaken by humans have slowly shifted to robots. These 

tasks have wide range of examples such as heavy-duty 

automotive industry, field of health in cases where risky 

surgeries take place, autism diseases for the purpose of 

protecting children's mental health and so on. Within these 

areas, developments have been made with the help of the 

robotics. Thanks to these developments, easiness is benefited 

more than realized in small areas of lives. While we are able 

to access innovations that make our lives easier faster with 

the systematic progress of these developments. Examples 

can be given from many robots that prioritize these different 

developments specific to each need. For instance, Boston 

Dynamics, which produces humanoid or dog-like robots for 

use mostly in the defense industry, small robots responsible 

for cleaning our house, and the humanoid-looking NAO 

robot by Aldebran Robotics are the main ones. Studies on 

robots must successfully implement several basic policies for 

a robot to perform its task. The most important of these 

policies are undoubtedly to perceive its environment and act 

within certain rules in this environment. In a general 

approach, the tasks of the robot vary with the sensors used, 

and mechanical designs. NAO robot, which has a wide 

variety of tasks, offers a rich resource for improvements.   

This review article was written in order to present a brief 

summary of how these diversities lead to new developments, 

how the improvements progress and how their diversity is 

brought to the literature in some way.  The review 

summarizes the improvements made on the NAO robot 

under three main topics. These are human-robot interaction 

(HRI), navigation and other.     

2 Technical aspects of NAO robot 

NAO robot has a human-like look at height of up to 58 

cm. It has head, torso, arms, and legs. The NAO has range of 

sensors like cameras, microphones, sonars and tactile sensors 

which enable it to detect and interpret surroundings. It has a 

lot of actuates and joints provided at the different body parts 

that make it move smoothly and accurately. A robot offers 

an onboard computer that is capable of processing sensory 

data, motor control and the very complicated decision tasks. 

The existence of the software platform that is used to 

program NAO’s behavior and interactions makes it 

accessible for the developers to do programming as well. The 

NAO principal environment is Choregraphe, which is a 

graphical interface. Also, NAO supports different 

programming languages like Python and C++ etc. NAO is 

powered by the speech recognition, natural language 

processing features which make it to have a conversation 

with its user. The LED eyes and audio cues make the robot 

really interactive for users. NAO also has wireless and 

Bluetooth connections. It can be tapped into for use with the 

external hardware and software to execute the duties such as 

web browsing, data retrieval and cloud computing. Technical 

details of the NAO robot can be found in Table 1. Also, 

before passing into studies for better understanding, we 

present the NAO robot in Figure 1.  

https://orcid.org/0009-0007-7038-1995
https://orcid.org/0000-0002-7569-5447


 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(2), 803-811 

T. Kara, A. Gökçen 

 

804 

 

Figure 1. NAO robot [1] 

 

3 Studies on NAO robot  

In this section, we will examine the various studies and 

developments conducted on the NAO robot under three main 

categories: Human Interaction, Navigation, and Others.   

3.1 Human Interaction  

The purpose of this section is to explore how humans 

react towards NAO like in the experiments like speech 

recognition, natural language processing, face recognition, 

emotion detection and social interactional abilities.  

To begin with the research, Trifirò et al. [2] called 

roboceptions through interacting with human beings.  It is 

about how the robot will grasp the relationship between 

linguistic and bodily sensations. The robot’s language 

learning activity uses a human interaction to articulate 

feelings, before a Dual-NMT-based grounding language 

technicality. The robosceptions are perceived by a synthetic 

somatosensory system. Using the RoboLang to analyze 

roboceptions helps the robot express its basic needs. 

Translation between RoboLang starts from the close 

resemblance values and bilingual datasets in bid to overcome 

the obstacle of small training data. This study uses NAO 

robot equipped with data collection sensors for research set 

up and data collection.  

Yet another investigation of the NAO robot from 

Softbank Robotics related to HRI Nama et al. [3] find out that 

effective gesture-based communication and interaction could 

improve learning outcome for special need students in 

elementary level. This experiential program deploys Leap 

Motion together with custom made action-reaction 

correlations to weave kids’ hand gestures with robot 

reactions. A strategy aimed at motivating learner to enjoy the 

learning process. The result of the research outlined to 

transform the very current content and apply close-loop HRI 

of disadvantages for kids with special needs face while 

learning. This research is partly attained by incorporating 

robotics and gesture recognition technology into learning 

processes of children. By doing so, according to the study, 

the activities will become stimulating and interactive, 

leading to improvements of their cognitive development and 

reducing the boredom of the children during education 

activities.  

Recupero et al. [4] reveal the approach of the NAO to 

acquire the knowledge and behavior to fulfill the expressed 

wishes of the users when they speak. This one represents the 

actor of robot ontology and situates through the natural 

language processing engine to comprehend the user 

commands. There are two different kinds of operational 

modes for the robot: STATELESS and STATEFUL. When 

it concerns STATELESS mode, every command is 

implemented separately. However, in the STATEFUL mode, 

the robot decides which action to perform after it determines 

its current position. The system resolves the problem of 

identifying and running the action commands that fall upon 

a robot status, and it effectively manages the compound 

expressions. It describes the technical infrastructure 

including that of the NAO robot, the programming 

environment and the cloud-based neural network processing 

(NLP). To this end, the procedure of getting information 

from user commands, identifying desired actions and 

performing robot interactions is clearly stated within the 

study.  

In another study of HRI, Romero-García et al. [5] 

presents Q-CHAT-NAO, an observation-based autism 

screening system supported by a NAO robot, which adapts 

six questions from the Q-CHAT-10. Q-CHAT-NAO collects 

information directly from toddlers. In this way, detecting 

early indicators of autism spectrum disorder (ASD) is 

achieved. Machine learning models, including decision trees, 

random forests, and boosted trees, are employed. Evaluation 

metrics is crucial for sensitivity to ensure correct 

classification of ASD cases. Activities involving the robot 

and the child, monitored by a therapist, provide input for 

classification. However, not all original questions are 

adaptable, resulting in a subset of six questions for the Q-

CHAT-NAO.  

The development of an integrated robotic system named 

ChildBot, designed to engage in educational and 

entertainment activities with children, is presented by 

Efthymiou et al. [6]. ChildBot incorporates sensors and 

robotic agents. With this incorporation, robust coordination 

in complex Child-Robot Interaction (CRI) is achieved. To 

make communication between the channels, sensors and 

perception modules are integrated into ChildBot. The Sense-

Think-Act paradigm is followed by the system, and an 

indoor-based architecture is employed. Additionally, the 

development and integration of perception modules such as 

audio-visual active speaker localization, 6-DoF object 

tracking are also applied. The system showed that it enables 

autonomous interaction between children and robots. NAO 

robot is used as a supervisor in a game in this study.  

In another HRI area, Ivani et al. [7] introduces a 

therapeutic program for children diagnosed with ASDs. The 

aim of the program is to integrate an algorithm within the 

framework of IOGIOCO. This algorithm is designed for 

gesture recognition. Also, the program is operated within the 

NAO robot. In the recognition part, firstly, 3D coordinates 

of body key points captured by a Kinect sensor are utilized. 

Then, the Residual Neural Network automatically identifies 

and evaluates gestures performed by children. The 

recognition process occurs in real-time, allowing for 
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immediate feedback from the robot based on the accuracy of 

the gestures. Aim behind this feedback is to aid therapists to 

help their engagement with the program and guiding the 

children.   

A system, Handie, is designed to facilitate interactions 

between autonomous mobile and cyber physical systems by 

Håkansson and Amberkar [8]. It is designed especially in 

humanoid robots like Softbank Robotics’ NAO robot v6 and 

users with hand signs and facial mood expressions. These 

non-verbal cues serve as commands to the robot, enabling 

actions such as information retrieval, music playback, and 

physical tasks execution. Handie uses a deep learning 

recognition to detect hand signs and facial expressions. The 

system architecture involves the integration of the NAO 

robot with an external computer system. The NAO follows 

the steps like capturing images, recognizing hand signs and 

mood expressions, then executing corresponding actions 

based on user input, respectively. The layer manages 

communication between the robot and the hand signs 

recognition component (HSRC). Behind the HSRC working 

logic convolutional neural networks are employed for image 

classification.  

Gaze cueing effects in both young and older adults are 

investigated by Morillo-Mendez et al. [9]. For the gaze 

cueing task, NAO robot’s head is used as the central cue 

observing from the back. The primary aim was to realize age-

related disparities in response to the robot’s head orientation. 

Particular focus is the scenarios where visual eye cues were 

absent. Also, the analysis was conducted by excluding data 

from three recruits who in overall seem to be outliers. At the 

same time the accuracy of the remaining sample was almost 

zero error. Given the participants’ reaction time in the 

ANOVA tests, age, stimulus synchrony, stimulus onset 

asynchrony, and gaze congruency main effects showed 

difference which indicated how gaze-cueing happens in 

different situations and populations.  

Jeon et al.’ [10] purpose in this paper is to present an 

approach to AI interactivity with the NAO robot in the 

process of balancing tables with time-sensitive training from 

a human trainer. The system uses Deep Q-Network (DQN) . 

Then the system integrates sentiment through the training 

session from trainer speech using an originally designed 

reward function. The research uses this method on the NAO 

robot. It detects the current image of the table state and 

adjusts its joint parameters to adapt the executed actions to 

the planned ones. The human trainer gives the robot a 

judgment, i.e. if the robot’s movement is good or bad, and 

the evaluation is involved in the DQN’s environment reward. 

The interactive deep reinforcement learning (DRL) 

architecture gives full command over the robot learning and 

doing better as a result of a high rate of task completion 

success. Hyper parameters of the DQN training can be found 

in Table 2. 

3.2 Navigation 

In this section, the findings of study on the navigation of 

the NAO robot are reviewed. This review involves 

navigation of NAO autonomously within its environment, 

including such functions as obstacle avoidance and path 

planning. Knowing NAO’s capacity to navigate its 

movement through different realistic situations is very 

significant for the best possible mobility. In addition, the 

trajectory of studies in this field has been studied to see 

different top areas of research they are focusing on.  

To begin with the core logic of navigation, Kumar et al. 

[11] introduce a hybrid control system. From the proposed 

hybrid control system, enhancing of humanoid navigation is 

expected. For this purpose, regression analysis with fuzzy 

logic is combined. Inputs coming from NAO’s ultrasonic 

sensors are provided to the regression architecture. 

Regression is processed these inputs to generate a temporal 

turning angle. This temporal turning angel is further refined 

by the fuzzy controller to obtain the ultimate turning angle. 

This approach provides smooth motion control, obstacle 

avoidance, and goal-reaching. Petri-Net aids in managing 

inter-collision risks in the navigation of multiple NAOs.  

A novel hybrid navigation system tailored for NAO 

humanoid robots is presented by Kashyap et al. [12]. This 

navigation system consists of the Dynamic Window 

Approach (DWA) and Teaching–Learning-Based 

Optimization (TLBO) techniques. Optimizing the velocity 

and turning angles is discussed to prevent obstacles and 

reach targets effectively. The hybrid approach is evaluated 

across both static and dynamic terrains. For these 

environments, it has been noted that there are risks of inter-

collision in multi-robot. Those problems are mitigated by the 

incorporation of Petri-Net controllers. In the simulations and 

real-world experiments, the proposed technique showed its 

ability to achieve collision-free paths while reaching 

designated targets. The article pointed out its potential in 

tackling more intricate terrains such as stairs or slopes. Block 

diagram of the DWA- TLBO can be found in Figure 2. 

 

 

 

Figure 2. Block diagram of hybrid DWA-TLBO [12] 

 

García and Shafie [13] propose Safe Reinforcement 

Learning (SRL) to enhance NAO’s walking behavior. SRL 

makes robotwalk faster while reducing falls. Policy Reuse 

for Safe Reinforcement Learning (PR-SRL) improves 

walking behavior by combining an increasing risk function. 

Experimental evaluation on a NAO robot demonstrates PR-

SRL’s minimizes falls compared to state-of-the-art 

algorithms.  

Gait planning for humanoid robots is discussed for their 

stability and task execution. In this paper, a hybrid approach 

using the linear inverted pendulum model and particle swarm 

optimization (PSO) tuned Proportional Integral Derivative 

(PID) controller is proposed by Kashyap et al. [14]. The 

linear inverted pendulum model (LIPM) is coupled with 
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center of mass (COM) and zero moment point (ZMP) 

criteria. LIPM aids in selecting step length and period. Also, 

sensory data and desired trajectory help in inverse 

kinematics for trajectory planning. The PSO tuned PID 

controller optimizes parameters for obstacle avoidance and 

stability. Aim behind this approach is to reduce travel time 

and length. Simulation and real-world experiments show a 

significant reduction in stabilization time and overshoot.  

Kashyap et al. [15] described the implementation of 

navigation approaches for single and multiple NAO robots. 

In this approach, collision-free path optimization in static 

and dynamic terrains are main focus. An Adaptive Network-

based Fuzzy Inference System controller is utilized. This 

controller generates a transitional driving angle based on 

obstacle distance. Output of this process is optimized by a 

TLBO approach to produce an optimum driving angle 

(ODA). Path selection is discussed based on Euclidean 

distance and ODA. Integration of a dining philosopher 

controller solves inter-collision issues in multiple NAO 

navigation. Simulation outcomes showed the controller’s 

importance resulting in optimizing path length and travel 

time.  

For the further implementation again, Kashyap et al. [16] 

focused on optimizing path length, energy demand, and task 

completion time problems. The solutions are discussed as 

development and implementation of a hybrid navigational 

controller for humanoid robotics. The aim is to improve path 

planning efficiency and task completion in humanoid robots. 

The hybrid controller includes Improved Spider Monkey 

Optimization (ISMO) approach besides Regression Analysis 

(RA) approach. RA approach takes the obstacle and target 

locations to determine navigational directions. Afterwards, 

the ISMO approach refines trajectory by adjusting turning 

angles. Also, B-Spline path smoother is applied to stabilize 

trajectory step by step. The effectiveness of the hybrid 

controller is attributed to the longer decision-making times 

and higher computational costs. Experiments were done in 

simulation and real time using NAO robot. The combination 

of RA and ISMO techniques showed the success in the 

experiments. Improvement in the path length and task 

completion of proposed approach percentages are presented 

in Table 3. 

Navigation for humanoid robots and multi-objective 

problems are discussed by Kashyap et al. [17]. Under these 

solutions lay down integrating modified multiple adaptive 

neuro-fuzzy inference system (MANFIS) and multi-

objective sunflower optimization (MOSFO) techniques. 

These generate optimal steering angles for obstacle 

avoidance. Operation is done with two steps. In the first step 

MANFIS takes the inputs like obstacle distances and target 

direction then it is used to determine intermediate steering 

angles. Then as a second step MOSFO technique provides 

the final steering angle. In the simulation environment of 

WEBOT using NAO, experiments’ deviations are achieved 

under 5% compared to real-time experiments. Optimization 

of trajectory planning is aimed by combining modified 

MANFIS and MOSFO.  

A framework is proposed by Kasaei et al. [18] to provide 

human-like walking. The framework is created by 

combining walking approach and DRL. The framework has 

six modules to reduce complexity and increase flexibility. 

The core of the framework is a specific two masses for upper 

and lower body modeling. An adaptive and fully parametric 

reference trajectory planner and an optimal controller are 

designed based on this dynamic model. A learning 

framework is developed using Genetic Algorithm (GA) and 

Proximal Policy Optimization (PPO) algorithms. Aim 

behind the GA and PPO is to optimize parameters and 

improve stability by adjusting arm movements and CoM 

height.  

Kashyap et al. [19] discuss the development and 

implementation of a hybrid control system for NAO. With 

this development, emphasizing trajectory planning and 

obstacle avoidance is achieved. The primary aim is to 

achieve optimum steering angles for NAO robots to navigate 

in environments with minimum effort. The approach 

involves a three-step optimization procedure including 

regression analysis (RA), cell decomposition (CD), and 

whale optimization algorithm (WOA). Firstly, initial 

steering angles based on sensory data are provided by RA, 

then the configuration space is transformed into cell regions 

for path planning by CD. Finally the steering angles are 

optimized based on the characteristics of hunting prey by 

WOA. With this approach NAO is prevented from getting 

trapped in local minima. Then, Dining Philosopher 

Controller (DPC) is integrated to prioritize navigation among 

multiple NAO robots. With this addition, the DPC 

integration, inter-collisions are prevented.  

A deep learning-based footstep planning method making 

use of Generative Adversarial Networks (GANs) for indoor 

navigation is proposed by Mishra et al. [20]. The objective of 

the program is to achieve efficient and accurate path 

planning within Robot Operating System (ROS) framework. 

Traditional path planning algorithms like Rapidly Exploring 

Random Tree (RRT*) and A* are found to be limited in 

narrow paths. Experimental results demonstrate the GAN-

based approach over traditional algorithms, achieving 

approximately 93% accuracy. The design combines GAN-

based method generation. Feedback techniques through ROS 

topics for step specific Monte Carlo localization to perform 

for robust localization in complex indoor environments. 

Odometry estimation is done by using classical approaches 

and IMU sensors. The footstep planner node utilizes 

odometry information and path images to employ weighted 

A* and probabilistic R* for the planning. The GAN-based 

approach fits for unlocking vision-based capabilities for 

humanoid robots. Also, the GAN-based approach facilitates 

navigation through complex environments and dynamic 

obstacle avoidance through path replanning. Experiments are 

done on NAO in simulation.  

In the study, Kashyap et al. [21] aim to develop an 

obstacle-free route for single and multiple humanoid robots. 

A Firefly Algorithm (FA) strategy is utilized for autonomous 

motion. The FA agent’s response is determined by obstacle 

positions and distances between robots. The FA approach 

provides a driving angle to aid the robot in obstacle 

avoidance. Experiments are conducted on the NAO robot 

using the WEBOT platform for simulation. Multiple 
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simulation test demonstrates that the effectiveness of the 

proposed approach in navigating the NAO robot in complex 

environments.  

The navigation of humanoid robots in complex 

environments was investigated by Muni et al. [22]. 

Algorithm uses a fuzzy embedded neural network-based 

controller. Proper target angles were obtained using the 

Mamdani fuzzy algorithm with obstacle distances. Petri-net 

controller supplies to help dynamic path analysis. Many 

single humanoid robots are used for simulation and guidance 

testing in a variety of challenging environments. Smooth 

communication is provided by a cascade neural network with 

a fuzzy system and a Petri net controller. The cascade trains 

the neural networks to obtain the required target angle, which 

is fed to the fuzzy controller to determine the effective target 

angle. The Petri grid controller resolves conflicts when 

multiple robots try to interact with each other. It is done by 

prioritizing motion planning. The experiments use V-REP 

simulation software and are simulated under laboratory 

conditions. The results for both conditions are compared, 

showing accuracy within acceptable errors.  

Vikas et al. [23] analyzed the optimization of path 

planning for humanoid robots in rough paths in the article. 

Combining improved gravitational search algorithm (IGSA) 

with a differentially perturbed velocity approach was 

introduced. Aim behind this was to mitigate limitations of 

the primary IGSA. The algorithm aimed to minimize path 

length from source to goal, also stability and collision 

avoidance during locomotion. Humanoid robots’ interaction 

to avoid collisions and environments considering obstacles 

for decision-making are the main parts of the proposed 

approach. The NAO robot was used in this study. 

Additionally, the Petri-net was discussed to handle conflicts 

during the navigation. 

 

 

Figure 3. Scheme of proposed controller [24] 

 

To step further, Vikas and Parhi [24] analyze the 

navigation of humanoid robots in complex terrains. In the 

analysis, classical approaches with reactive techniques are 

combined. These are linear regression based approach with 

gravitational search algorithm (GSA). Product of them is 

RGSA, supplemented with Chaos for optimizing path 

planning. To achieve the smooth trajectory planning, 

numerous chaotic maps are employed. The NAO robot is 

tested with static and dynamic obstacles during the 

experiments. The comparative study with other methods 

ensures cost-effectiveness and simplicity of the approach, 

and also shows that solutions can be applied in the future in 

sports, however it has limitations to deal with obstacles of 

autonomous movement. However, GSA also prevent several 

obstacles such as early convergence, adequate detection at 

later stages etc. Proposed controller scheme can be found in 

Figure 3. 

3.3 Others 

In this part a variety of studies that focus on several 

aspects about robotic humanoids rather than only navigation 

and HRI can be found. 

A method for improving 3D object recognition for the 

NAO robot is studied by Coquin et al. [25]. In the study an 

IoT multi-camera system is used. Cameras are integrated 

through an IoT platform. Feature extraction and belief 

functions are employed to address uncertainties and conflicts 

in recognition. Both global and local feature-based 

recognition algorithms are utilized to analyze extracted 

features, ensuring robust recognition in uncertain 

environments. 

The approach called End-User Development of Model-

driven Adaptive Robotics Software (EUD-MARS) was 

presented by Akiki et al. [26]. EUD-MARS enables end-

users to develop robotics software without requiring 

advanced technical skills. In this approach, software 

developers prepare robot profiles supporting with code based 

APIs. EUD-MARS was evaluated technically by controlling 

various robots, including Lego Mindstorms bots, an iRobot 

Create vacuum cleaner, a NAO humanoid, and a Parrot 

Bebop 2 drone. Software developers provided feedback on 

the XML-based language and visual tool for defining robot 

profiles and API configurations. In Figure 4, proposed EUD-

MARS approach is presented. 

 

 

Figure 4. EUD-MARS approach [26] 

 

Riccio et al. [27] introduces an iterative learning 

algorithm which is called as LoOP. LoOP combines planning 

and learning techniques to generate action policies. The 

paper remarked that LoOP combined with Monte-Carlo 

Search Planning and Q-learning has limitations in the 

planning and learning methods. It achieves focused 

exploration during policy refinement on the NAO robot. In 

multi-robot scenarios, LoOP makes the robot learn 

competitive policies without the need for joint action 

modeling. 
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Table 1. Technical details of NAO robot over the years 

Version 
Release 

Year Dimensions  Sensors Battery Processor Connection RAM Software 

Version 

6 
2018 

574x311x2
75 mm 
5.48 kg 

 

Microphones x4 
2D Camera x2 

Gyrometer x1 (3-axis) 

IMU x1 (3-axis) 
Sonar x4 

FSR x8 

Lithium-
Ion 

62.5 Wh 

ATOM 

E3845 

Ethernet (RJ45) 
WIFI (IEEE 

802.11a/b//n) 
Bluetooth 

4 GB 

DDR3 
Gentoo 

Version 

5 2014 
574x311x2

75 mm 
5.48 kg 

 

Microphones x4 
2D Camera x2 

Gyrometer x1 (2-axis) 

IMU x1 (2-axis) 
Sonar x2 

FSR x8 

Lithium-
Ion 

48.6 Wh 

ATOM 

Z530 

 

Ethernet (RJ45) 
WIFI (IEEE 

802.11a/b//n) 

USB 

1 GB Gentoo 

Version 

4 2011 

574x311x2

75 mm 
5.48 kg 

 

Microphones x4 

2D Camera x2 
Gyrometer x1 (2-axis) 

IMU x1 (1-axis) 

Sonar x4 
FSR x8 

Lithium-

Ion 
48.6 Wh 

ATOM 

Z530 

 

Ethernet (RJ45) 
WIFI (IEEE 
802.11a/b//n) 

USB 

1 GB Gentoo 

There were two options called as Gaussian Mixture 

Models and Deep Neural Networks in application of LoOP 

for the nonlinear data. It is observed that LoOP reduces 

computational load and presents effective policy 

generalization, however it faces high simulation calls and 

reliance.   

 

 
Figure 5. Morphological development stages of the NAO 

robot [29] 

When the communication comes into the topic, Grillo et 

al. [28] focuses on a Trust Framework for task sharing among 

robots, in scenarios like robots must cooperate without full 

knowledge of each other’s capabilities. The system 

architecture, implemented in ROS, enables robots to execute 

actions, and verify the execution of actions by other robots. 

Real-world experiments are tested on NAO robot and two 

Pepper robots. The experiments explore the robots’ volume 

levels and positions, as well as their dispositions towards 

each other. 

Combining navigation with mechanic, Naya-Varela et al. 

[29] explored the different developmental ways on a NAO 

robot to learn a bipedal walking. The researchers 

implemented five developmental ways by varying in speed 

and order. The NAO robot was controlled by an artificial 

neural network (ANN) optimized through an algorithm. The 

ANN’s inputs and outputs had purposes of generating 

periodic signals and controlling the actuation of joints, 

respectively. Also, morphological parameters were 

considered focusing on legs. Smooth developmental ways 

were found to be effective in maintaining stability and 

learning performance.  In Figure 5, development stages of 

the NAO morphology are described. 

Botta et al. [30] explores methods and applied in robots 

like NAO, Amigobot to protect against attacks. It is 

demonstrated that protecting robots at the OSs and network 

levels is more critical than the physical level. However, it is 

remarked that protecting robots at the physical environment 

is important to understand their cyber security problems. The 

cyber security of robots necessitates a parallel study across 

all levels.  General issues from the cyber security is described 

in Figure 6. 

 

Table 2. Hyperparameters of DQN training 

Parameter   Value 

Learning rate α   0.001 

Discount factor γ   0.9 

Epsilon ε   20 

Number of episodes   20.000 

Number of voice feedbacks   300 

Shrinking feedback factor d   0.1 
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An artificial somatosensory system is developed to 

enable the robot to perceive its embodiment while 

performing tasks. These perceptions enable the robot to 

move with its physical needs while the task is also running. 

On the test-bench, NAO was utilized, compatibility of the 

NAO fits the study’s objectives. Through the incorporation 

of roboceptions, awareness of robot’s physical condition is 

gained by Augello et al. [31].  

 

 

Figure 6. Morphological development stages of the NAO 

robot [30] 

 

Kuo and Chen [32] explore a way to help robots become 

more independent. The main idea is teaching a humanoid 

robot how to pick up and put down objects by itself. This is 

done through a DRL, combined with fuzzy logic. It is found 

that the best computer method for this was the artificial bee 

colony algorithm. Deep learning helps the robot get picking 

up and putting down things. Fuzzy logic makes it even better 

by increasing how often the robot succeeds. Method is 

shown that it works well by testing. The method is used on 

NAO robot, making it learn how to grab things and put them 

where they are supposed to go. This learning is broken into 

two parts: first, the robot learned to grab things, and then it 

learned to place them in certain spots. Optimization 

algorithms are used to tweak things and make the robot’s 

learned skills work better. DRL and Fuzzy logic usage 

example can be found in Figure 7.  

 

 

Figure 7.  DRL and fuzzy logic usage purpose [32] 

 

 

Table 3. Improvement percentages of proposed approach referencing IGA technique 

Sl. No IGA technique  RA-ISMO controller  Improvement (%) 

 Length Time  Length Time  Length Time 

1. 22.7273 234  24.37 264  -7.23 -12.82 

2. 22.7273 234  18.11 173  20.32 26.07 

3. 22.7273 234  21.09 207  7.2 11.54 

4. 22.7273 234  19.52 195  14.11 16.67 

Avg. 22.7273 234  20.7725 209.75  8.6 10.365 
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4 Findings and discussion 

We can see the contributions over the year with respect 

to search areas in Table 4. 

 

Table 4. Number of contributions over the year  

Year Human-Robot Interaction Navigation Others 

2020 3 4 2 

2021 1 4 1 

2022 3 4 1 

2023 2 2 4 

2024 - - 1 

 

5 Conclusion 

NAO is a humanoid robot. Its humanoid appearance, 

coupled with its ease of adaptation to developments, enables 

it to be utilized in various fields for collaboration with 

humans. This review presents advancements in the NAO 

robot from 2020 to 2024, focusing on navigation, HRI, and 

other enhancement and development types. The current 

developments on NAO robot can perform many tasks; 

however, more development needs to reach perfection such 

as improving processor-based algorithms to decrease the 

need for external computers, prediction of battery 

percentage, etc. Undoubtedly, although navigation is not a 

new development area, realizing it in humanoid robotics is a 

new area that can be considered, so it is a fact that the 

improvements that have been made and will be made here 

will continue. In addition, the HRI field comes across as a 

much newer field and allows the interaction between people 

who are not interested in technology and robots to be more 

mellifluous. Combining the increasing artificial intelligence 

activities in the field of navigation with navigation 

algorithms and creating more understandable and easily 

usable interfaces developed for HRI can be achieved with a 

review article that can be a source for new developments and 

ideas. 
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