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Abstract 
An accelerating global shift towards sustainable development has made the 

diffusion of green technologies a critical area of focus, particularly within 

OECD economies. This study aims to use a machine-learning approach to 

explore the future diffusion of green technology across OECD countries. It 

provides detailed forecasts from 2023 to 2037, highlighting the varying rates 

of green technology diffusion (GTD) among different nations. To achieve this, 

the Autoregressive Integrated Moving Average (ARIMA) model is employed 

to offer new evidence on how the progress of green technology can be 

predicted. Based on empirical data, the study categorizes countries into high, 

moderate, and low GTD growth. The findings suggest that Japan, Germany, 

and the USA will experience significant growth in GTD, while countries like 

Australia, Canada, and Mexico will see moderate increases. Conversely, some 

nations, including Ireland and Iceland, face challenges with low or negative 

GTD values. The study concludes that applying this machine-learning model 

provides valuable insights and future predictions for policymakers aiming to 

enhance green technology adoption in their respective countries. 

 

 

 

Anahtar Kelimeler:  
Sürdürülebilir 

Kalkınma, Yeşil 

Teknoloji Yayılımı, 

Çevresel 

Sürdürülebilirlik, 

Makine Öğrenimi 

Analizi, ARIMA 

Modeli. 

 

JEL Kodları:  

O3, O33, Q55 

 

Öz 
Sürdürülebilir kalkınmaya doğru hızlanan küresel değişim, yeşil teknolojilerin 

yaygınlaşmasını, özellikle OECD ekonomileri içinde, kritik bir odak alanı 

haline getirmiştir. Bu çalışma, OECD ülkeleri genelinde yeşil teknolojinin 

gelecekteki yaygınlaşmasını keşfetmek için bir makine öğrenmesi yaklaşımı 

kullanmayı amaçlamaktadır. Farklı uluslar arasında değişen yeşil teknoloji 

yaygınlaşma (GTD) oranlarını vurgulayarak 2023'ten 2037'ye kadar ayrıntılı 

tahminler sunmaktadır. Bunu başarmak için, yeşil teknolojinin ilerlemesinin 

nasıl tahmin edilebileceğine dair yeni kanıtlar sunmak için Otoregresif Entegre 

Hareketli Ortalama (ARIMA) modeli kullanılmaktadır. Çalışma, ampirik 

verilere dayanarak ülkeleri yüksek, orta ve düşük GTD büyümesi olarak 

kategorize etmektedir. Bulgular, Japonya, Almanya ve ABD'nin GTD 

üzerinde önemli bir büyüme yaşayacağını, Avustralya, Kanada ve Meksika 

gibi ülkelerin ise orta düzeyde artışlar göreceğini göstermektedir. Tersine, 

İrlanda ve İzlanda dahil olmak üzere bazı uluslar, düşük veya negatif GTD 

değerleriyle zorluklarla karşı karşıyadır. Çalışma, bu makine öğrenmesi 

modelinin uygulanmasının, kendi ülkelerinde yeşil teknoloji benimsenmesini 

artırmayı amaçlayan politika yapıcılar için değerli içgörüler ve gelecek 

tahminleri sağladığı sonucuna varmıştır. 
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1. Introduction 

Green technologies have emerged as a critical factor in transitioning towards sustainable 

development as the global community confronts the pressing challenges of climate change and 

environmental degradation. The adoption of these technologies is essential for reducing carbon 

emissions, improving energy efficiency, and achieving the environmental targets set by 

international agreements such as the Paris Agreement. Within this context, OECD economies play 

a pivotal role due to their economic influence and capacity for technological innovation. These 

technologies, which include green energy sources, energy-efficient systems, and sustainable 

agricultural practices, have the potential to substantially lower greenhouse gas emissions and 

decrease the negative impacts of climate change. The diffusion of these technologies is at least as 

important as their creation and development. A pioneer researcher Hall (2004) explores the 

concept of diffusion in innovation, describing how individuals and firms adopt new technologies 

or replace older ones. He supports the evidence that diffusion not only spreads innovations but 

also enhances them through learning, imitation, and feedback effects. 

The adoption and diffusion of green technologies are essential for achieving the targets set 

by international agreements, such as the Paris Agreement, which aims to limit global warming to 

below 2 degrees Celsius above pre-industrial levels (UNFCCC, 2015). There are several studies 

have shown that the deployment of green energy technologies, such as wind and solar power, can 

substantially decrease carbon emissions while providing economic benefits and energy security 

(Rao and Kishore, 2010; Sun et al., 2022; Luo et al., 2024). Research by Rogers (2003) 

emphasizes the importance of understanding the diffusion process to facilitate the adoption of 

green technologies. The diffusion of innovations theory by Roger emphasizes how the 

characteristics of an innovation, communication channels, time, and the social system influence 

the adoption rate. Applying this framework to green technologies identifies barriers and 

accelerators in their adoption, ensuring more effective dissemination and integration into various 

sectors. 

Another study by Dutz and Sharma, (2012) analyze that green technologies encompass a 

diverse array of fundamentally distinct innovations by promoting resource-efficient, clean, and 

resilient economic expansion. On the other hand, Dewick et al. (2006) investigate the impact of 

future disruptive technologies on industrial structure, economic expansion, and the environment 

in the 21st century. Analyzing technologies in the EU, USA, and China for 2020 and 2050, the 

findings indicate that while the EU and US will experience similar effects, China initially see a 

lesser impact, aligning with the EU and US by 2050. 

Additionally, recent studies highlight the role of policy and regulatory frameworks in 

promoting the diffusion of green technologies. For instance, supportive policies such as subsidies, 

tax incentives, and renewable energy mandates have been shown to significantly boost the 

deployment of green energy technologies (Hao et al., 2021; Habiba et al., 2022; Sadiq et al., 2023; 

Zhou et al., 2023). Similarly, stringent environmental regulations can drive innovation by pushing 

firms to develop and adopt cleaner technologies (Meng et al., 2020; Wang et al., 2021; Luo and 

Mabrouk, 2022). 

Despite the critical importance of GTD, traditional forecasting methods often fall short in 

capturing the complex and dynamic nature of technology adoption across diverse economic 

landscapes. In recent years, the advent of machine learning (ML) has revolutionized predictive 

analytics, offering advanced methodologies capable of analyzing large datasets and uncovering 
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intricate patterns. More recently, the connections of ML and artificial intelligence in green 

technology forecasting further enhanced the ability to predict the diffusion of innovations. In 

accordance with Zhou et al. (2024) explore the impact of adopting industrial robots on regional 

pollution emissions in China. The findings indicate that industrial robots significantly reduce 

pollution emissions intensity across various provinces, confirmed by robustness tests. This 

analysis reveals that this reduction is due to improved energy efficiency and increased pollution 

reduction technologies. Moreover, Han and Yang (2024) explore financing and management 

strategies by using an artificial neural network (ANN) in a Chinese renewable energy company, 

the study finds that increasing green jobs more significantly reduces CO2 emissions than 

expanding renewable energy capacities. 

This study focuses on applying ML approaches to forecast the diffusion of green 

technologies in OECD economies. The novel application of this model to green technology 

forecasting allows for more accurate and reliable predictions. With this purpose, the study 

employs a range of ML techniques, including supervised learning algorithms and ensemble 

methods, to model and predict the diffusion patterns of green technologies. The ARIMA model 

is selected for its robustness in time-series forecasting and its ability to handle the complex 

dynamics involved in technology diffusion. We used an extensive dataset, encompassing 

historical adoption rates, economic indicators, and environmental policies, to ensure the accuracy 

and reliability of our predictions. Therefore, forecasting of this study has divided the terms the 

current (1980-2022) and future (2023 and 2037) years. 

The importance of this study lies in its ability to provide actionable insights for 

policymakers, businesses, and researchers. This study makes a significant contribution to the 

existing literature on technology diffusion and sustainability by integrating machine-learning 

techniques with economic forecasting models in several ways. First, it focuses on forecasting the 

future diffusion of green technology within the context of OECD countries. Second, it emphasizes 

the diffusion of green technology rather than its development. Third, it enhances the 

understanding of technological diffusion by incorporating advanced ML methods, thereby 

improving the predictive capabilities of existing models. Given the background, objectives, and 

significance of this study, the research aims to address the following key question: How will GTD 

progress over the next 14 years in OECD countries? 

The distinctiveness of this study comes from its use of ML techniques, specifically the 

Autoregressive Integrated Moving Average (ARIMA) model. This method delivers novel insights 

into forecasting the spread of green technology in OECD countries from 2023 to 2037. The use 

of ARIMA allows for a detailed examination of time-series data, offering a nuanced 

understanding of trends and patterns that traditional methods may overlook. According to the 

ARIMA model's findings, most countries are showing an increasing trend in GTD, which suggests 

a promising future for the adoption of green technology over the forecasting period. This approach 

not only enhances the accuracy of forecasts but also contributes valuable evidence on the 

dynamics of green technology adoption and its future implications for sustainability and economic 

development across the OECD nations.  

 The study is structured as follows: Section 2 reviews the relevant literature on technology 

diffusion and ML in forecasting. Section 3 details the methodology, including the ARIMA model 

and the data used. Section 4 presents the empirical results. Section 5 concludes the study by 

summarizing key findings, discussing limitations, and offering policy recommendations. 
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2. Literature Review 

The transition to green technologies is crucial for addressing climate change and promoting 

sustainable development. There is a growing body of theoretical and empirical studies to examine 

the factors that drive the development and diffusion of green technology. This body of literature 

is focused on the linkages between green technologies and CO2 emissions in general. 

Additionally, it incorporates the Environmental Kuznets Curve (EKC) framework to 

contextualize the relationship between economic growth and environmental degradation in the 

adoption of green technologies. Unlike previous literature, this literature review examines the 

existing body of theoretical and empirical research on GTD, highlights the determinants of this 

diffusion, and explores the emerging role of ML in enhancing forecasting accuracy. 

The diffusion of green technologies has been extensively studied within various theoretical 

frameworks. Rogers' (2003) “Diffusion of Innovations” theory provides a foundational 

understanding of how new technologies spread within a society, emphasizing factors such as 

relative advantage, compatibility, complexity, trialability, and observability. This theory has been 

adapted to examine the adoption of green technologies, highlighting the importance of perceived 

benefits and barriers (Hall and Khan, 2003). Another important theoretical framework is the 

Technology-Organization-Environment (TOE) framework, developed by Tornatzky and 

Fleischer in 1990. This model considers technological, organizational, and environmental 

contexts as critical determinants of technological innovation adoption. In the context of green 

technologies, the TOE framework identifies factors such as technological readiness, 

organizational capabilities, and regulatory pressures that influence diffusion.  

A conducted by Popp (2006) mandates energy efficiency standards and emissions 

reductions also drive green technologies. Addition to in the theoretical framework, Allan et al. 

(2013) investigate the stages of the diffusion of green technology on economic, regulatory, social, 

and technological factors influencing its adoption. They also identify barriers such as costs and 

lack of awareness and recommend financial incentives, regulatory support, public awareness 

campaigns, and research and development to promote the spread of environmentally friendly 

innovations. Later, Cohen et al. (2017) mention that the availability of financial resources and 

access to capital markets are critical determinants of green technology investments. 

The majority of studies in the literature have concentrated on the empirical impacts and 

consequences of GTD. In previous studies, Lv et al. (2021) measure green innovation efficiency 

in 30 Chinese cities, examining the influence of financial structure, scale, and efficiency. The 

findings indicate that financial structure promotes green technology innovation, while financial 

scale and efficiency hinder it, with environmental regulation and innovation output playing 

moderating and mediating roles. Similarly, Xu et al. (2021) analyze the impacts of green 

regulation and foreign direct investment (FDI) on green innovation in 13 Chinese manufacturing 

sectors. The results show that ecological regulation positively impacts green innovation, while 

FDI negatively impacts it. Later, Maiti (2022) explores the effect of green growth on green 

innovation using dynamic panel threshold regression on data from 32 countries, and the findings 

conclude that a 1% increase in CO₂ productivity boosts green innovation, and also a 1% rise in 

environmental efficiency enhances green technologies.  

A present study by Hussain et al. (2022b) investigates the role of environmental technology 

and green factors on green growth in high-GDP countries. Their empirical findings demonstrate 

that green technology significantly boosts environmental-friendly growth, but energy 
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consumption and emissions decrease it. Moreover, Tuganova et al. (2022) examine the impact of 

green technology on sustainable development using bibliometric methods on data from Scopus 

and the European Patent Office. Their findings give evidence that increased research in these eco-

innovation areas does not necessarily lead to more patents, highlighting skepticism about green 

technologies' effectiveness in solving environmental challenges. Lin and Ma (2022) investigate 

the effect of green technology innovations on CO₂ emissions in 264 Chinese cities, focusing on 

how the urban innovation environment affects this relationship. The findings reveal that green 

innovations significantly decrease CO₂ emissions only after 2010. On the other hand, government 

spending does not significantly alter the marginal effect of green technologies, underscoring the 

importance of human capital for effective CO₂ reduction. 

Another study by Oyebanji and Kirikkaleli (2023) investigate the impact of green 

technology innovation, renewable electricity, financial development, and economic expansion on 

environmental quality in Western European countries. The results show that renewable electricity 

and green technologies reduce CO₂ emissions. In the context of the novel approach, Wang et al. 

(2023) investigate how artificial intelligence (AI) impacts green innovation in relation to 

sustainable development goals across 51 countries. Their findings reveal a strong positive 

correlation between AI and green innovation, emphasizing that AI is pivotal in driving 

environmental innovation. 

Economic factors play a crucial role in the diffusion of green technologies. Studies have 

shown that economic incentives, such as subsidies, tax credits, and grants, significantly influence 

the adoption of renewable energy technologies. A study by Johnstone et al. (2010) indicates that 

economic incentives, such as subsidies, tax credits, and grants, significantly influence the 

adoption of renewable energy technologies. Shen et al. (2021) assess how setting economic 

growth targets influences regional green technology innovation. Their results conclude that 

targets significantly inhibit green technology innovation, with a stronger effect in cities with rapid 

economic growth and high target over-fulfillment.  

In the same vein, Luo et al. (2024) analyze the effect of green technology innovation on 

economic growth in China, and the findings conclude that green technologies significantly boost 

GDP growth in China.  Wang et al. (2023b) investigate how economic development pressure 

affects green total factor productivity in China's cities and methods. The findings indicate that 

economic growth impacts green technology progress and efficiency, with a stronger effect on 

progress. Moreover, Tsimisaraka et al. (2023) investigate the short-term and long-term effects of 

innovations and economic expansion with potential factors on CO₂ emissions, and the empirical 

findings indicate that innovations are positively associated with economic growth. Lastly, 

Ciccarelli and Marotta (2024) analyze the influence of climate change, environmental policies, 

and green innovation, and the findings provide evidence that disruptive effects are more severe in 

low-income, high-emission countries with limited environmental policies or high exposure to 

natural disasters. 

Concerning the interactions between environmental policies and GTD, government 

policies, and regulations are pivotal in shaping the diffusion of green technologies. Policy 

instruments such as feed-in tariffs, renewable portfolio standards, and carbon pricing mechanisms 

have been shown to promote the adoption of renewable energy technologies, as studied by 

Hussain et al. (2022a). Moreover, Zhang et al. (2021) analyze the influence of public spending on 

green economic growth and energy efficiency in selected countries. They find that green 
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economic growth fluctuates due to inconsistent government policies. Chen et al. (2022) explore 

the influence of environmental regulations on green technology innovation in Chinese cities. 

Their empirical findings show that governmental regulations on carbon emissions and air 

pollution positively influence green technology innovation, supporting the “Porter Hypothesis”.  

Likewise, Chen and Tanchangya (2022) explore the role of green technology and policy 

stringency on green growth in China. Their findings provide evidence that environmental policy 

stringency negatively affects green economic growth in the short term and shows no significant 

long-term effect. Another study by Afshan et al. (2023) assess the influence of green finance, eco-

innovation, and environmental policy stringency on China's ecological footprint. The findings 

reveal that eco-innovation, green finance, and environmental policy stringency positively affect 

the ecological footprint. While recent studies have begun to explore the combination of ML with 

traditional econometric methods, such as the work by Nakano and Washizu (2022), which used 

neural networks to predict solar energy adoption in Japan, these approaches are still in their early 

stages, especially within the context of OECD economies. 

Considering the ML approach, a few studies examine the relationship between the adoption 

and diffusion of green technologies and their potential related determinants. For instance, 

Magazzino et al. (2021) estimate the causal relationships among solar and wind energy 

production, coal consumption, economic expansion, and CO₂ emissions using advanced ML 

techniques. Their estimations reveal that while China and the US are expected to reduce CO₂ 

emissions due to increased renewable energy use, India is predicted to see a rise in emissions. 

Furthermore, Magazzino et al. (2021) investigate the relationships among Information and 

Communication Technologies (ICT) and environmental pollution in selected OECD countries 

through an ML algorithm. The ML findings confirm that ICT significantly contributes to CO₂ 

emissions. Another study by Peiró-Signes et al. (2022), employ an XGBoost model and ML 

methodologies to analyze the environmental orientation of innovative firms. Their estimation 

identifies the importance of policy regulations and managerial strategies in fostering an eco-

innovative culture. 

Recently, Zhou et al. (2024) forecast the impact of industrial robots on regional pollution 

in China. Their forecasting emphasizes that industrial robots significantly decrease pollution 

intensity across various provinces. Later, Aminullah, (2024) estimates the technology innovation 

and economic growth through system dynamics modeling. It highlights that link investments in 

General Purpose Technologies (GPTs) with industrial policy is crucial for inclusive growth and 

sustainable development, especially in the post-COVID-19 context. Furthermore, Zhao et al. 

(2024) investigate environmental quality utilizing panel data from 108 cities. Their findings 

reveal that green technological innovation significantly improves pollution reduction and carbon 

efficiency. 

Furthermore, Sun et al. (2024) explore the forecasting of carbon pressure on low-carbon 

technological innovation in Chinese cities, utilizing random forest forecasting and ordinary least 

squares models. Their estimation supports that population size and economic development 

significantly promote low-carbon innovation. More importantly, previous studies (Hübler, 2011; 

Lee and Yang, 2018; Zhang et al., 2020; Bessi et al., 2021; Shahzad et al., 2022; Ahmad et al., 

2023) also investigate the estimation of GTD by using ML approaches. 

Despite the growing body of research on GTD, a significant gap remains in the application 

of advanced machine-learning techniques to predict the future spread of these technologies across 
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OECD economies. This study aims to fill this gap by integrating the ARIMA model into the 

forecasting process, providing a novel methodological approach that can enhance the accuracy 

and relevance of diffusion predictions. Additionally, by focusing on the specific context of OECD 

countries, this study offers insights that are directly applicable to policymakers in these nations, 

who are tasked with fostering green technology adoption as part of their sustainability agendas. 

 

3. Data and Methodology 

This study utilizes annual data from 1980 to 2022 for 38 OECD countries. These periods 

are chosen based on the data availability. GTD is based on patent applications from OECD 

statistics. This data provides insights into technological innovation and the frequency of new 

green technology inventions.  Specifically, Figure 1 illustrates a time-series representation of 

overall GTD levels across OECD countries spanning from 1980 to 2022. 

 

 

Figure 1. Green Technology Diffusion, 1980-2022 

 

3.1. Machine Learning 

ML is based on creating algorithms based on data on a given topic, updating outputs as new 

data becomes available, and using statistical analysis to predict outcomes. There are many 

different types of algorithms under ML that enable computers to learn. Computers extract a model 

from the learned data using various functions and statistical methods and can predict, predict, or 

classify new data according to this model. There are many different ML methods in the literature. 

These methods perform differently depending on the type of data. Therefore, it is difficult to say 

that one machine-learning method is superior to others. There are three basic stages in ML. These 

are: 

1. Preparation of data: The first step is to prepare the right data, and the data needs to be 

prepared meticulously in order to reach the right results. At this stage, the data is made ready 

for processing by finding outliers, normalizing the data, etc. Depending on the type of 

problem, both numerical and symbolic (nominal) data can be processed. 
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2. Training: The second stage is to find the most appropriate model and train the data prepared 

in the first stage with this model. First, an ML method suitable for the problem is selected 

and the most appropriate model is created from the data by training. In order to find the 

appropriate model, as many models as possible should be built and tested. A part of the data 

in the training set is removed the model is validated and it is decided whether the model is 

appropriate or not. 

3. Testing: The last stage is performance testing. For this, the model is tested by using the model 

created with data other than the training data used in the creation of the model. This data is 

called the test set. In the testing process, the performance of ML with the test set is measured 

by metrics such as accuracy rate, number of false positives, and number of true positives. 

ML is used for classification, regression, and clustering, but it is also frequently used for 

time series analysis. ML and time series try to make new predictions based on information from 

the past. This is a type of supervised learning in ML. In this study, time series analysis is 

performed using ARIMA, an ML method known to give successful results. 

 

3.2. Time Series Analysis 

Time series analysis entails creating models that effectively represent or describe an 

observed time series, aiming to understand the underlying factors driving the observed patterns. 

The primary objective of time series analysis is to formulate mathematical models that can offer 

credible explanations based on the sample data. These models not only help in interpreting the 

historical data but also enable accurate forecasting, identifying trends, and understanding the 

temporal dynamics of the data, which can be applied to various fields. 

 

3.3. Time Series Forecasting 

The effectiveness of a time series forecasting model is measured by how well it predicts 

future values. This assessment can help clarify the reasons behind specific forecasts, interpret 

confidence intervals, or gain insights into the underlying issues. Time series data can be framed 

as a supervised learning problem. By using the previous time step as the input variable and the 

subsequent time step as the output variable, we can transform the time series dataset into a format 

suitable for supervised learning. 

 

3.4. Forecasting Performance Measures 

Time series forecasting performance metrics summarize the effectiveness and accuracy of 

the forecasting model. There are numerous metrics available for evaluation, and since time series 

forecasting usually involves predicting actual values—often categorized as regression 

problems—this paper will focus on metrics specifically designed to assess forecasts of real values. 
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3.5. Mean Absolute Error 

The mean absolute error (MAE) is computed as the average of the forecast errors, with all 

error values treated as positive. This process, known as absolutizing, ensures that all errors are 

positive. An MAE of zero indicates perfect accuracy with no errors. 

𝑀𝐴𝑃𝐸 =
∑ |(𝑦𝑡 − ŷ𝑡)/𝑦𝑡|
𝑛
𝑡=1

𝑛
100 (1) 

3.6. Mean Squared Error 

The mean squared error (MSE) is determined by averaging the squared values of prediction 

errors. Squaring these errors ensures they are positive and disproportionately emphasizes larger 

errors. The error values are expressed in the squared units of the predictions. An MSE of zero 

signifies perfect accuracy or no error. 

𝑀𝑆𝐸 =
∑ (𝑦𝑡 − ŷ𝑡)

2𝑛
𝑡=1

𝑛
 (2) 

3.7. Root Mean Squared Error 

The MSE, described earlier, is presented in squared units relative to the forecasts. To revert 

to the original units of the estimates, one can calculate the square root of the MSE, resulting in 

the root mean square error (RMSE). Like the MSE, an RMSE of zero indicates that there is no 

error. 

𝑅𝑀𝑆𝐸 = √
∑ |𝑦𝑡 − ŷ𝑡|
𝑛
𝑡=1

𝑛
 (3) 

3.8. Autoregressive Integrated Moving Average Model 

The ARIMA model is a statistical approach used for analyzing and predicting time series 

data. ARIMA, short for ARIMA, combines three elements: autoregression, differencing, and 

moving averages. Specifically, it is a model that uses the dependent relationship between an 

observation and a set of lagged observations, AR (autoregression), I (integrated), differencing the 

raw observations, and MA (moving average) to stationary the time series.  Forecasting with 

ARIMA usually consists of three main steps: identifying the temporal model, estimating the 

parameters, and diagnostic checking. The ARIMA model is denoted as (p, d, q), where each 

parameter is replaced with an integer to identify the specific ARIMA model used. The parameters 

are defined as follows: p is the number of lag observations in the model, also called the lag order; 

d is the number of differences applied to the raw data, known as the degree of differencing; and 

q is the size of the moving average window or the order of the moving average. To evaluate the 

model, forecasting metrics such as MAPE, MSE, and RMSE are employed. The ARIMA 

algorithm was repeatedly run using an optimization algorithm developed by the authors to create 

different models. An ARIMA model is evaluated by training it on a training dataset and testing 

its predictions on a test dataset. 

In this study, we employ the ARIMA model, a robust machine-learning approach for time-

series forecasting. The ARIMA model was chosen for its proven effectiveness in capturing 
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temporal dependencies and trends within the data. Traditional econometric models, such as those 

used in prior studies (Bass, 1969; Lee and Song, 2007), often assume linear relationships and may 

not fully capture the nuances of technology adoption dynamics. ML models, including ARIMA, 

can model more complex relationships and interactions within the data, providing a more nuanced 

understanding of diffusion patterns. The use of ML also facilitates advanced analytical 

capabilities, such as pattern recognition and trend analysis. 

The dataset is split into two parts: 66% is allocated for the initial training set, while the 

remaining 34% is used for testing. Each iteration produces a model that can predict new data. The 

iterative approach trains a new ARIMA model at each time step, with forecasts made and recorded 

in a list during each iteration. This process allows for comparing all predictions against the actual 

values at the end of the test set, enabling the calculation of an error score, specifically the RMSE. 

Time series forecasting models can generate predictions and also provide confidence intervals, 

which define the upper and lower bounds for the actual observations. These intervals are useful 

for assessing the range of potential outcomes and evaluating the model's accuracy. 

The Estimate function permits the specification of the confidence interval, with the alpha 

argument in the prediction function determining the confidence level. By default, alpha is set to 

0.05, corresponding to a 95% confidence interval. This confidence interval is considered both 

reasonable and widely accepted. An alpha of 0.05 implies that the ARIMA model will calculate 

the upper and lower bounds of the forecast such that there is only a 5% probability that the actual 

value will fall outside this range. This approach is essential for understanding the uncertainty 

associated with the model's predictions, ensuring that the forecast encompasses the true value 

most of the time. By adjusting the alpha value, users change the confidence level to meet specific 

requirements, allowing for greater flexibility in risk assessment and decision-making. 

Once the predictions are made, it is necessary to measure the prediction success of the ML 

methods on the dataset. Performance metrics have been developed for these purposes. Prediction 

metrics such as MAPE, MSE, and RMSE are used to evaluate the model (Sammut and Webb, 

2010). Lewis (1982) considered predictions with MAPE values below 10% as “very good”. For 

the sake of simplicity and completeness, this paper presents MAPE scores for comparison with 

model accuracy.  To generate different models, the ARIMA algorithm was run repeatedly using 

the optimization algorithm developed by the author. After checking for efficiency issues, the most 

efficient model was used. 

 

4. Empirical Findings 

After the successful development of the model, visual representations of the results were 

created. Figure 1 provides sufficient evidence to validate the models discussed in this paper. It 

illustrates the forecasted emissions for both the current period (1980-2022) and the future period 

(2023-2037). Figure 2 includes shades of gray representing the confidence intervals (upper and 

lower bounds of the forecasts). Additionally, Table 1 presents the modeling error and accuracy 

metrics identified during the model development to offer a clearer understanding of the forecast 

values. Table 1 presents forecast values for GTD from 2023 to 2037 across OECD countries, 

along with accuracy metrics such as MAPE, RMSE, and MSE. 
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Figure 2. Green Technology Diffusion Estimates for 2023-2037 
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Table 1. Green Technology Diffusion Outlook from 2023 to 2037 in OECD Countries 

Countries/Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 MAPE RMSE MSE 

Australia 188.03 195.65 203.94 184.87 182.32 249.63 277.05 308.02 306.18 343.5 333.87 275.25 219.65 272.37 272.91 21.99% 110.59 12229.15 

Austria 20.85 16.03 14.19 12.7 19.27 12.8 11.33 0.59 14.95 23.39 16.35 4.52 5.38 0.8 -0.84 60.75% 21.76 473.61 

Belgium 28.52 31 39.33 40.3 47.87 59.53 53.28 54.49 57.57 61.82 71.99 69.23 73.55 78.06 88.36 974.68% 43.31 1876 

Canada 396.23 400.57 390.61 464.7 466.31 521.87 500.53 475.07 453.96 440.92 419.46 397.83 392.41 403.48 397.78 17.96% 114.61 13134.37 

Chile 50.9 65.51 66.95 77.97 71.34 66.54 65.39 86.6 63.77 59.34 72.11 62.91 69.71 84.38 85.82 55.58% 25.75 662.82 

Colombia 72.02 70.27 65.84 68.25 47.62 38.05 46.76 71.61 62.89 54.17 63.8 89.98 100.21 102.53 94.83 354.18% 48.63 2364.48 

Costa Rica 4.09 4 4.62 4.5 3.96 4.94 4.59 4.6 6.36 8.13 7.08 5.66 5.66 5.3 6.02 103.73% 2.76 7.59 

Czechia -2.82 -7.53 -11.19 -4.71 -18.75 -30.26 -29.99 -14.94 6.27 4.53 -0.42 4.21 1.72 -3.41 -4.58 135.88% 30.74 944.78 

Denmark 16.29 23.72 20.42 14.48 12.75 10.45 12.08 1.58 5.31 4.24 5.04 9.03 11.38 16.44 15.58 59.71% 6.89 47.4 

Estonia 2.29 -0.72 1.5 1.84 0.97 1.86 0.07 -0.25 -0.25 -0.25 1.07 2.42 2.81 0.64 2.02 67.39% 1.42 2 

Finland 19.23 8.39 24.32 20.91 25.35 16.53 17.64 24.52 22.42 19.38 15.36 7.24 6.79 -7.1 9.54 101.71% 20.13 405.05 

France 165.93 148.37 150.96 102.39 87.12 85.08 56.1 26.59 11.61 -12.09 -13.76 -40.26 -53.62 -72.66 -67.81 90.52% 252.3 63653.07 

Germany 720.89 720.81 697.89 646.22 647.77 702.13 666.64 687.12 696.6 657.17 612.46 549.61 659.08 629.7 502.13 25.61% 253.38 64200.55 

Greece 7.33 10.99 5.66 12.61 8.21 4.53 9 6.34 11.46 7.24 10.13 5.4 4.96 9.06 3.51 40.94% 5.79 33.53 

Hungary 33.22 32.07 42.28 58.58 51.93 84.5 85.28 78.25 79.83 69.95 81.29 69.45 64.71 59.76 68.07 263.62% 37.46 1402.97 

Iceland 3.34 1.14 0.61 -0.17 0.96 0.64 2.39 1.09 1.4 0.54 1.3 1.93 1.55 0.61 1.56 72.28% 1.3 1.69 

Ireland 2.05 12.33 5.34 10.75 3.26 10.47 5.35 2.04 3.45 -1.46 -0.56 3.59 2.08 2.72 2.22 70.43% 3.72 13.84 

Israel 18.26 -0.21 43.78 51.48 14.38 -3.35 -24.58 -5.36 -6.64 -27.71 -8.5 -9.27 -6.32 -8.03 -20.79 225.41% 22.57 509.23 

Italy 84.75 73.47 43.67 37.32 34.63 74.89 110.67 72.65 54.35 64.84 91.59 82.26 74.11 64 35.03 1477% 54.08 2925.05 

Japan 2470.5 2399.8 2557.1 2203.9 1944.3 2321.7 2231.2 2171.3 2152.8 1875.8 1892.5 1875.3 1717.8 1686 1867.7 44.06% 1740.8 3030394 

Latvia 5.51 5.52 3.69 5.07 4.73 4.42 4.76 6.12 4.63 9.08 7.57 5.64 7.5 6.6 4.86 133.15% 3.37 11.34 

Lithuania 4.18 4.46 3.36 4.98 6.56 4.55 5.03 7.71 9.07 4.91 6.86 6.18 5.95 6.01 4.71 71.08% 2.34 5.49 

Luxembourg 69.57 76.86 81.35 83.37 83.9 88.39 90.78 86.05 87.37 91.89 116.96 132.65 141.23 147.32 150.91 3676% 93.96 8828.5 

Mexico 166.15 195.21 197.38 222.05 220.42 310.47 324.29 272.98 261.65 240.11 284.83 281.06 257.46 275.45 273.29 40.19% 80.17 6427.88 

Netherlands 79.32 89.37 90.3 67.95 57.22 72.22 55.16 59.14 47.35 55.79 64.55 82.25 76.8 90.65 94.74 43.64% 24.37 594.02 

New Zealand 27.81 24.85 27.66 27.48 28.58 20.74 9.74 6.88 3.83 3.67 16.74 21.71 27.89 23.9 25.75 57.82% 25.63 656.82 

Norway 5.54 6.72 -8.72 -2.62 -5.31 -15.52 -2.81 -5.19 -9.14 -4.16 -7.7 -9.63 -11.83 -11.87 -27.02 154.69% 36.94 1364.61 

Poland 59.53 100.47 138.79 93.57 105.22 112.25 132.74 85.54 77.71 76.19 77.2 74.61 45.86 85.98 124.65 29.10% 40.45 1636.23 

Portugal 8.27 5.05 16.89 11.85 12.07 7.51 8.53 10.86 7.26 3.12 5.49 3.31 5.82 2.95 16.04 103.76% 5.57 31.05 

Slovakia 5.01 12.08 5.83 4.27 3.32 -4.73 4.46 14.27 15.49 7.51 10.59 10.9 3.54 12.04 5.73 79.40% 6.37 40.64 

Slovenia 8.13 10.74 10.15 9.81 12.17 15.1 20.08 10.24 8.24 11.82 10.59 10.13 11.79 13.66 12.91 121.29% 7.97 63.53 

Spain 41.5 39.07 47.6 44.09 54.46 44.41 46.05 42.5 22.82 42.96 32.6 23.4 22.02 25.9 35.66 33.87% 23.5 552.28 

Switzerland 16.83 12.52 14.01 9.06 8.43 -0.94 -2.92 -0.87 -5 -1.55 -5.11 -2.66 -4.97 -8.63 -4.91 99.84% 19.44 377.81 

Türkiye 83 101.62 75.71 72.85 78.3 82.39 109.47 105.1 116.15 114.85 172.8 149.42 162.38 177.13 153.48 840.58% 93.22 8689.38 

U.K. 165.76 158.48 158.61 180.09 203.88 156.22 239.01 113.78 116.31 115.97 95.21 74.29 103.46 90.55 91.81 27.55% 65.62 4305.47 

USA 3624.9 3623.8 4004.8 4428.5 4294.6 4379.2 4376.9 4342.4 4377.7 4379.4 4464.1 4679.3 4646.1 4633.1 4970.4 30% 1025.7 1052075 
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High GTD Growth: Japan, Germany, and the United States exhibit high absolute values, 

suggesting significant investments and adoption rates in green technologies. 

Moderate GTD Growth: Countries like Australia, Canada, and Mexico have shown steady 

but moderate increases in GTD over the years. 

Low GTD Growth: Some countries, including Ireland, Iceland, Austria, Czechia, Latvia, 

Lithuania, Norway, Slovakia, Slovenia, Switzerland, Israel, Costa Rica, and Estonia, show low 

or even negative values in certain years, indicating potential challenges in adopting green 

technologies. 

Furthermore, Table 1 displays the error metrics and accuracy parameters identified 

throughout the model development process. MAPE measures the accuracy of the forecast. Lower 

MAPE values indicate higher accuracy. For example, countries like Canada (17.96%), Australia 

(21.99%) and Germany (25.61%) have relatively low MAPE, indicating more reliable forecasts. 

In contrast, countries like Belgium (974.68%), Türkiye (840.58%), and Colombia (354.18%) have 

high MAPE values, suggesting less accurate predictions. RMSE provides the standard deviation 

of the residuals. Lower values indicate that the predictions are close to the actual data points 

Iceland (1.3), Estonia (1.42), and Lithuania (2.34) have low RMSE values, while Japan (1740.8), 

the USA (1125.7%), and Germany (253.38%) have a significantly high RMSE, pointing to larger 

prediction errors. MSE is the average of the squares of the errors. Countries like Ireland (1.69), 

Estonia (2), and Lithuania (5.49) have lower MSE values, whereas Japan (3030934), the USA 

(1052075) and Germany (64200.55) have extremely high MSE. 

 

4.1. Discussion 

The findings of the study indicate that Japan, Germany, and the USA will experience 

significant growth in GTD. This finding is consistent with recent studies highlighting these 

countries' leadership in green technology. For instance, a study by Jaffe et al. (2003) underscores 

the role of advanced research infrastructure and aggressive policy frameworks in these nations, 

which aligns with our results showing strong growth in green technology adoption. Furthermore, 

the work of Grübler et al. (1991) supports this observation, emphasizing that countries with 

substantial investments in innovation and supportive regulatory environments are likely to lead 

in technology diffusion. 

On the other hand, countries like Australia, Canada, and Mexico are projected to see 

moderate increases in green technology adoption. This is consistent with recent research, such as 

that by Hascic et al. (2020), which found that while these countries have made significant strides 

in green technology, their progress is hampered by less aggressive policy measures and slower 

economic transitions compared to leading countries. Ireland and Iceland are forecasted to face 

challenges with low or negative growth in green technology adoption. This diverges from some 

recent studies, such as the one by Zeng et al. (2022), which suggested that smaller or less 

economically diverse countries might experience faster adoption rates due to less entrenched 

technologies. The results indicate that specific barriers, such as limited economic resources and 

less aggressive environmental policies, contribute to slower or stagnated growth in these 

countries. 
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5. Conclusion and Policy Implications 

In this study, we have utilized advanced ML methodologies, particularly the ARIMA 

model, to forecast the diffusion of green technologies in OECD countries from 1980 to 2022 and 

2023 to 2037. The dataset is divided into two segments: 66% is allocated for the initial training 

phase, while the remaining 34% is reserved for testing. The results of this study provide an 

overview of GTD forecasts for OECD countries from 2023 to 2037, highlighting growth trends 

and accuracy metrics. Countries like Japan, Germany, and the USA are expected to experience 

high GTD growth, while Australia, Canada, and Mexico show moderate increases. In contrast, 

countries such as Ireland and Iceland face challenges with low or negative GTD values. The 

accuracy of these forecasts is assessed using metrics like Mean Absolute Percentage Error 

(MAPE), RMSE, and MSE. Lower MAPE values (e.g., Canada 17.96%) and RMSE (e.g., Iceland 

1.3) indicate more reliable predictions, whereas higher values (e.g., Belgium 974.68% MAPE and 

Japan 1740.8 RMSE) suggest less accurate forecasts.  

The empirical findings based on the ARIMA model suggested that most countries display 

an increasing trend in GTD, indicating a positive outlook for green technology adoption over the 

forecast period. Based on these findings, countries such as Australia, Belgium, Canada, Czechia, 

Denmark, Finland, Greece, Hungary, Netherlands, Spain, and Slovakia show a consistent upward 

trend in GTD, reflecting stable progress in green technology adoption. On the other hand, 

countries like Mexico, Luxemburg, Türkiye, and the USA exhibit a steeper upward trend in GTD, 

suggesting more accelerated adoption rates, possibly due to recent policy shifts or increased 

investments in green technologies. In contrast, countries such as Austria, France, Japan, Germany, 

Finland, Norway, and Switzerland show a consistent downward trend in GTD, reflecting stable 

progress in green technology adoption. These countries have been early adopters of green 

technologies and have established robust frameworks and policies supporting environmental 

sustainability.  

Most countries, including Colombia, Chile, Costa Rica, Estonia, Iceland, Ireland, Italy, 

Israel, Lithuania, Latvia, New Zealand, and Slovenia, display fluctuations in the forecasted GTD, 

which may imply variability in green technology adoption rates due to economic, political, 

environmental, and social factors. These fluctuations may be attributed to several factors. 

Economically, these countries might face budget constraints or shifting priorities that affect 

funding for green technologies. Politically, changes in government or policy directions can lead 

to inconsistent support for environmental initiatives. Environmentally, natural resource 

availability and environmental challenges influence the pace of green technology adoption. 

Socially, public awareness, cultural attitudes, and societal readiness for adopting new 

technologies can vary, causing uneven adoption rates. 

Finally, the findings highlight the critical role of green technologies in addressing 

environmental challenges and promoting sustainable economic growth. The insights gained from 

this study underscore the importance of strategic planning and investment in green technologies 

to achieve long-term sustainability goals. Policymakers and stakeholders in OECD countries must 

prioritize the development and implementation of green technologies to foster economic 

resilience and environmental sustainability.  

Drawing from these findings, this study offers policy recommendations to aid governments 

and policymakers in promoting environmental sustainability in the region and achieving the 

environmental targets outlined for sustainable development. Governments should increase 
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investment in green technologies by providing financial support through subsidies, grants, and 

low-interest loans, accelerating the development and deployment of environmentally friendly 

solutions. Strengthening regulatory frameworks is essential, involving the enforcement of stricter 

emission standards, mandates for renewable energy usage, and penalties for non-compliance. 

Promoting public-private partnerships can enhance green technology dissemination through co-

financing projects, risk-sharing, and knowledge exchange platforms. It is essential to invest in 

education and training initiatives to ready the workforce for green jobs, which involves revising 

curriculums and offering vocational training. Consumer adoption can be incentivized through tax 

rebates for electric vehicles, subsidies for solar panels, and awareness campaigns about green 

technologies. Supporting small and medium enterprises (SMEs) with financial aid, technical 

assistance, and market access for green products is vital for broader technology adoption. 

International cooperation and knowledge sharing through global agreements, collaborative 

research, and participation in environmental forums drive collective progress. Establishing robust 

monitoring and evaluation mechanisms to assess policy effectiveness, set clear targets, collect 

adoption data, and use ML models for future predictions will ensure continuous improvement. 

These recommendations enhance GTD in OECD countries, fostering sustainable economic 

growth and environmental preservation. 

Although this study utilized the ARIMA model, future research should consider 

incorporating and comparing results with other ML models, such as neural networks, support 

vector machines, and ensemble methods. This provides a more robust and nuanced understanding 

of GTD trends. Secondly, the results of this study may not be applicable to developing countries 

in Africa or Asia due to their distinct economic characteristics. Therefore, future research should 

consider using datasets from these regions. Third, future studies could incorporate policy 

simulation and scenario analysis to evaluate the potential impacts of various policy interventions 

on GTD. By simulating different regulatory, financial, and social scenarios, policymakers can 

better understand the most effective strategies for accelerating green technology adoption. 

One limitation of this study is the variability in the availability and quality of data across 

different countries. While comprehensive data on green technology adoption is available for some 

OECD countries, others may have incomplete or inconsistent data. This limitation can affect the 

accuracy and reliability of the forecasting models. The use of the ARIMA model relies on certain 

assumptions, such as linearity and stationarity in time-series data. While ARIMA is a powerful 

tool for forecasting, these assumptions may not fully capture the complex, non-linear dynamics 

of GTD. 
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