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Abstract: The main motivation of this study is to develop an efficient algorithm for diagnosing and detecting 

outliers in linear regression up to a reasonable level of contamination. The algorithm initially obtains a robust 

version of the hat matrix at the linear algebra level. The basic subset obtained in the first stage is improved through 

concentration steps as defined in the fast-LTS (Least Trimmed Squares) regression algorithm. The method can be 

plugged into another algorithm as a basic subset selection state. The algorithm is effective against outliers in both 

X and Y directions by a rate of 25%. The complexity of the algorithm increases linearly with the number of 

observations and parameters. The algorithm is quite fast as it does not require iterative calculations. The success of 

the algorithm against a specific contamination level is demonstrated through simulations.  
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1.  Introduction 

Suppose the linear regression model is  

𝑦 =  𝑋𝛽 + 𝜀 

where 𝑦 is the n-vector of the response variable, 𝑋 is the 𝑛 ⤫  𝑝 design matrix, 𝜀 is the n-vector of the 

stochastic error term with zero mean and constant variance, n is the number of observations, and p is 

the number of regression parameters. The ordinary least squares estimate of 𝛽, noted as �̂�,   

 

�̂� = (𝑋′𝑋)−1𝑋′𝑦 
 

is the most efficient estimator among the linear and unbiased estimators, that is, �̂� minimizes 

 

𝑀𝑆𝐸(�̂�)  =  𝑉𝑎𝑟(�̂�)  +  𝐵𝑖𝑎𝑠2(�̂�).                        (1) 

 

When data contains unusual observations Eq. 1 may increase drastically depending on the direction 

and level of the contamination. The LAD (Least Absolute Deviations) estimator is resistant up to 50% 

of contamination on the vertical outliers since it minimizes the conditional median of the response 

variable, that is, the LAD estimator �̂�𝐿𝐴𝐷 minimizes the objective function 

 

𝑚𝑖𝑛 ∑| 𝑦 − 𝑋�̂�𝐿𝐴𝐷| 

which in turn can be written as a linear programming problem 

𝑚𝑖𝑛 ∑ 𝑒𝑖
− + 𝑒𝑖

+

𝑛

𝑖=1

 

Subject to: 

𝑋(𝑖,)𝛽𝐿𝐴𝐷 + 𝑒𝑖
− − 𝑒𝑖

+ = 𝑦𝑖          (2) 

𝑒𝑖
−, 𝑒𝑖

+ ≥ 0   , 𝑖 =  1, 2, …, n 
𝛽𝐿𝐴𝐷 ∈ ℝ𝒑  
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where 𝑋(𝑖,) is the ith row of 𝑋, 𝑒𝑖
− ≥ 0 if i-th residual is located under the regression object, otherwise 

𝑒𝑖
− = 0, 𝑒𝑖

+ ≥ 0 if i-th residual is located above the regression object, otherwise 𝑒𝑖
+ = 0. If 𝑒𝑖

− =  𝑒𝑖
+ = 0 

then the regression equation exactly fits the i-th observation. Eq. 2 has an exact solution to the robust 

method LAD, however, LAD is not resistant to X-space outliers, namely, bad leverage points [1]. 

LTS (Least Trimmed Squares) estimator �̂�𝐿𝑇𝑆 is resistant to both vertical and X-space outliers up to 50% 

contamination and it is defined as  

𝑚𝑖𝑛 ∑ | 𝑦𝑖 − 𝑋(𝑖,)�̂�𝐿𝑇𝑆|2

ℎ

𝑖=1

 

 

where | 𝑦𝑖 − 𝑋(𝑖,)�̂�𝐿𝑇𝑆|2 is the i-th ordered squared residual, ℎ is at least half of the number of 

observations 𝑛. The Fast-LTS algorithm requires selecting many basic subsets and then iterating and 

enlarging the basic subset until some convergence criteria is met [2]. Since the algorithm is based on  

comprehensive iterations of calculations, more computation time is required to obtain parameter 

estimates. When the data is large, metaheuristics [18] can be used to minimize the objective function, 

however, the required computation time is still a problem just because the optimization problem has 

not a closed form as in many robust regression estimators.  

In this paper, a robust version of vector and matrix algebra is defined to obtain a more robust version 

of the well-known hat matrix. This hat matrix is then used to construct a small basic subset which is 

supposed to be free of outliers. This basic subset is then fed into a robust regression estimator to obtain 

robust regression parameter estimates. The proposed method is based on a single-pass algorithm and 

fast. It's shown that the proposed method is resistant up to 25% level of contamination. 

In Section 1 the problem is introduced. In Section 2, the basics of the robust hat matrix construction is 

introduced. In Section 3, the use of the robust hat matrix based initial basic subset is introduced in a 

robust regression estimator, LTS. In Section 4, a suite of simulation studies is performed to assess the 

performance of the algorithm for varying dimensions and levels of contamination. Finally, in Section 5, 

the results are discussed and we conclude. 

2.  Preliminaries 

Suppose that the p-vectors 𝑥 and 𝑦 are defined as 

 

𝑥 =  [𝑥1, 𝑥2, . . . , 𝑥𝑝 ]
𝑇
  

 

and  

 

𝑦 =  [𝑦1, 𝑦2, . . . , 𝑦𝑝 ]
𝑇
  

 

The classical dot product sums up the products of corresponding elements of vectors 𝑥 and 𝑦, that is,  

 

𝑥′𝑦 =  ∑ 𝑥𝑖𝑦𝑖

𝑝

𝑖=1

 

 

The dot product 𝑥′𝑦 can also be written as  

 
𝑥′𝑦 =  𝑓(𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝑝𝑦𝑝)  ×  𝑝 

 

where  

 

𝑓(𝑥, 𝑦) = ∑(𝑥𝑖 𝑦𝑖) / 𝑝.

𝑝

𝑖=1

 

 



 

78 

 

In other terms, the sum is p times the sample mean. Now suppose that 𝑓∗ is a robust location estimator. 

Then the robust dot product of 𝑥 and 𝑦 can be written as 

 

𝑥′ ⊗ 𝑦 =  𝑓∗(𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝑝𝑦𝑝)  ×  𝑝.                                                                                              (3) 

 

Since  𝑓∗(. ) is a robust location estimator then  𝑓∗(. ) ×  𝑝  is a robust estimate of sum. Using 𝑥′ ⊗ 𝑦 

instead of 𝑥′𝑦 results in a more robust version of the vector product. 

2.1. Robust Matrix Multiplication 

Suppose that 𝑋 and 𝑦 are 𝑚 ×  𝑛 and 𝑛 ×  𝑝 matrices, respectively. Then the i-th row and the j-th column 

of the robust matrix multiplication of 𝐶 =  𝐴 ⊗ 𝐵 is defined as  

𝑐𝑖𝑗 = 𝑋(𝑖,) ⊗ 𝑌(,𝑗)                                                                                                                                     (4) 

where 𝑋(𝑖,) is the i-th row vector of 𝑋 and 𝑦(,𝑗) is the j-th column vector of 𝑦,  ⊗ is the multiplication 

operator as defined in Equation 3, and 𝑓∗ is a univariate robust location estimator. 

2.2. Robust Hat Matrix 

The original hat matrix of linear regression is based on the design matrix and it is defined as  

 
𝐻 =  𝑋(𝑋′𝑋)−1𝑋′ 
and the diagonal elements of H are investigated for bad leverage points [3]. When the design matrix 

contains unusual observations, because of the summation operator, the corresponding diagonal 

elements of H tend to have smaller values and cause the masking effect. Replacing the matrix 

multiplication operator with its robust counterpart yields 

 

𝐻𝑅 = 𝑋(𝑋′ ⊗ 𝑋)−1𝑋′ 
where ⊗ is the robust multiplication operator. Since the part (𝑋′ ⊗ 𝑋) is supposed to be outlier free for 

some contamination level, it is expected that the unusual observations will have relatively larger values 

on the corresponding diagonal elements of 𝐻𝑅.  

2.3. Trimean as a Robust Location Estimator 

Trimean estimator is a robust estimator of the location parameter which is defined as  

 

𝑇𝑟𝑖𝑚𝑒𝑎𝑛(𝑥) =
𝑄25(𝑥)  +  2𝑄50(𝑥)  + 𝑄75(𝑥)

4
 

where 𝑄25(𝑥) is the first quartile of x, 𝑄50(𝑥) is the sample median of 𝑥, and 𝑄75(𝑥) is the third quartile 

of 𝑥, respectively [4]. The Trimean is less robust than the sample median, however, it's more efficient. 

The break-down point of Trimean is 25%, that is, it stays resistant to outliers when the fraction of 

contamination is up to 25% of data. Moreover, Trimean is a suitable estimator due to its efficiency 

resembling the arithmetic mean and its robustness akin to the median. 

In Table 1, the use of the robust version of the Hat matrix (𝐻𝑅) is represented using a set of simulated 

data. The robust location estimator is selected as 𝑓∗ = 𝑇𝑟𝑖𝑚𝑒𝑎𝑛. The data consist of two variables, 

namely 𝑥1 and 𝑥2, with the sample size of n = 10. The last two observations have unusual values. The 

9th and 10th observations are manipulated by distorting the values corresponding to the first variable. 

𝐷𝑖𝑎𝑔(𝐻) and 𝐷𝑖𝑎𝑔(𝐻𝑅) represent the diagonal elements of the hat matrix and robust hat matrix, 

respectively. 

Table 1. Illustrative example of a set of simulated data. 

Obs. Cons. 𝒙𝟏 𝒙𝟐 𝑫𝒊𝒂𝒈(𝑯) 𝑫𝒊𝒂𝒈(𝑯𝑹) 

1 1.0 0.493 0.520 0.319 0.649 

2 1.0 0.332 0.534 0.307 0.648 

3 1.0 0.895 0.797 0.121 0.236 

4 1.0 0.910 0.545 0.258 1.023 

5 1.0 0.779 0.967 0.345 0.871 
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6 1.0 0.201 0.765 0.164 0.867 

7 1.0 0.622 0.760 0.122 0.130 

8 1.0 0.311 0.960 0.374 1.769 

9 1.0 2.900 0.756 0.283 14.42 

10 1.0 4.300 0.764 0.702 38.24 

 

In Table 1, it is shown that the two largest diagonal elements incorrectly belong to the observations 8 

and 10, whereas, observations 9 and 10 have relatively large values on the diagonal elements of the 

Trimean based robust hat matrix. As it is expected, larger and smaller values are omitted in the 

summation part of the vector multiplication stage. 

3.  The Main Algorithm  

Constructing a basic subset and then iterating and enlarging this subset until some convergence criteria 

is met is not a new concept in detecting outliers in linear regression [5, 6, 7]. [5] constructs a subset of 

p+1 observations and then enlarges these subsets using the DFFITS [8] statistics. Similarly [6] and [7] 

enlarge the basic subset using multivariate statistics calculated on the design matrix in order to detect 

bad-leverage points. [9] and [10] construct and iterate an initial estimate and then update the weights 

of an iteratively weighted least squares estimate. [11] introduces a two-stage method for detecting 

outliers in linear regression. In the first stage of the method, a subset of outlier-free observations is 

created using a robust covariance matrix estimation inspired by the Comediance [12] statistic. Several 

iterations are performed for constructing initial subsets as the essential steps of the LMS [13], LTS [2], 

and LTA [14] estimators. However, the initially selected subsets may contain outliers, and in the later 

stages of the outlier detection algorithm (or the robust estimator), this could lead to clean observations 

being reported as outliers and outliers being reported as clean observations. The developed algorithm 

has been designed to find a better initial subset in a shorter time and to reduce the computational 

overhead in subsequent iterations of the detection algorithms 

The steps of the devised initial basic subset construction algorithm is given as follows: 

Main Algorithm: 

Step 0. Construct the design matrix X with dimensions n and p. 

Step 1. Compute the robust hat matrix using the formula 𝑋(𝑋′ ⊗ 𝑋)−1𝑋′ where the operator ⊗ is defined 

as in Eq. 3 and Eq. 4, respectively. 

Step 2. Let |ℎ𝑖𝑖| is the ordered diagonal elements of the robust hat matrix. Record the indices of first 𝑝 +

1 elements of |ℎ𝑖𝑖|. 

Step 3. Perform C-Steps of the LTS algorithm for the initial basic subset obtained in the previous step. 

Report �̂�𝐿𝑇𝑆 and the other necessary output of the final regression.  

The main algorithm is basically based on constructing an initial basic subset of length 𝑝 + 1 which is 

supposed to be free of outliers. The final step is based on the concentration steps (C-Steps) of the LTS 

algorithm but only a single initial basic subset is fed for obtaining a better larger subset with size h. The 

algorithm differs from the LTS algorithm as it constructs a single basic subset instead of selecting many 

random basic subsets.   

Iterating C-Steps is the inner part of the outlier detection algorithm. C-Steps, as defined in [2], start with 

estimating the linear regression coefficients using a 𝑝 + 1 subset of observations. The smallest h ordered 

absolute residuals obtained in a previous step are then used to estimate the regression parameters. h is 

a number that covers at least half of the observations. Subsequent iterations are performed until the 

difference of the last two objective function values are less than a small value. The Fast-LTS algorithm 

iterates these steps for many randomly drawn 𝑝 + 1 subsets. The devised algorithm is fast as it uses a 

single initial basic subset which is obtained using the robust hat matrix.  

Table 2 represents regression coefficients estimated using the Hawkins, Bradu, Kass's (HBK) Artificial 

Data [15] by several estimators. HBK data consists of three independent variables and has 75 

observations. The model is supposed to be 𝑦 =  𝛽0  + 𝛽1𝑥1 + 𝛽2𝑥2 +𝛽3𝑥3  +  𝜀 . LMS, LTS, BCH [7], and 

the devised algorithm 𝑅𝐻𝐴𝑇 have similar results as  𝛽0̂ < 0,  𝛽1̂ > 0 , 𝛽2̂ > 0, and 𝛽3̂ < 0. OLS and LAD 

end up with a different set of signs of estimations. This set of results is a clean indicator of the dataset 
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at hand has possible X-space outliers. The last column of Table 2 represents the relative time consumed 

by the estimators. The fastest estimator is OLS and its relative time is set to 1x. It can be said that the 

exact LAD estimation is 12.21 times slower than the OLS. The devised estimator is the fastest one among 

others as it is 1.52 times slower than the OLS estimator. Summarizing the results, it can be said that the 

devised algorithm is fast enough and it is capable of handling contaminated data with similar results 

obtained with the high breakdown estimators. 

Table 2. Estimated regression coefficients using the Hawkins, Bradu, Kass's Artificial Data by several 

estimators. 

Estimator 𝛽0̂ 𝛽1̂ 𝛽�̂� 𝛽3̂ Time 

OLS  -0.387550 0.239185 -0.334548 0.383341 1 

LAD -0.881474 0.091312  0.154760 0.214647 12.21 

LMS -0.677950 0.266808 0.112131 -0.144488 91.47 

LTS -0.637726 0.253676 0.108266 -0.139344 62.13 

BCH -0.535321 0.227364 0.049063 -0.097577 10.16 

𝑅𝐻𝐴𝑇  -0.578735 0.261031 0.045958 -0.103124 1.52 

 

4.  The Simulation Study  

A set of simulation studies is performed for measuring the performance of the devised algorithm. In 

each single simulation, a random regression data is created using a specific data generating process. The 

regression model has always an intercept term. 𝑥𝑖 variables are drawn from a standard Normal 

distribution for 𝑖 = 1,2, . . . , 𝑝. The error term also follows a Normal distribution with zero mean and unit 

variance. Regression parameters are set to 5 for all 𝛽𝑖. Generated data is contaminated either in 𝑋 or 𝑦 

directions. Contamination with a given level is always guaranteed by adding random noise to largest 

values on the corresponding set of variables. Simulations are repeated for null contamination level, that 

is, results contain the case of absence of outliers. LinRegOutliers [19] package of the Julia programming 

language [20] is used for the calculations. Figure 1 represents random regression data with 

contamination on either X-space (a) or vertical (b) direction. Note that the represented data has only a 

single independent variable, however, simulations are always performed for p > 2. In Figure 1 (a) 10 

observations are located in a manner that is considered inappropriate as they don't follow the same 

structure with the remaining data points by considering the X-space. In Figure 1 (b), 10 observations are 

vertically incompatible with the regression structure and they have values larger than at least the 

maximum of the clean data points in vertical direction. 

 

  

(a) (b) 

Figure 1. Simulation data with n = 100, p = 2, and contamination level of 10% in either X or y 

directions, respectively. (a) represents the case of the contamination on X, (b) represents the 

case of the contamination on the response variable, y. 

Figures 2 - 7 represent the simulation results. The horizontal axis shows the level of contamination, that 

is, when the contamination is 0%, the data is free of outliers, otherwise, data is contaminated by the ratio 

of the given level. In the vertical axis, average of the parameter estimates is given, that is, an unbiased 
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and robust estimator should have values around a constant line of y = 5. Moreover, if the fluctuation 

around the constant is low, then it can be concluded that the estimator has a smaller variance. The ideal 

graphics follow the �̂� = 5 line with minimum variance. 

Figures 2 and Figure 3 represent the simulation results for n = 50 and  p = 3 when the direction of 

contamination is X and y, respectively. It is shown that the parameter estimates are very close to 5 which 

is the true regression parameters given in the data generating process. When the level of contamination 

increases, parameter estimates tend to have larger variances and a negative bias emerges in case of 

presence of X outliers. Bias of the estimates remain near to zero in the presence of y-outliers. In both 

Figure 2 and Figure 3, it is shown that the parameter estimates drastically disrupt when the level of 

contamination is larger than 25%. 

 

 

Figure 2. Parameter estimations for n = 50, p = 3, and contamination in X-direction 

 

Figure 3. Parameter estimations for n = 50, p = 3, and contamination in y-direction 

Figures 4 and Figure 5 represent the simulation results for n = 100 and p = 5. The results are similar 

when they are compared to the previous ones for n = 50 and p = 3, however, in presence of X-outliers, 

the bias and variance seem to be more stable when the level of contamination is 𝑐 ≤ 0.25. The intercept 

parameter estimate remains unbiased with a small increase in the variance. When the data is 

contaminated in the vertical direction, the results obtained by the configurations n = 50 and n = 100 are 

similar.  
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Figure 4. Parameter estimations for n = 100, p = 5, and contamination in X-direction 

 

Figure 5. Parameter estimations for n = 100, p = 5, and contamination in y-direction 

Figure 6 and Figure 7 represent the simulation results for n = 500 and p = 10. It is shown that the 

parameter estimates still remain stable for the contamination level is 𝑐 ≤ 0.25. As expected, when the 

contamination level is larger than 𝑐 = 0.25, the estimates drastically disrupt. Differently, in the presence 

of y-outliers as it is shown in Figure 7, all of the parameter estimates take a value between a narrower 

range, e.g.  4.96 ≤  𝛽�̂�  ≤  5.06, and the range still remains stable when the contamination level increases.  

 

 

Figure 6. Parameter estimations for n = 500, p = 10, and contamination in X-direction 
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Figure 7. Parameter estimations for n = 500, p = 10, and contamination in y-direction 

To investigate the performance of the algorithm, we generate simulated datasets with n = 1000 and p = 

50. This configuration can be considered large for many research applications. Figure 8 and Figure 9 

represent the simulation results for n = 1000 and p = 10. Simulation results have shown that even as the 

number of observations and parameters increase, distortions in the parameters begin at the point where 

the contamination level reaches 25%. Similar to previous simulation designs, in the presence of y-

outliers, as shown in Figure 9, all parameter estimates fall within a narrower range, e.g., 4.96 to 5.06. 

This range remains stable even as the contamination level increases. 

 
Figure 8. Parameter estimations for n = 1000, p = 10, and contamination in X-direction 

 
Figure 9. Parameter estimations for n = 1000, p = 10, and contamination in y-direction 
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5. Discussions and Conclusions 

The robust statistics literature has a vast set of outlier detection and robust regression estimators 

including LMS, LTS, LTA, LAD, M-Estimators [16], S-Estimators [17], etc. Some of the estimators serve 

as high-breakdown estimators for datasets with a contamination level up to 50%. However, these 

methods and estimators are computationally heavy and they require more time to obtain a result.  

The robust hat matrix based initial basic subset selection method is a single-pass and linear algebraic 

method that provides a clean input which is free of bad leverage points (X-space outliers) when the data 

is contaminated up to 25%. That property makes the devised method superior in datasets with a low 

contamination level. Note that the initial basic subset construction should be seen as an inner step of a 

detection algorithm and theoretical properties of the robust hat matrix are not investigated in this paper. 

Hence, it is not a standalone estimator but a subset selection tool only. 

A suite of simulation study is performed to measure the performance of the devised method. Simulation 

data is generated for different levels of number of observations, parameters and several levels of 

contamination in both directions. The simulation results show that the method is applicable in all of the 

cases. The theoretical and known drawback is the maximum level of contamination. The simulation 

results also show that the bias and variance, hence MSE, of estimators reduce (towards zero) when the 

number of observations and parameters increases.  

The robust hat matrix estimation is based on the Trimean estimator. The maximum breakdown is 

determined by this estimator. Using the sample median instead of the Trimean causes ending up with 

a singular matrix which prevents obtaining a matrix inverse. Selection of another robust location 

measure can be investigated in future works.   

This paper is primarily motivated by the development of a clean starting set of points for later use in 

the Fast-LTS algorithm. However, this stage can be easily integrated into any other robust regression 

method and/or outlier detection methods. Future studies could investigate how the initial subset 

selection stage can be applied to other outlier detection methods. This would provide insights into 

whether the proposed approach can enhance the performance and accuracy of alternative algorithms. 

Additionally, its integration into robust regression methods could reveal potential improvements in 

handling datasets with challenging characteristics. 
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