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Computational fluid dynamics (CFD) models are essential for analyzing industrial glass melting
furnaces, providing insights into energy consumption, temperature distribution, and glass
quality. However, their computational expense limits practical application in daily operations.
This study addresses this issue by developing a machine-learning-based reduced order model
(ROM) using parametric solution data from a CFD model of a glass melting tank of a furnace.
Key operational parameters, namely pull rate, heat flux from combustion space, and electrical
potential difference to supply electrical power, are chosen to create a CFD solution dataset. The
ROM utilizes an autoencoder with convolutional neural networks to predict temperature and
velocity fields. Operational parameters are linked to its decoder through an auxiliary neural
network. The performance of the ROM is assessed for both interpolation and extrapolation.
Comparison between the data generated by the ROM and the ground-truth CFD solutions
indicates less than 1% deviation and an R2 score of 0.99, demonstrating the ROM’s capability.
The ROM achieved a mean squared error (MSE) of 2.82E-06 for the interpolation and 2.79E-05
for the extrapolation tests, further supporting its accuracy. Additionally, the ROM offers
significant advancements in solution time, achieving reduction by up to three orders of
magnitude, which enhances its practical utility. 

	

HAD Çözümlerini Kullanarak Endüstriyel Cam Ergitme Fırınlarının İşletme 
Analizi İçin Makine Öğrenimi Tabanlı İndirgenmiş Model Geliştirilmesi 
	

M A K A L E  B İ L G İ S İ   Ö Z E T  

Anahtar	Kelimeler:	
Cam Ergitme Fırınları 
Hesaplamalı Akışkanlar Dinamiği 
Makine Öğrenimi 
İndirgenmiş Model 
Otokodlayıcı 

Endüstriyel cam ergitme fırınlarında enerji tüketimi, cam kalitesi, sıcaklık dağılımının
belirlenmesini sağlayan hesaplamalı akışkanlar dinamiği (HAD) modelleri, fırınların tasarım
süreçlerinde de kritik öneme sahiptir. Ancak, cam ergitme prosesinin geniş zaman ve uzunluk
boyutları nedeniyle, bu modellerin yüksek hesaplama maliyeti günlük fırın operasyonlarında
kullanılmasını kısıtlamaktadır. Bu zorluğu aşabilmek için, bu çalışmada bir cam ergitme
fırınının cam banyosu HAD modelinden elde edilen sonuçlar kullanılarak, makine öğrenimi
tabanlı bir indirgenmiş model geliştirilmiştir. İndirgenmiş model, çekiş hızı, doğal gaz kaynaklı
ısı akısı ve elektrik potansiyel farkı sınır koşullarının değişimini içeren parametrik HAD verileri
ile oluşturulmuştur. Bu veri seti ile sıcaklık ve hız alanı tahminleri yapabilecek, konvolüsyonel
nöral ağ tabanlı bir otokodlayıcı eğitilmiştir. Sonrasında, otokodlayıcının boyutsal yükseltme
yapan bölümü, ek bir tam bağlantılı nöral ağ aracılığıyla, işletme parametreleri olan sınır
koşullarıyla ilişkilendirilmiştir. Bu iki ağın birleşimiyle indirgenmiş model elde edilmiştir.
İndirgenmiş modelin performansı, interpolasyon ve ekstrapolasyon testlerinde
değerlendirilmiş; test sonuçlarında %1'den az sapma, 0.99 R² skoru elde edilmiştir.
İnterpolasyon ve ekstrapolasyon testlerinde kaydedilen ortalama karesel hata ise, sırasıyla,
2.82E-06 ve 2.79E-05’tir. Ayrıca indirgenmiş model, yeni HAD çözümü tahmin süresini üç
mertebeye kadar hızlandırmıştır. Bu çalışma, makine öğrenimi tabanlı indirgenmiş modellerin
operasyonel analizler için etkili bir araç olduğunu kanıtlamakta ve cam ergitme fırınlarında
uygulanabilirliğini başarıyla göstermektedir. 
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NOMENCLATURE	
ARD% Average Relative Difference Percentage  𝑝 Pressure (Pa) 

CFD Computational Fluid Dynamics  𝑆௨ Joule Heating Source (W/m3) 

CNN Convolutional Neural Network  𝑇 Temperature (K) 

MAE Mean Absolute Error  𝑦 Ground-Truth Solution 

MSE Mean Squared Error  𝑦ത Mean of Ground-Truth Solution 

ML Machine Learning  𝑦పෝ ROM Prediction 

R2 Coefficient of Determination  𝜌 Density (kg/m3) 

ROM Reduced Order Model  𝜇 Dynamic Viscosity (Pa.s) 

SELU Scaled Exponential Linear Unit  𝜎 Electrical Conductivity (1/ohm.m) 

𝑐 Specific Heat (J/kg.K)  𝑣 Velocity (m/s) 

𝑘 Effective Thermal Conductivity (W/m.K)  𝜑 Electric Potential (V) 

𝑛 Number of Computational Cells    

INTRODUCTION	
	
Modern continuous glass furnaces are quite complex thermal-
fluid systems involving various physical phenomena, including 
batch-to-melt conversion, radiation transport in the molten 
glass, natural convection due to thermal expansion, joule 
heating with AC electrodes, turbulent combustion, and thermal 
coupling between the combustion atmosphere and glass bath 
(M. K. Choudhary et al., 2010; Cravero and Marsano, 2023; 
Faber et al., 2020; Pigeonneau and Flesselles, 2012; Pokorny et 
al., 2012, 2020; Viskanta, 1994). The glass furnaces have 
various types such as regenerative, recuperative, and  all-
electric furnaces (Atzori et al., 2023; Zier et al., 2021). 
Continuous regenerative furnaces, the most commonly used in 
the glass industry, are particularly efficient in conserving 
energy through heat recovery from exhaust gases. However, 
their high energy consumption contributes to CO₂ emissions, 
raising concerns about global warming and the need for 
sustainable energy solutions. Their design is critical, as it not 
only influences furnace efficiency but also impacts the 
greenhouse gas emissions by the furnace. By applying 
computational fluid dynamics (CFD), these furnaces can be 
analyzed in depth, allowing engineers to evaluate design and 
operational parameters and their environmental impact. 
 
Numerous studies focus on different aspects of glass melting 
and related process. For example, CFD studies have examined 
the electric field and heat source generated by the immersed 
electrodes in the glass melt and the use of bubbling to enhance 
mixing by momentum transfer (Daurer et al., 2022; Matsuno et 
al., 2008; Simcik and Ruzicka, 2015; Soubeih et al., 2015). 
Radiative heat transfer in the glass melt, due to its high 
temperature nature, and the heat transfer mechanism between 
the combustion space and the melt are also key areas of 
interest (M. K. Choudhary et al., 2018; Raič et al., 2021). These 
CFD simulations support the furnace design process and 
operation (Abbassi and Khoshmanesh, 2008; Han et al., 2022; 
Jebava and Němec, 2018; Li et al., 2020; Pigeonneau et al., 
2023). However, while CFD models provide a comprehensive 
understanding, multiphysics and multiscale features of glass 
melting process, the time-intensive nature of model 
preparation and solution poses challenges for real time 
decision-making during furnace operation (Gao et al., 2021). 
 
Recently, the concept of creating digital twins for glass furnaces 
has gained traction to enhance operational efficiency. Digital 
twins dynamically replicate the physical furnace in a virtual 
environment, potentially bridging the gap between theoretical 
modeling and real-time operational insights. One of the 

approaches creating digital twins is through physics-based 
models, which defines the system based on the physical laws. 
However, the use of physics-based models, such as CFD, 
encounters hurdles in the form of requisite expertise and 
substantial solution times. Another approach is data-driven 
methods. Today, large volumes of data containing valuable 
information about processes and operations can be gathered 
from industrial equipment. Using this data, along with a 
bidirectional flow of information between the physical and 
digital systems, it is possible to replicate the operation and 
forecast the condition of the physical system (Cassar et al., 
2018; Gao et al., 2021; Pazarlioglu et al., 2022; Taşkesen et al., 
2023). However, digitally replicating every system using field 
data is challenging due to raw data being noisy, often 
incomplete, and requiring significant pre-processing before 
being effectively used to construct data-driven models 
(Molinaro et al., 2021). 
 
Addressing these challenges, model order reduction emerges 
as a promising solution. By significantly reducing the 
dimensionality of data and the physical model while retaining 
essential information, models with reduced order offer a 
pathway to swiftly assess the effects of changing operational 
parameters on system properties. Techniques such as Galerkin 
projection of the Navier–Stokes equations onto an orthogonal 
basis of proper orthogonal decomposition (POD) modes 
provide a direct link to the governing equations. However, this 
approach is intrusive and relies on human expertise to develop 
models based on a working simulation (Brunton et al., 2020; 
Rowley and Dawson, 2017). Additionally, these models may 
perform poorly when dealing with advection-dominant 
problems or systems highly sensitive to minor state changes 
(Mücke et al., 2021). 
 
To better capture, replicate, or predict the key dynamic 
physical features, machine learning (ML) algorithms can be 
utilized (Molinaro et al., 2021). This approach combines data-
driven methods with physics-based methods. Obtaining a 
solution with the new inputs for the underlying governing 
equations is much faster compared to solving the system of 
equations. Specifically, this simulation-based digital twin 
method utilizes the simulation data, covering a broad range of 
operating conditions, to train a machine learning model, 
potentially eliminating the need for further simulations 
(Catsoulis et al., 2022). Meanwhile, with advancements in 
simulation capabilities and experimental techniques, fluid 
dynamics is evolving into a data-rich field, making it suitable for 
ML algorithms (Brunton et al., 2020). A significant part of the 
progress can also be attributed to the accessibility of open-
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source software platforms like PyTorch (Paszke et al., 2017) 
and Tensorflow (Abadi et al., 2015). These platforms have 
simplified the process of implementation and training, 
eliminating the need for specialized knowledge. Furthermore, 
the advancement of computation-accelerating hardware, such 
as GPUs, has made it feasible to train extremely large models 
(Mücke et al., 2021). However, the black-box nature of machine 
learning methods, which often lack physical interpretability, is 
making it difficult to analyze results based on the underlying 
physics of the problem. Enhancing the physical interpretability 
of these models and incorporating the problem's physics into 
them are still challenging tasks (Masoumi-Verki et al., 2022). 
 
The successful implementation of machine learning methods 
into physics-based models highlights the potential for 
integrating similar techniques in other engineering disciplines. 
Zhang et al. developed a surrogate model for structural seismic 
response prediction using a physics-guided convolutional 
neural network (Zhang et al., 2020). The developed deep 
neural network utilizes existing physics, such as the laws of 
dynamics, to mitigate overfitting and reduce the requirement 
for large training datasets. The effectiveness of the proposed 
method was demonstrated through both numerical and 
experimental data, with the authors suggesting that the 
proposed algorithm can be scaled to other structures and to 
other types of hazard events. Similarly, Cho et al. applied a 
comparable approach to predict lithium-ion battery lifetime 
(Cho et al., 2022). They developed a physics-informed neural 
network by incorporating the energy balance law into the loss 
function to predict battery temperature with limited data. They 
plan to expand the study to include actual electric-vehicle driving 
profiles. Pfaff et al. developed a mesh-based graph network to 
address physics simulations which takes the advantage of 
adaptive meshing (Pfaff et al., 2020). This technique overcomes 
the limitations of grid-based methods (such as convolutional 
neural networks) by learning predictions on existing 
computational meshes and it can be applied on a wide range of 
physical systems, from simulating cloth and structural 
mechanics to fluid dynamics. The predictions by the trained 
network showed that acceleration of 1-2 orders of magnitude, 
faster than the simulation it was trained on. 
 
Meanwhile, machine learning methods in the development of 
reduced order models (ROM) using CFD solutions have also 
gained popularity in recent years. Erichson et al. studied 
shallow decoders to reconstruct flow field from limited sensor 
data (Erichson et al., 2019). They achieved superior 
performance with fully connected shallow networks compared 
to conventional model approximation methods, such as proper 
orthogonal decomposition, while utilizing fewer sensors. He et 
al. proposed a ROM for fast prediction of natural convection of 
nanofluids in annulus pipes (He et al., 2022). They utilized U-
net structure of deep convolutional neural networks (CNNs). 
The Nearest Wall Signed Distance Function is combined with 
numerical data to train the network for better geometry 
adaptation. A two-dimensional annulus is utilized to 
investigate the feasibility, accuracy, and stability of the 
proposed method. They reported that predicting the velocity 
field is somewhat more challenging than predicting the 
temperature field. However, error analysis showed that the 
proposed network model still achieves satisfactory results, 
with an average error of less than 1%. Wiewel et al. studied the 
temporal progression of physical functions of fluid flow 
problems using deep learning (Wiewel et al., 2019). Their 
approach uses the combination of learned latent spaces with 

Long Short-Term Memory (LSTM) to predict the temporal 
changes in the field solutions. To show the capabilities of the 
method, they predicted the temporal solutions of a series of 
liquid simulations and a set of single-phase buoyancy 
simulations. Using the developed data-driven solver, they 
achieved 150 times faster simulation time than a standard 
pressure solver. Kim et al. utilized CNN networks to train on 
various transient CFD simulations enabling the generation of 
fluid simulations from the reduced parameters (Kim et al., 
2019). They ensured the condition of divergence-free is strictly 
met using stream functions. The resulting ROM facilitated the 
interpolation of CFD solutions and time advancement of an 
existing simulation. Authors also stated up to 700 times faster 
computation time compared to a CFD simulation. Thuerey et al. 
extended the application of ROM models to Reynolds-Averaged 
Navier-Stokes solutions of airfoil flows (Thuerey et al., 2020). 
They utilized U-net deep learning architecture using physics 
informed feature normalization to learn from velocity and 
pressure distribution, and to predict the field solution for 
unknown airfoil shapes. The paper also explored the impact of 
training data size and the number of weights on the model 
accuracy. In the context of glass furnace solutions, a similar 
application of machine learning methods has been investigated 
to enhance furnace operation support (Castillo and Kornish, 
2017). The authors reported 98% accuracy in generating flow 
field and post-processed outputs. This body of work 
collectively demonstrates the growing significance of 
leveraging machine learning techniques to advance the 
capabilities of CFD-based reduced order models across diverse 
engineering domains. 
 
This study focuses on leveraging machine learning 
methodologies, particularly autoencoders integrated with 
CNNs, applied to parametric CFD solution data. The primary 
objective is to represent the complex dynamics of the glass 
furnace CFD solution, consisting of 2D velocity and 
temperature fields, in lower dimensions within a latent space, 
and to predict new CFD solutions by using this reduced domain 
and up sampling of the decoder network. This approach 
enables rapid and accurate decision support for daily furnace 
operations using ROM-generated CFD solutions. The ROM 
developed using 2D solutions can serve as a baseline for 
developing a ROM for a full-scale furnace. The novelty of this 
study lies in the fact that, although ML-based ROMs have been 
applied to other thermal flow problems, to the authors’ 
knowledge, this is the first time such a model has been applied 
to a glass furnace with a fully detailed process explanation. 
Additionally, this study explains the operational benefits of the 
reduced order model with well-detailed examples. 
		
CFD	MODEL	
		
A CFD model of an end-fired glass melting furnace was 
constructed to generate training and test dataset for the 
machine learning-based ROM development process. Ansys 
Fluent 2022R2 is used to prepare the CFD model and to obtain 
parametric solutions. The results from this CFD model are used 
to train the ROM and evaluate the accuracy of the ROM-generated 
CFD predictions by comparing them with the ground-truth CFD 
solutions. For the sake of simplicity and computation time, a 2D 
representation of glass melting tank is generated. The 
schematic view of the furnace and the plane, which is the 
solution geometry, is shown in Figure 1. This simplified model 
focuses on the essential features of an industrial glass melting 
furnace, specifically targeting the middle plane of the melting 
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tank. Industrial type glass furnaces are typically more 
elongated in length and width compared to their height. 
Therefore, primary flow patterns occurs in the longitudinal 
direction and it is assumed that the problem can be studied as 
a long 2D cavity (Pigeonneau and Flesselles, 2012). The 2D 
model in this study includes raw batch melting interface and 
outlet section, where the molten glass proceeds to undergo 
further conditioning processes. 
 

 
Figure	 1.	 The schematic view of an end-fired glass melting 
furnace. The top part represents the combustion chamber, while 
the bottom part illustrates the glass melting tank. The 2D solution 
plane, which is the focus of the CFD study, is the middle plane of 
the melting tank along the flow direction. 
 
In glass melting tanks, due to temperature differences 
within the domain, natural convection is dominant, and it 
creates characteristic flow currents, which enhances the 
homogenization process. In this 2D CFD demonstration, 
we aim to create the flow patterns with the presence of 
temperature differences; 1 - underneath the batch blanket 
and open melt surface and 2 - top and bottom sections of 
the glass domain. With the presence of the unique flow 
patterns, 2D CFD solutions can provide valuable insights 
into the operational dynamics of the glass melting furnace. 
 
Governing	Equations	
 
The molten glass flow inside the furnace is mathematically 
described by the conservation Eq. 1-4 listed below (ANSYS 
Inc., 2022). Laminar flow is assumed due to the high viscosity 
of the melt under the operating conditions. Gravity source 
term must be added into the momentum equation to resolve 
buoyancy driven flow patterns (Schill and Chmelar, 2004). 
 
Due to the high-temperature nature of the glass melt, radiative 
heat transfer is dominant within the domain. However, if 
complete absorption of radiation over the depth of the glass 
melt is assumed, the Rosseland approximation method can be 
used (Lankhorst et al., 2013). In this study, the glass melt is 
assumed to be optically thick, allowing the use of the Rosseland 
approximation (M. K. Choudhary and Potter, 2005). Effective 
thermal conductivity (𝑘) is used in the energy equation, 
which combines the effects of conductive and radiative heat 
transfer rates. Furthermore, the energy conservation equation 
introduces a source term (𝑆௨) to specifically address the 
joule heating effect resulting from electric current flow within 
the melt (Eq. 5) (ANSYS Inc., 2022; Matsuno et al., 2008). 
 
To compute electric current, additional electric potential (𝜑) 
equation is solved, which describes potential field induced by 
electrodes immersed in the melt (M. Choudhary, 1985). The 

gradient of the electric potential yields the electrical current 
field. Natural Lorentz force is induced by the interaction 
between current density and magnetic flux in the vicinity of 
electrodes. This force acts only in the tiny area around the 
electrode tips and it is weaker compared to other forces such 
as gravitational and viscous forces. Therefore, it is ignored 
(Soubeih et al., 2015; Staněk, 1990). The product of the square 
of the electric current and electrical conductivity (𝜎) of the 
glass melt quantifies the joule heating output (Simons et al., 
2008). High temperature thermophysical properties of the 
glass melt are given in Table 1. 
 
∇. �⃗� ൌ 0  (1)

𝜌ሺ�⃗�. ∇ሻ�⃗� ൌ െ∇𝑝  𝜇∇ଶ�⃗�  𝜌�⃗�  (2)

𝜌𝑐ሺ�⃗�. ∇ሻ𝑇 ൌ 𝑘∇ଶ𝑇  𝑆௨  (3)

∇. ሺ𝜎∇𝜑ሻ ൌ 0  (4)

𝑆௨ ൌ 𝜎|∇𝜑|ଶ  (5)
 
Table	1.	Thermophysical properties of the glass melt.	
Density (kg/m3)

𝜌ሺ𝑇ሻ ൌ 2521 െ 0.138𝑇ሺ𝐾ሻ
Specific heat (J/kg.K)

1300
Effective thermal conductivity (W/m.K) 

𝑘 ൌ 556 െ 0.87𝑇ሺ𝐾ሻ  0.00036𝑇ሺ𝐾ሻଶ

Viscosity (Pa.s) (M. K. Choudhary et al., 2018) 

logሺ𝜇ሻ ൌ െ2.834 
4678.7

𝑇ሺ𝐾ሻ െ 504.6
Electrical conductivity (1/ohm.m) 

𝜎 ൌ െ45.4  0.04𝑇ሺ𝐾ሻ
 
Geometry	and	Mesh	
 
A two-dimensional geometry is prepared to demonstrate 
change of velocity and temperature fields with the 
operational parameters (Figure 2). This is the middle plane of 
a typical glass packaging furnace including a batch blanket 
interface, a couple of electrode rods immersed from the 
bottom, a weir for flow separation between melting and 
refining sections, and an outlet. Batch partially covers the 
melt surface. That predetermined section serves as the inlet 
face. The rest of the top surface is open to combustion 
atmosphere. Therefore, constant heat flux boundary 
condition is applied on the open section. Usually, electrodes 
are inserted from the bottom into the furnaces. For simplicity, 
two electrodes are positioned before the weir to generate 
joule heating with the potential differences applied on their 
corresponding surfaces. Weirs are usually placed to adjust 
flow currents between the melting and refining zones. 
Following the weir is a throat which glass melt leaves 
through. There are additional structures such as working end 
and forehearth for further conditioning of the glass melt 
before molding. However, these structures are beyond the 
scope of this study. Essential dimensions of the glass melting 
tank are listed in Table 2. The dimensions are selected based 
on a packaging glass furnace with a specific pull rate of 2.5 
t/day.m2. This value corresponds to 100 t/day of molten glass 
for a furnace with 60 m2 of melting area. Discretization 
uncertainty in the CFD model is evaluated following the 
method described by (Celik et al., 2008). The numerical 
uncertainty for the mesh in this study is calculated by 
comparing the converged temperature values at the outlet, 
resulting in an approximate relative error of 0.88% and an 
extrapolated relative error of 2.06%. 
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Table	2.	Dimensions of the glass melting tank	
Length 8000 mm
Glass depth (height) 1245 mm
Electrode diameter 100 mm
Electrode height 600 mm
Outlet depth 600 mm
Outlet opening 600 mm
Weir thickness 350 mm
Weir height 645 mm
 
Boundary	Conditions	and	Parameters	
 
Boundary conditions for CFD simulations are listed in 
Table 3. The inlet condition is constant velocity at the 
batch-melt interface derived from the furnace pull rate. It 
is assumed that batch is converted into glass melt at a 
constant temperature, and this constant temperature 
applied at the inlet boundary. A shear-free surface 
condition is applied at the rest of the top surface and heat 
flux boundary condition is applied to model the effect of 
the combustion atmosphere above. Heat loss at the walls 
of the tank is much smaller compared to the heat flux from 
the combustion space due to insulation layers installed on 
the furnace. Therefore, walls are assumed to be perfectly 
insulated in this CFD setup. The electric potential is kept at 
0 V at the first electrode, while a positive potential value is 
applied on the second to create a potential difference 
within the domain, influencing the electric current 
distribution and, consequently, the joule heating effect. 
Electric current flux is assigned as zero on the other 
surfaces of the melting tank. 
 
To generate a dataset for the training, validation and test 
of the ROM, three key parameters are selected. The first 
one is the inlet velocity, reflecting changes in the pull rate 
of the furnace. Second is the heat flux at the top surface. 
This parameter represents variations in fuel consumption 
within the combustion space. The third parameter is the 
potential difference between the electrodes capturing 
variations in the power output of the electrodes. The 
higher the electric potential between the electrodes, the 
more joule heating is generated. The values for these 
parameters are specified in Table 4. 
 
Through systematic changes in these parameters, a total of 
27 CFD solutions is obtained, constituting the training and 
validation dataset for the ROM development. Computation 
time of each case is approximately 30 minutes running on 
single central processing unit (CPU). The convergence of 
each solution is also determined based on whether the 
relative change in the temperature monitor at the outlet is 
below 1E-05, in addition to the convergence criteria of the 
residuals. 
 
This dataset will serve as the foundation for training the 
ROM, enabling efficient exploration of the complex 
interactions within the glass furnace under diverse 
operational conditions. Test dataset is generated using the 
same model with the same operational parameters. Two 
sets of data are generated. The first one, namely 
interpolation cases, consists of solutions of parameters 
within the specified operational range. The second set, 
extrapolation cases, involves solutions that at least one 
parameter is out of the specified operational range. The 
details about the interpolation and extrapolation cases are 
given in the results section. 

Table	3.	Boundary conditions applied in the CFD model.	
Mass‐Momentum	 Energy

Inlet 
3.01E-05 – 

3.68E-05 m/s 
1200 K 

Outlet 0 Pa 
1500 K

for reverse flow 
Top surface Free surface 61.0-73.2 kW/m2

Walls No slip 0 W/m2

 
Table	4.	Operational parameters and their values. By interchanging 
the values, 27 CFD solutions are generated to train the ROM.	

Inlet	velocity	
(m/s)	

Heat	flux		
(W/m2)	

Electric	 potential	
(V)	

1 3.01E-05 61000 75 
2 3.31E-05 67100 88 
3 3.68E-05 73200 100
 
REDUCED	ORDER	MODEL	
 
Convolutional Neural Networks (CNNs) have been selected as 
the foundation for developing the machine learning-based 
ROM due to their efficacy in reducing dimensionality with 
significantly fewer weights (network parameters) compared to 
fully-connected neural networks. This makes CNNs better 
suited for large-scale and high-dimensional problems (Gao et 
al., 2021). Another benefit of CNNs is their ability to leverage 
low-dimensional, high-level abstractions through convolution. 
The central concept of a CNN is to learn these representations 
and subsequently use a fully connected layer to map the 
relationship between the high-level representations and the 
output (Bhatnagar et al., 2019). The ROM leverages the inherent 
capabilities of CNNs to streamline the representation of complex 
field solutions. CFD solutions are sampled with a uniform grid 
over the solution domain, due to a major limitation of CNN. This 
limitation lies in the fact that traditional CNNs and their 
convolution operations were initially developed for processing 
images, which are sampled on a uniform grid (Chollet, 2021). 
However, problems with irregular domains are making the use 
of CNNs inapplicable and this constraint greatly restricts their 
use in general scientific problems. Rectangular shape of glass 
furnaces, especially the glass melting tanks, provides the 
opportunity to apply convolutional filters. 
 
A deep convolutional autoencoder network is constructed to 
systematically reduce the dimensionality of the field solution of 
u and v velocity components and temperature, condensing it 
into a latent space, and subsequently predicting the u and v 
velocity, and the temperature fields from this reduced 
representation. This bow-tie structure of autoencoder is 
comprised of two integral components: the encoder and the 
decoder. The encoder's role is to efficiently compress the full-sized 
field data into a smaller, yet information-rich representation 
contained within the latent space. During the encoding phase, the 
size of the image is systematically reduced by half using strided 
convolutions. This process enables the network to capture 
information that is progressively more general and conceptual 
across an expanding set of feature channels (Thuerey et al., 
2020). Conversely, the decoder is tasked with reconstructing a 
full-sized CFD-like data from the essential information stored 
in the latent space. The decoding phase of the network reverses 
the data reduction process, enhancing the image’s spatial detail 
through up sampling layers while simultaneously decreasing 
the quantity of feature channels. 
 
The latent space, essentially a low-dimensional representation 
of the CFD solution, captures the essential features required for 
accurate predictions. To establish the relationship between 
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changes in this low-dimensional representation and the 
corresponding alterations in boundary conditions (operational 
parameters), an auxiliary fully-connected neural network is 
introduced. This auxiliary network facilitates mapping of 

boundary conditions to the latent space, establishing the ROM's 
ability to predict the full flow field solution under varying 
operating conditions. Schematic representation of the 
described model is given in Figure 3.

 

 

 
Figure	2.	Geometry and mesh of the computational domain. The computational domain consists of glass melting tank including two 
electrodes, a weir, and a submerged outlet section. 
 

 
Figure	3.	The schematic representation of the autoencoder and generator. The autoencoder takes the structured CFD solution data as 
input and aims to reconstruct the full CFD solution through its encoder and decoder sections. The generator model uses an auxiliary 
network, which establishes connection between parameter space (boundary conditions – operational parameters) and the latent 
space, and pre-trained decoder network to predict the CFD solution corresponding to the given boundary conditions. 
 
Steps taken in this study to develop a successful machine 
learning-based ROM to predict CFD results using a 
parametric CFD solution dataset are given here: 
 
1) A CFD model of the process is created. 
2) Operational parameters and their range (boundary 

conditions for the CFD model) are defined. These 
parameters will be the inputs of the ROM. 

3) Parametric CFD solutions are obtained based on the 
defined parameter range. Optionally, a design of 
experiments (DOE) method may be employed in this 
step for an efficient dataset generation. 

4) From the parametric CFD solutions, a supervised training 
dataset is prepared. The CFD solutions are sampled to a 
128×32 grid for CNN compatibility. The dataset is then split 
into training and validation dataset to prevent overfitting. 

5) An autoencoder network is constructed using CNNs. 
This reconstructs CFD solutions by down sampling and 

up sampling the actual CFD data. This network is 
trained with the parametric CFD solution dataset. 

6) A generator network is built by linking an auxiliary 
neural network, which connects the operational 
parameters to the latent space, with the pre-trained 
decoder from the autoencoder. This network takes 
operational parameters as inputs and predicts the 
corresponding CFD solution. During training, only the 
auxiliary network’s weights are optimized. Once trained, 
this generator network acts as the ROM, predicting CFD 
solutions based on the input parameters. 

7) Performance of the generator network (the ROM) is 
evaluated through interpolation and extrapolation 
tests. New set of parameters are defined for testing, and 
corresponding CFD solutions are obtained. The ROM’s 
predictions for these new parameters are compared to 
the ground-truth CFD solutions. 
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Autoencoder	
 
The input to the autoencoder consists of a 128x32 matrix 
with 3 channels representing u-velocity, v-velocity, and 
temperature. The CFD solutions are sampled with 128 nodes 
in X-direction and 32 nodes in Y-direction. Then each field 
solution concatenated to form the channels of input matrix. 
Prior to entering the autoencoder, each field is normalized to 
have values between 0 and 1. The normalization process 
involves using the minimum and maximum values from the 
training dataset for each field. This ensures consistent 
normalization for both training and test datasets. 
 
A comprehensive study on latent space dimensions revealed 
that a latent space reduced to 128 dimensions is adequate for 
this specific problem. This dimensionality is found to be 
effective in extracting and retaining essential information 
about flow and temperature patterns from the CFD training 
data. The decoder, structured symmetrically to the encoder, 
takes an input of 128 variables and generates an output with 
the same dimensions (128x32 matrix with 3 channels). During 
the supervised training phase, the decoder is optimized to 
produce an output with minimal error compared to the input 
CFD data provided to the encoder. Mean squared error (MSE) 
loss function is used during training and mean absolute error 
(MAE) metric is also monitored. MSE and MAE is given by Eq. 6 
and 7, respectively, where 𝑛 is number of cells within the 
domain, 𝑦 is the ground-thruth solution, and 𝑦పෝ is the solution 
predicted by the ROM (Abadi et al., 2015). Training dataset is 
split into training and validation sets to prevent overfitting 
during training, by selecting 5 CFD solutions out of 27 solutions 
for validation. MSE value of 6.55E-07 and MAE value of 5.85E-
04 are obtained for the training data, while validation data 
resulted in an MSE of 2.10E-06 and MAE of 9.08E-04. After 
training, coefficient of determination (R2) and average relative 
difference percentage (ARD%) scores are calculated using Eq. 
8 and 9, respectively (Abooali and Khamehchi, 2019; 
Pedregosa et al., 2011). An R2 score of 0.99 and ARD% of 0.20% 
are obtained for the validation cases. The supervised training 
runtime was 45 minutes completing 20k epochs using V100 
graphics processing unit (GPU). The MSE changes over epochs 
for both training and validation data are given in Figure 4. 
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The layers of the autoencoder (encoder + decoder), with 
the input/output dimensions of each layer, are detailed in 
Table 5 and Table 6, respectively. 
 
Hyperparameter optimization is a crucial step, involving the 
selection of appropriate activation functions, adjustment of the 
number of convolution filters, and tuning the kernel size of the 
filters. Additionally, strides are employed to downsize the input 
of the layers, with a stride of 2 halving the dimension in both x 
and y directions, ultimately reducing the size to 2. The ROM's 
training and test evaluation are completed using the best 
resulting hyperparameters, as listed in Table 5 and Table 6. The 
resulting network’s encoder section has 7 CNN layers and a 
flattening layer to adjust the form of output matrix into a 128-
dimensional vector. Symmetrically, the decoder section starts 

with a reshaping layer to transform the input into the correct 
form and then, 7 CNN layers follow to increase the dimensions 
to the sampled-CFD data size. The resulting autoencoder 
network has 123,663 weights (network parameters) to be 
optimized during training process. 
 
Table	5.	Encoder network parameters. There are 7 convolutional neural 
network layers and 1 reshaping layer to flatten the output tensor.	
Input/Output 	 Kernel Strides

x y Channel Activation x/y x/y
128 32 3 SELU 4/4 1/1
128 32 64 SELU 4/4 2/2
64 16 32 SELU 3/3 2/2
32 8 32 SELU 2/2 2/2
16 4 32 SELU 2/2 2/1
8 4 32 SELU 2/2 2/1
4 4 32 SELU 2/2 2/2
2 2 32 SELU 2/2 -
- - 128 - - -

 
Table	 6.	 Decoder network parameters. The decoder network 
gradually increases the dimensions using transposed CNN 
networks, and finally reconstructs full-sized CFD data.	
Input/Output 	 Kernel Strides

x y Channel Activation x/y x/y
- - 128 - - -
2 2 32 SELU 2/2 2/2
4 4 32 SELU 2/2 2/1
8 4 32 SELU 2/2 2/1

16 4 32 SELU 2/2 2/2
32 8 32 SELU 3/3 2/2
64 16 32 SELU 4/4 2/2

128 32 64 Sigmoid 4/4 1/1
128 32 3 - - -

 
Generator	Network:	Auxiliary	Neural	Network	+	Decoder	
 
Following the training phase of the autoencoder, an 
auxiliary dense neural network has been introduced 
before the decoder network. Fully-connected, dense neural 
network was utilized to express the nonlinear relationship 
between the boundary conditions and the latent space 
(Figure 3), consequently, the CFD solution. The auxiliary 
network consists of two layers with 2240 weights to be 
trained. The network takes a set of boundary conditions, 
structured as a 3x1 vector, as input and outputs a latent 
space vector sized 128x1, (Table 7). As mentioned 
previously, the primary objective of this auxiliary network 
is to establish a connection between the boundary 
conditions (parameters) and the latent space. To achieve 
this, an additional supervised training step is implemented 
to optimize the weights of the auxiliary network. 
 
Table	7.	Parameters of the auxiliary dense neural network placed 
before the pre-trained decoder. The auxiliary network establishes 
connection between operational parameters (boundary conditions) 
and latent space of the autoencoder network, which is also the input of 
the decoder network. 
Layers Input Output	 Weights
1 3 16 48
2 16 128 2048

 
It is important to note that, during this training process, the 
weights of the decoder network are kept constant. This 
decision is made because the decoder has already 
undergone training and optimization to generate accurate 
CFD solution data from the latent space. Keeping the 
decoder weights fixed ensures that the learned 
representation of the latent space is preserved and 
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consistently utilized during the training of the auxiliary 
network. Training dataset is again split into training and 
validation datasets to avoid overfitting. MSE loss function is 
used during training and MAE is also monitored. MSE value 
of 1.94E-06 and MAE value of 9.96E-04 are achieved for the 
training data. MSE value of 4.45E-06 and MAE value of 
1.30E-03 are achieved for the validation data. R2 and ARD% 
scores of 0.99 and 0.27% are obtained for the validation 
dataset, respectively. Runtime of the supervised training of 
the auxiliary + decoder network was 31 minutes, 
completing 30k epochs during that time, using V100 GPU. 
The change of MSE loss over epochs is given in Figure 5. 
 

 
Figure	4.	Change of Mean Squared Error (MSE) over epochs for 
training and validation dataset during supervised training of the 
autoencoder network. Y-axis in logarithmic scale.	
 

 
Figure	5.	Change of Mean Squared Error (MSE) over epochs for training 
and validation dataset during supervised training of the generator: 
auxiliary neural network + decoder network. Y-axis in logarithmic scale. 
 
RESULTS	
 
The ROM's performance is rigorously assessed through both 
interpolation and extrapolation evaluations using an 
additional CFD dataset. Both interpolation and 
extrapolation cases are predicted less than a second using 
the generator (auxiliary + decoder) network, running on a 
V100 GPU. In the interpolation test phase, seven cases with 
randomly generated parameters are selected within the 
parameter range utilized during the training phase. These 
cases, detailed in Table 8, are aimed at showcasing the 
ROM's ability to consistently produce continuous and 
reliable results across various operational scenarios. This 
comprehensive demonstration illustrates the ROM's 
potential as a robust tool for supporting furnace operation, 

highlighting its capability to generate meaningful outputs 
within the specified parameter range. 
 
For the extrapolation test, eight distinct cases, as listed in 
Table 9, are considered. The first two cases involve changes 
in potential difference beyond the training range, while 
keeping other parameters at the midpoint of their intervals. 
The subsequent two cases simulate variations in heat flux 
parameters, one below and one above the trained range. 
Case #5 and Case #6 represent changes in the inlet velocity 
outside of the training range. Finally, Case #7 and Case #8 
examine scenarios where all parameters are set at their 
lowest and highest values, respectively. This selection of 
parameters for the extrapolation test simulates the ROM's 
performance when the furnace is operated outside the 
specified range – a scenario that may occur during actual 
operations due to various reasons. 
 
Solution data predicted by the ROM for interpolation and 
extrapolation cases is compared with ground-truth CFD 
solutions. The error between the predicted and actual solutions 
is evaluated using several metrics and they are presented in 
Table 10. As expected, performance of the ROM in the 
extrapolation test, where the inputs are out of the specified 
operational range, is lower, than in the interpolation test. This 
is reflected in the increase in MSE and MAE values. While R2 
score change is negligible, the rise in ARD% score also indicates 
greater error in the extrapolation cases. 
 
Table	8.	Operational parameters of the interpolation cases to 
analyze interpolation performance of the ROM.	
Case	No. Inlet	velocity

(m/s)	
Heat	flux	
(W/m2)	

Electric
potential	(V)	

1 3.08E-05 62140 80
2 3.08E-05 72059 93
3 3.08E-05 72059 80
4 3.62E-05 62140 93
5 3.62E-05 62140 80
6 3.62E-05 72059 93
7 3.62E-05 72059 80

 
Table	9.	Operational parameters of extrapolation cases to evaluate 
the performance of the ROM outside the defined operational range.	
Case	No. Inlet	velocity

(m/s)	
Heat	flux	
(W/m2)	

Electric
potential	(V)	

1 3.35E-05 67100 70
2 3.35E-05 67100 105
3 3.35E-05 59000 88
4 3.35E-05 75000 88
5 2.90E-05 67100 88
6 3.80E-05 67100 88
7 2.90E-05 59000 70
8 3.80E-05 75000 105

 
Table	10.	Error metrics of the solutions predicted by the ROM for 
the interpolation and extrapolation test parameters.	
Metrics Interpolation	Test	 Extrapolation	Test
MSE 2.82E-06 2.79E-05 
MAE 1.24E-03 2.90E-03 
R2 0.99 0.99 
ARD% 0.21% 3.59% 

 
Interpolation	Test	Results	
 
The results from the interpolation test dataset are summarized 
in Table 11. MAE and MSE metrics are computed for each test 
case. Notably, the average MAE value across all seven cases is 
consistently below 0.01 for all variables. Figure 6 shows the 
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histogram of the relative difference between the ROM’s 
interpolation predictions and ground-truth CFD solutions. The 
error distribution approximates a normal distribution 
centered around 0.0, with the majority of errors falling below 
0.005. The maximum error is observed in Case #2, where the 
heat flux is close to the highest value in the parameter range, 
and the potential difference above the midpoint value. 
Conversely, Case #7 exhibits the lowest prediction error 
among all test cases. Electric potential seems to influence this 
outcome; as higher values corresponds to larger prediction 
errors. The comparison between Case #4 and #5 confirms this 
conclusion. In general, a comparative analysis of prediction 
error of the cases indicates that cases with higher inlet velocity 
tend to have lower error. The MAE comparison between Case 
#2 and #6, and Case #3 and #7 supports this outcome. 
 
Ground truth, generated field data, and error contours are 
presented in Figure 8 for u-velocity and temperature fields, 
focusing on Case #2 due to its larger error. 
 
A detailed examination of the u-velocity field reveals 
distributed errors across the domain. However, high 
concentration of maximum and minimum errors occurs in 
regions associated with strong forward and backward flows – 
specifically, before the weir and beneath the inlet boundary 
condition, respectively. These types of errors are also reported 
by other studies, which link them to higher gradients in those 
regions (He et al., 2022; Thuerey et al., 2020). Despite these 
localized errors, the overall velocity patterns are accurately 
predicted, and contour lines exhibit a smooth profile. This 
suggests that the gradient of the predicted field can be 
effectively utilized for post-processing applications. 
 
Similarly, a comparison is conducted for the temperature field, 
again focusing on Case #2. The generated temperature field 
closely resembles the ground-truth solution, albeit with more 
discontinuous behavior in the contour lines compared to the U-
velocity field. However, peak error values for temperature are 
lower than those observed in the U-velocity field, and errors 
are more uniformly distributed across the domain. 
	
Extrapolation	Test	Results	
 
MAE and MSE values for all eight extrapolation test cases are 
compiled in Table 12. The error histogram for extrapolation 
cases is shown in Figure 7. While the error between the 
prediction and the ground-truth is still centered around 0.0, it 
is skewed and displays a wider range of both negative and 
positive errors. Case #8, characterized by the highest 
parameter values, exhibits the highest error for all field 
variables. In contrast, Case #7, with all parameters set to their 
minimum values, displays relatively lower error values. 
However, Case #2 stands out with the second-highest error in 
Mean Absolute Error (MAE), despite having only one extreme 
parameter value. When Case #7 and #8 are excluded, Case #1 
and #2 exhibit the maximum error, with minimum and 
maximum electric potential as the input parameters, 
respectively. Changes in electric potential beyond the defined 
operational range notably increase the prediction error of the 
model. The ground truth field data, ROM-predicted field data, 
and error contours for Case #2 are presented in Figure 9 for u-
velocity and temperature fields. 
 
Comparing the generated u-velocity field with the ground-
truth solution in Figure 9 reveals less similarity than observed 

in the interpolation test. False predictions are evident at the 
core of the forward and backward flows, yet the overall error 
for this case remains under 1% (MAE). The general flow 
patterns are generated without major issues, showcasing the 
model's ability to extrapolate beyond the trained parameter 
range. Stronger discontinuous behavior is observed in the 
contour lines for the generated temperature field compared to 
the results obtained in the interpolation test. Maximum error 
occurs at the bottom of the weir, where the temperature is over 
predicted, while temperature values in the vicinity of the outlet 
section are under predicted. Once again, the overall calculated 
error remains below 1% (MAE) for the extrapolation Case #2, 
indicating that the model maintains reasonable accuracy even 
in extrapolation scenarios. 
 
Error distributions given in Figure 8 and Figure 9 show larger 
localized error for the velocity field than for the temperature 
field. However, MAE and MSE values for the velocity field are 
lower compared to those for the temperature field, as 
presented in Table 11 and Table 12. This finding also 
contradicts another result reported in the literature (He et al., 
2022). As noted in the introduction section, machine learning 
methods, such as CNN, often function as black boxes, making it 
difficult to interpret results based on the underlying physics of 
the problem. Enhancing the physical interpretability of these 
models and incorporating the problem’s physics into them 
remain a significant challenge (Masoumi-Verki et al., 2022). 
 

 
Figure	6.	The histogram of differences between the normalized 
ground-truth interpolation CFD data and the predicted solution 
data displays a normal distribution.	
 

 
Figure	7. The histogram of differences between the normalized 
ground-truth extrapolation CFD data and the predicted solution 
data shows a skewed distribution. Larger negative and positive 
error values are present compared to those observed in 
interpolation test 
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Table	11.	MAE and MSE obtained for each interpolation case and variable.	
Interpolation	
Case	No.	

U‐velocity	 V‐velocity Temperature
MAE MSE MAE MSE MAE MSE

1 1.21E-03 2.29E-06 7.63E-04 1.01E-06 1.94E-03 5.73E-06
2 1.96E-03 6.63E-06 9.84E-04 2.22E-06 1.93E-03 6.27E-06
3 1.12E-03 2.00E-06 7.90E-04 1.14E-06 1.49E-03 3.47E-06
4 1.33E-03 2.91E-06 8.55E-04 1.41E-06 1.35E-03 2.73E-06
5 1.19E-03 2.22E-06 7.25E-04 9.17E-07 1.82E-03 5.26E-06
6 1.32E-03 3.16E-06 8.20E-04 1.21E-06 1.58E-03 3.99E-06
7 9.83E-04 1.51E-06 6.75E-04 8.09E-07 1.22E-03 2.33E-06

Average 1.30E-03 2.96E-06 8.02E-04 1.25E-06 1.62E-03 4.25E-06
Deviation 2.02E-04 1.10E-06 7.25E-05 3.26E-07 2.37E-04 1.28E-06

 
Table	12.	MAE and MSE obtained for each extrapolation case and variable.	

Extrapolation	
Case	No.	

U‐velocity	 V‐velocity Temperature
MAE MSE MAE MSE MAE MSE

1 1.70E-03 4.63E-06 9.58E-04 1.80E-06 3.99E-03 2.44E-05
2 7.17E-03 1.06E-04 2.76E-03 3.37E-05 5.55E-03 4.99E-05
3 1.45E-03 3.28E-06 9.83E-04 1.90E-06 2.46E-03 1.35E-05
4 1.42E-03 3.62E-06 8.93E-04 1.70E-06 1.56E-03 7.18E-06
5 1.08E-03 2.21E-06 7.91E-04 1.33E-06 1.41E-03 7.08E-06
6 1.16E-03 2.36E-06 8.19E-04 1.72E-06 1.90E-03 9.52E-06
7 3.51E-03 2.05E-05 1.79E-03 6.32E-06 4.68E-03 3.82E-05
8 8.93E-03 1.52E-04 3.60E-03 5.95E-05 9.07E-03 1.17E-04

Average 3.30E-03 3.69E-05 1.57E-03 1.35E-05 3.83E-03 3.34E-05
Deviation 2.43E-03 4.62E-05 8.57E-04 1.66E-05 1.99E-03 2.63E-05

 

 
Figure	8.	U-velocity and temperature contours for the interpolation Case #2 (top: CFD, middle: ROM, bottom: relative error) 

 

 
Figure	9.	U-velocity and temperature contours for the extrapolation Case #2 (top: CFD, middle: ROM, bottom: relative error)	
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Using	ROM	for	the	Operational	Analysis	
 
The positive outcomes obtained from the interpolation and 
extrapolation test cases open the way for the effective use of 
the ROM in CFD-assisted operational analysis. Field solutions 
for velocity and temperature provide numerous opportunities 
to investigate the condition of the furnace and gain insights. 
 
Similar to parametric CFD studies, a ROM, generated using 
parametric CFD solutions, can be utilized during furnace 
operations to address the physical phenomena encountered. 
The temperature predictions by the ROM, as shown in Figure 
10, serve as an example to demonstrate this capability. 
 
Thermocouples (T/C) positioned at the bottom of the tank 
are used to monitor temperature of the melt. In Figure 10, 
we see temperature predictions for a possible thermocouple 
location, which is at the bottom and where x equals to 7 m. 
The developed ROM can be used to predict temperature at 
that location and map the change of temperature within the 
specified operating range. Both an increase in the potential 
difference between the electrodes (x-axis) and an increase 
in the heat flux from the combustion space (y-axis) result in 
a higher temperature at the T/C location. However, the 
influence of the potential difference on the temperature is 
greater than that of the heat flux. 
 
This kind of process requires several CFD solutions to obtain 
a result with satisfactory resolution. The developed ROM 
enables each CFD prediction to be made in under a second, 
thereby providing an opportunity for real-time support 
during furnace operation. 
 
The results of another investigation conducted for the 
furnace operation using the developed ROM are presented 
in Figure 11 and Figure 12. In this scenario, the effects of an 
increase in power input from the combustion space and the 
electrodes on the depth-wise velocity and temperature 
profiles at the middle of the melting tank are examined. 
 
Sequentially, the heat flux (denoted as heat flux+), the 
potential difference (denoted as potential+) and finally both 
of them are increased by 5%. The resulting profiles are 
plotted against the base-case to observe the influence of 
each power input and their combined effect. The resulting 
profiles are derived from the field solutions predicted by the 
ROM using the corresponding boundary conditions. 
 

 
Figure	10.	Continuous temperature predictions, generated by the ROM 
at the T/C location varying with changes in heat flux and potential 
difference. This demonstrates the on-demand information extraction 
capability within the operating range. 

In Figure 11, a significant increase in the magnitude of backward 
and forward flow components is observed in the cases of increased 
potential difference, compared to a sole boost in heat flux. 
 
Similar observation are made in Figure 12, which represents 
the depth-wise temperature profiles. The temperature 
difference is more apparent at the bottom section compared 
to the section near the glass surface. The overall increase in 
temperature leads to lower viscosity, which can be regarded 
as the root cause of the faster glass velocities. 
 
These operational analysis examples demonstrate the post-
processing capability of the machine learning-based ROMs. 
Thanks to the unprecedented interpolation feature of the 
ROMs, it is possible to extract more information than with 
conventional CFD post-processing. 
 
CONCLUSION	
 
This study presents a new method for integrating 
Computational Fluid Dynamics (CFD) models into the routine 
operations of industrial glass melting furnaces. The research 
achieves this through an autoencoder-based ROM with CNNs 
trained on parametric CFD data. A 2D CFD model is developed 
as a foundation for a machine-learning-based reduced-order 
model (ROM), demonstrating the potential of machine learning 
(ML) techniques to create efficient ROMs. Although glass 
melting in a furnace is inherently a 3D process, this study 
simplifies the analysis by using a 2D approach. Treating the 3D 
process as a series of 2D snapshots, this methodology can be 
extended to a 3D study using similar sampling techniques and 
convolutional neural networks, though a 3D study would 
involve a larger dataset and more network parameters to train. 
The developed generator network, i.e., the ROM, accurately 
predicts temperature and velocity fields, achieving MAE under 
1% for validation, interpolation, and extrapolation tests compared 
to the ground-truth CFD solutions. Mean squared error is 
1.94E-06 for training, 4.45E-06 for validation, 2.82E-06 for 
interpolation, and 2.79E-05 for extrapolation cases. In addition, 
R2 score of 0.99 is achieved during training, validation and tests 
for the generator network. These results indicate ROM’s 
potential as an accurate analysis tool for daily furnace 
operation, providing insights into key operational parameters. 
Furthermore, the ROM demonstrates significant improvements 
in solution time, enabling almost instantaneous solutions for 
temperature and velocity fields, which enhances its practical 
usefulness in real-time decision-making. Its robustness has 
been presented through interpolation and extrapolation tests, 
demonstrating consistent and reliable results across various 
operational scenarios.  
 
This application of ML-based ROMs in glass furnace operations 
represents a substantial step forward in efficiency and 
optimization. However, a ROM based on CFD data is inherently 
constrained to the range of parameters it was trained on. 
Expanding the ROM to accommodate new parameters requires 
additional CFD data generation and model retraining. 
Additionally, while the ROM performs well within its trained 
parameter space, extrapolation beyond this range can lead to 
decreased accuracy, as demonstrated in this study. This 
limitation underscores the importance of careful ROM training to 
match the intended operational range. Overall, the integration of 
ML-based ROMs within industrial glass furnace operations 
showcases significant potential for broader applications in 
computational modeling and decision-support systems in 
various industrial contexts. 
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Figure	11.	ROM-generated depth-wise u-velocity profiles at the 
middle of the melting tank. Velocity profiles change with the 
varying combustion space and electrical power input. 
 

 
Figure	12.	ROM-generated depth-wise temperature profiles at the middle 
of the melting tank, showing the effect of the varying energy input.	
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