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Abstract 
 
This paper proposes a deep recurrent neural network (DRNN) approach to model the one-hour-ahead wind 
speed forecasting by using various meteorological sensory data from the North Wyke farm platform 
(NWFP). To refine model input, mutual information analysis is applied to eliminate irrelevant sensory data. 
The DRNN architecture employs three recurrent layers Long-Short Term Memory (LSTM), Gated 
Recurrent Unit (GRU), and simple Recurrent Neural Network (RNN) to capture temporal relationships. 
The proposed networks are tested using real-life, one-year data from the NWFP. The results showed a 
strong correlation between the actual and predicted wind speed for LSTM, GRU, and RNN layers-based 
DRNN, however, simple RNN slightly outperformed the other two recurrent layers. The distribution of the 
network errors over the year is also analyzed. Although the observed meteorological data between the years 
was from different distributions, the proposed network generalized well even though these data were altered 
due to global warming.  
 

Keywords: Wind speed prediction, Deep recurrent neural network, Intelligent systems, Time-series 
prediction, Feature selection 

 
Derin Tekrarlayan Sinir Ağları ve Çiftlik Platformu Özellikleri Kullanılarak Bir 

Saat Önceden Rüzgâr Hızı Tahmini 
 
Öz 
 
Bu makale, Kuzey Wyke çiftliği platformundan (NWFP) çeşitli meteorolojik veriler kullanarak bir saat 
öncesine yönelik rüzgâr hızı tahmini modellemek için derin tekrarlı sinir ağı (DRNN) yaklaşımını 
önermektedir. Model girişini iyileştirmek için karşılıklı bilgi analizi kullanılarak ilgisi olmayan veriler 
elenmiştir. DRNN mimarisi, zamansal ilişkileri yakalamak üzere üç tekrarlı katmanı içerir: Uzun Kısa 
Vadeli Bellek (LSTM), Kapılı Tekrarlı Birim (GRU) ve basit Tekrarlı Sinir Ağı (RNN). Önerilen ağlar, 
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NWFP'den gerçek zamanlı, bir yıllık veri kullanılarak test edilmiştir. Sonuçlar, LSTM, GRU ve basit RNN 
katmanları temelli DRNN için gerçek ve tahmin edilen rüzgâr hızı arasında güçlü bir korelasyon olduğunu 
göstermiştir; ancak basit RNN, diğer iki tekrarlı katmandan biraz daha iyi performans sergilemiştir. Ayrıca, 
ağ hatalarının yıl boyunca dağılımı analiz edilmiştir. Gözlemlenen meteorolojik verilerin yıllar arasında 
farklı dağılımlardan olmasına rağmen, önerilen ağ, bu veriler küresel ısınma nedeniyle değişmiş olsa bile 
iyi genelleme yapmıştır. 
 
Anahtar Kelimeler:  Rüzgâr hızı tahmini, Derin tekrarlayan sinir ağı, Akıllı sistemler, Zaman serisi 

tahmini, Özellik seçimi 
 
1. INTRODUCTION 
 
Analysis of meteorological variables and weather 
forecasts is important for clean and renewable 
energy sources. Wind energy is a significant part of 
renewable energy and the most promising one 
among renewable energy sources globally [1]. The 
prediction of wind speed is an essential feature in 
terms of wind power generation, agricultural areas, 
ship route planning, etc. In addition, predicting 
wind speed is a very important parameter for 
estimating the energy expected to be produced from 
wind turbines in the short and long terms. Based on 
these estimation values, the profitability of power 
generation plants can also be calculated. Moreover, 
the agriculture farm platform can be organized 
according to whether it is profitable to invest in 
wind energy in a specific region. The accuracy of 
short-and long-term wind power generation is also 
of great importance in balancing electricity 
generation using different resources [2, 3]. 
 
Continuous and strong wind speeds are required for 
the uninterrupted and high-quality electricity 
generation of wind turbines. However, the chaotic 
nature and dynamic uncertainty of the wind pose a 
major obstacle to wind speed prediction. Despite 
this chaotic structure and uncertainty, there are 
many methods developed for making predictions in 
the literature. Wind speed prediction tools are 
widely categorized into the physics-based model, 
the statistical-based model, and the hybrid 
prediction model [4]. The physical-based models 
require a firm theoretical background, many 
equations, and a high computational cost. Hence, 
the physical-based models are widely used in 
practice [5]. On the other hand, the statistical-based 
models perform better than the physical-based 
models in wind speed forecasting [6]. However, 

researchers develop statistical-based models for 
evaluating time series to minimize the error in 
estimation methods, and they also work on artificial 
intelligence (AI) methods for prediction. The hybrid 
prediction model is a combination of both adaptive 
structure and AI methods. 
 
Hybrid methods achieve better accuracy and better 
wind prediction results compared to other 
individual models [7]. AI approaches are the most 
commonly used methods to predict wind speed 
based on various data in the literature [8, 9]. The 
main reason is that these methods can adapt 
themselves rapidly and accurately to changing 
trends within the datasets. In addition, AI 
approaches obtain high precision and better 
performance output measurements. They also 
produce algorithms based on input data rather than 
using a generalized model. Thus, to achieve better 
accuracy and good wind prediction results, AI 
models should be considered for such analysis. The 
artificial neural network (ANN) [10], support vector 
machines (SVM) [11], fuzzy logic [12], the 
classification algorithms of random forest (RF) 
[13], extreme learning machine (ELM) [14], and 
deep learning architectures of long-short term 
memory networks (LSTM) [15] are commonly used 
AI approaches in the literature. Recently, due to the 
uncertainty and complex structure of the wind 
speed, deep learning has gained more interest in 
wind speed prediction due to its imposing features, 
such as handling big data, solving complex systems, 
learning the feature hierarchy on its own, avoiding 
data overfitting problems, and obtaining successful 
results from unstructured data, etc. On the other 
hand, it is most suitable for real-world applications. 
The convolutional neural network (CNN), deep 
recurrent neural network (DRNN), deep belief 
network (DBF), gated recurrent unit neural 
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networks (GRUNNs), ELM, and LSTM are widely 
used deep learning algorithms rather than the 
traditional AI approaches [16]. 
 
This paper proposes the wind speed prediction 
model based on a DRNN approach for the first time 
regarding meteorological input variables from 
dedicated meteorological sensors from NWFP. The 
proposed network has been constituted with a five-
layered deep architecture that contains 
convolutional, recurrent, and fully connected dense 
layers. This type of network is capable of learning 
the temporal and sequential relationship between 
the inputs and outputs of the system. Thus, it is 
capable of predicting future expected wind features 
in advance for the corresponding regions. Global 
warming has changed the weather over the past 
years; hence, all other meteorological features are 
also believed to have changed, such as precipitation, 
temperature, humidity, and so on. Therefore, the 
proposed network does not only receive the most 
relevant features, that is, the wind features. All other 
meteorological features were also presented to the 
network because there was always a causal 
relationship between these features. The main 
contributions of this study lie in the following 
aspects:  
 
1. Relevancy analysis of the sensor readings and 

the derived features are analyzed and their 
contributions to the wind speed are also 
investigated. 

2. A DRNN approach is proposed, considering 
convolutional, recurrent, and fully connected 
dense layers for the wind speed prediction of the 
collected data from NWFP. 

3. Different recurrent layers such as LSTM, GRU, 
and Simple RNN are used on the DRNN’s 
architecture, and their performances are 
compared. 

 
The remainder of this paper is organized as follows: 
Section 2 presents the other studies about wind 
speed predictions; Section 3 provides the proposed 
prediction model and experimental methods; 
Section 4 presents experimental results and 
discussions; and finally, some conclusions are 
drawn in Section 5. 

2. RELATED STUDIES 
 
A wind power short-term prediction based on 
LSTM and discrete wavelet transform (WT) was 
proposed in [17]. The results showed that the 
prediction accuracy had been improved by the 
proposed method. In [18] a novel wind speed 
multistep prediction model was proposed by 
combining the variational mode decomposition 
(VMD), singular spectrum analysis (SSA), LSTM, 
and ELM. The results showed that the proposed 
model has the best multi-step prediction 
performance. In addition, it was also more effective 
and robust in extracting trend information. A 
GRUNN-based wind speed error correction model 
for short-term wind power forecasting was 
presented in [19]. The feature of wind speed was 
analyzed, and the standard deviation of wind speed 
error was also extracted as weights for the 
numerical weather prediction (NWP) wind speed 
time series. 
 
The proposed prediction model was compared with 
existing models such as SVM and ANN. The results 
show that the proposed model gives better 
performance results than the existing models. In 
addition, the GRUNNs-based data-driven approach 
was also proposed in [20] for wind power 
forecasting. The proposed model was compared and 
contrasted with the LSTM algorithm. The results 
show that the GRUNNs outperformed the LSTM in 
terms of a faster training process and less sensitivity 
to noise. In [21] a novel hybrid forecasting system 
was proposed that is formed by effective data 
decomposition techniques, DRNN, and error 
decomposition correction methods. Four different 
wind farm datasets in China were performed and 
verified by the proposed model. The results showed 
that the proposed model obtained a highly accurate 
wind speed prediction compared to simple and 
traditional models. 
 
In [22] a new hybrid deep learning model was also 
proposed for short-term wind speed forecasting. An 
improved complementary ensemble empirical 
mode decomposition with adaptive noise 
(ICEEMDAN) and autoregressive integrated 
moving average (ARIMA) are combined with the 
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ELM technique. The experiments focused on pre-
processing and post-processing time series data. In 
[23] a hybrid model based on the crow search 
algorithm (CSA), WT, feature selection (FS) based 
on entropy, mutual information (MI), and deep 
learning time series prediction based on LSTM is 
proposed for short-term wind speed forecasting. 
The results showed that the proposed method can 
outperform the most basic existing wind speed 
forecasting methods. A deep learning-based 
approach was proposed in [16] to characterize the 
probability density function (PDF) of the wind for 
short-term wind speed forecasting. The proposed 
model considers CNN and GRU to learn features of 
wind speed time series. Two actual data sets are 
used from England and Iran in the analysis. More 
accurate results have been obtained compared to 
other deep mixture approaches. 
 
In [24] ELM and LSTM methods have been used to 
obtain VMD and SSA to complete the prediction.  
On the other hand, two hybrid models were 
proposed in [25] where one was formed by the 
LSTM and DNN and the other was combined with 
GRU networks and DNN. Moreover, three hybrid 
models were also proposed in [26] to improve the 
forecasting accuracy for wind speed. The WT is 
first mapped into the original wind speed history 
into several subseries. Then, for the low-frequency 
sub-series, the RNNs were used to extract the 
deeper features and involved in suitable machine 
learning methods for predicting, while others were 
still predicted by the normal methods. The results 
show that deep learning models outperform 
traditional approaches. 
 

3. METHODOLOGY 
 
3.1. Datasets 
 
The NWFP is a globally unique but national UK 
real-world farming platform established in 2010 
[27]. The NWFP is located at North Wyke in the 
southwest of England to understand grassland 
management at the systems level [28]. The NWFP 

real-time data, as well as the experimental work, are 
available to the public. In other words, the data 
provided by the NWFP is open-access and free to 
download. More information about the NWFP can 
be found in [27,28]. The experiment data set was 
used from August 12, 2017, to August 24, 2020. 
There are 106,944 data points from 1,114 days of 
data obtained on the farm platform in the given 
specified period. The dedicated meteorological 
equipment and sensors were installed to record six 
different meteorological features as precipitation 
(mm), air temperature (◦C), relative humidity (%), 
wind speed (m/s), wind direction (◦) and solar 
radiation (W/m2) at 15-min intervals. p, at, rh, ws, 
wd and sr are the abbreviations used for the 
precipitation, air temperature, relative humidity, 
wind speed, wind direction, and solar radiation, 
respectively, in this paper. 
 
3.2. Feature Engineering 
 
To produce more distinguishability between the 
sensory data which are received at different dates 
and times, several input features are generated. First 
of all, the wind direction received from the sensor is 
in the range of [0◦,360◦]. Wind direction is cyclical 
data so this can cause a problem while training the 
network. Any two values close to 0◦ and 360◦ must 
be close to each other as well. Otherwise, the large 
difference makes a large network’s update by 
gradient descent algorithm during training even if 
these two degrees are close. Due to this reason, 
wind direction and speed are transformed to the 
wind vector (wx, wy) as given in Equations (1) and 
(2). Here, wd data has been logged in the unit of 
degree so that by multiplying this value with π/180 
that is simply converted to radian. 
 

𝑤𝑥 ൌ 𝑤𝑠 ∗ 𝑐𝑜𝑠 ቀ
௪ௗ∗గ

ଵ଼଴
ቁ (1) 

 

𝑤𝑦 ൌ 𝑤𝑠 ∗ 𝑠𝑖𝑛 ቀ
௪ௗ∗గ

ଵ଼଴
ቁ (2) 

 
Each sensory data is received at a specific date and 
time, therefore, date and time information can also 
be added to the network training alongside the 
meteorological sensory data. In this way, the wind 
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data could be associated with the time of the wind 
data that occurred. Thus, this association provides 
additional information to make the wind data more 
distinguishable along the year by the neural 
network. However, timestamped data (e.g. minutes, 
hours, seconds, and so on) are all cyclical and repeat 
in a certain period. In cyclical data, the quantitative 
between each consecutive data is small depending 
on the step size, however, this is not true between 
the first and last values of the cyclical data. To 
overcome this type of data, time-specific 
information is transformed into two-dimensional 
using cosine and sine functions. To do this, the date 
and time data must be transformed to the total 
second first. Therefore, each timestamp is 
represented as the number no seconds that have 
been passed since the 1st of January, 1970, i.e. the 
beginning of Unix time. Afterwards, two-
dimensional (2D) features are generated by using 
the date and time information of each perceived 
sensory reading. Two different 2D features, these 
are time of day (ds, dc) and time of year (ys, yc), are 
generated as given in Equations (3) to (6), 
 

𝑑𝑠 ൌ 𝑠𝑖𝑛 ቀ
௧∗ଶ∗గ

ௗ
ቁ (3) 

 

𝑑𝑐 ൌ 𝑐𝑜𝑠 ቀ
௧∗ଶ∗గ

ௗ
ቁ (4) 

 

𝑦𝑠 ൌ 𝑠𝑖𝑛 ቀ
௧∗ଶ∗గ

௬
ቁ (5) 

 

𝑦𝑐 ൌ 𝑐𝑜𝑠 ቀ
௧∗ଶ∗గ

௬
ቁ (6) 

 
where d = 24×60×60 and y = 365.2425×d, these are 
total seconds in a day and a year respectively and t 
indicates Unix time. 
 
3.3. Feature Selection 
 
After having obtained newly generated features 
(these are wx, wy, ds, dc, ys and yc) alongside the 
available sensory data, it is important to analyze all 
features whether or not they carry relevant 
information that contributes to the model of wind.   

 
Figure 1. Mutual information analysis between the 

input features and the target outputs 
 
Therefore, MI analysis is performed between all 
input features and the target wind speed (ws). Figure 
1 shows the MI outcome of each input feature 
against each target output. The highest MI value 
implies the most relevant input feature to model the 
target wind speed. As seen in the figures, the highest 
MI values are obtained for the time of year features 
ys and yc. These results are expected because more 
or less meteorological data are similarly repeated 
every year with some deviation. Surely, this 
deviation increases with global warming which 
changes the climate. On the other hand, time of day 
and precipitation features have less or about 2% 
relevancy therefore these features are removed from 
the inputs of the network which do not contribute to 
modelling the future wind data. Figure 2 shows the 
final input-output configuration of the DRNN 
model, where the network receives the current input 
features and predicts a one-hour-ahead wind speed. 

 
Figure 2. Inputs and outputs of the DRNN model 

after MI analysis. 
 
Furthermore, the input data of the DRNN model 
were normalized by subtracting the mean and 
dividing by the standard deviation of each feature 
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before presenting them to the model. This method 
is also known as data standardization and is given 
in Equation (7). The target output data (ws) were 
kept raw during the model training.  
 

𝑥ప´ ൌ
௫೔ି௠௘௔௡ሺ௫೔ሻ

௦௧ௗ௘௩ሺ௫೔ሻ
 (7) 

 
where 𝑥ప´  and 𝑥௜ indicate the scaled and raw feature 
i, respectively. 
 
3.4. Deep Recurrent Neural Network 
 
A deep recurrent neural network consists of 
multiple different types of layers which are 
convolutional, recurrent, and fully connected 
layers. To capture the temporal and sequential 
information from the data presented to the network, 
it is important to use recurrent connections-based 
layers such as LSTM, GRU, or a simple RNN layer 
on the network. Such a network does not only work 
on an input space but also on an internal state space 
which enables one to learn the representation of 
temporally or sequentially long-term dependencies 
over unspecified intervals [29]. Otherwise, it is not 
possible to learn a temporal model to predict the 
future values of the desired wind speed.  
 

Figure 3. The diagram of a simple RNN cell at 
time t. 

 
1) Simple RNN Cell: Simple RNN (Figure 3) was 
introduced by Elman [30] where the activation of 
hidden layer 𝑎⟨௧⟩ is computed by feeding the hidden 
layer with the current inputs 𝑥⟨௧⟩ and with the 
previously hidden activation values 𝑎⟨௧ିଵ⟩as given 
in Equation (8), this is also known as recurrent 
connections that create a short-term memory to 
remember the sequence of data presented to the 
network. To learn the long-term dependency, the 
simple RNN cells are connected sequentially to 

each other (see Figure 5) and the inputs of the 
corresponding cell become the output of the 
previous RNN cell unit, this is also known as 
unfolding RNN. However, a large number of 
unfolded simple RNN units can cause vanishing 
gradient problems [31].  
 
𝑎⟨௧⟩ ൌ 𝜎௛൫𝛩௔ൣ𝑎⟨௧ିଵ⟩, 𝑥⟨௧⟩൧ ൅ 𝑏௔൯ (8) 
 
where 𝜎௛ indicates the hyperbolic tangent function, 
𝛩 is the connection weight matrix, and b is the bias 
vector.  
 
2) LSTM Cell: The LSTM contains a number of the 
connected LSTM cell which has feedback 
connections to present a memory behaviour that 
remembers the values over arbitrary time intervals. 
Another advantage of using LSTM cells is to 
overcome the vanishing gradient problem when 
adding many layers to the deep network [32]. 
 

Figure 4. The diagram of an LSTM cell at time t. 
 
LSTM cell is composed of a forget gate, update 
gate, cell state, output gates, and the hidden state as 

shown in Figure 4. Forget gate 𝛤௙
⟨௧⟩ enables the 

LSTM cell to reset the memory of the previous cell 
state 𝑐⟨௧ିଵ⟩. The gate receives inputs from the 
previous hidden state 𝑎⟨௧ିଵ⟩ and the current 
timestep’s input 𝑥⟨௧⟩ and a sigmoid function are 
used to keep the output of the gate in the range of 
[0,1], so that whenever the gate’s value closes to 0, 
the LSTM cell forgets the majority of the previously 
stored cell state, otherwise the stored cell state is 
remembered for the next timestep when the gate’s 
output closes to one. 
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Furthermore, the LSTM cell computes the 
candidate value �̃�⟨௧⟩ which contains information 
from the current timestep that may be stored in the 

current cell state 𝑐⟨௧⟩. Then, the update gate 𝛤௙
⟨௧⟩ 

decides which part of the candidate could be passed 
to the cell state. The sigmoid function is used in the 
update gate that clamps the gate’s output in the 
range of [0,1]. When the output of the update gate 
closes to one, the majority of the candidate’s value 
is passed to the cell state, otherwise, the value of the 
candidate is not passed to the cell state when the 
output closes to zero. Therefore, the new value of 
cell state 𝑐⟨௧⟩ becomes the combination of the 
previous cell state and the candidate value. Finally, 
the current hidden state 𝑎⟨௧⟩ is computed by using 

the output of output gate 𝛤଴
⟨௧⟩. The equations of the 

LSTM cell are given in Equations (9) to (14) [32]. 
 

𝛤௙
⟨௧⟩ ൌ 𝜎௦൫𝛩௙ൣ𝑎⟨௧ିଵ⟩, 𝑥⟨௧⟩൧ ൅ 𝑏௙൯ (9) 

 

𝛤௜
⟨௧⟩ ൌ 𝜎௦൫𝛩௜ൣ𝑎⟨௧ିଵ⟩, 𝑥⟨௧⟩൧ ൅ 𝑏௜൯ (10) 

 
�̃�⟨௧⟩ ൌ 𝜎௛൫𝛩௖ൣ𝑎⟨௧ିଵ⟩, 𝑥⟨௧⟩൧ ൅ 𝑏௖൯ (11) 
 

𝛤଴
⟨௧⟩ ൌ 𝜎௦൫𝛩଴ൣ𝑎⟨௧ିଵ⟩, 𝑥⟨௧⟩൧ ൅ 𝑏଴൯ (12) 

 

𝑐⟨௧⟩ ൌ 𝛤௙
⟨௧⟩ ◦ 𝑐⟨௧ିଵ⟩ ൅ 𝛤௙

⟨௧⟩ ◦ �̃�⟨௧⟩ (13) 

 

𝑎⟨௧⟩ ൌ 𝛤௙
⟨௧⟩ ◦ 𝜎௛൫𝑐⟨௧⟩൯ (14) 

 
where 𝜎௦ and 𝜎௛ are sigmoid and hyperbolic tangent 
functions respectively, 𝛩 indicates the weight 
vector of corresponding gates or candidate value, b 
is the vector of bias term, superscript ⟨𝑡⟩ implies the 
timestep, [ꞏ] is the concatenate operation between 
two vectors and ◦ is the Hadamard product.  
 
3) GRU Cell: Similar to the LSTM, the GRU 
(Figure 5) was also designed to overcome the 
vanishing gradient problem when the number of 
timesteps is increased (i.e. unfolding) on the 
recurrent layer [33]. The only difference between 
the GRU and from LSTM unit, the GRU does not 

have a separate memory cell state like shown in the 
LSTM cell diagram in Figure 4 with 𝑐⟨௧⟩ notation 
when computing the activation output, instead the 
activation of the GRU is a linear interpolation 
between the previous activation 𝑎⟨௧ିଵ⟩ and the 
candidate activation 𝑎෤⟨௧ିଵ⟩ values as given Equation 
(18). Here, the candidate activation is computed 
similarly to the traditional recurrent unit given in 
Equation (8), unlikely the value of the reset gate 𝛤௥ 
is also integrated by multiplying the gate’s value 
with the previous state activation value. The reset 
gate, Equation (17), yields a value in the range of 
[0,1] because of the sigmoid function. As a result, 
when the gate’s value closes to zero, the majority of 
the previously computed hidden state is forgotten as 
given in Equation (15). Finally, the update gate 𝛤௨, 
Equation (16), decides how much information from 
the previous state needs to be passed along to the 
current state 𝑎⟨௧⟩, therefore when the gate’s value 
closes to one, the majority of the current state is 
forgotten and the current state will mostly depend 
on the candidate activation. The GRU cell equations 
are listed as follows [33]: 
 
𝑎෤⟨௧⟩ ൌ 𝜎௛൫Θ௔ൣΓ௨

〈௧〉 ◦ 𝑎〈௧ିଵ〉, 𝑥〈௧〉൧ ൅ 𝑏௔൯  (15) 
 
Γ௨

〈௧〉  ൌ 𝜎௦൫Θ௨ൣ𝑎〈௧ିଵ〉, 𝑥〈௧〉൧ ൅ 𝑏௨൯ (16) 
 
Γ௥

〈௧〉   ൌ 𝜎௦൫Θ௥ൣ𝑎〈௧ିଵ〉, 𝑥〈௧〉൧ ൅ 𝑏௥൯  (17) 
 
𝑎〈௧〉 ൌ Γ௨

〈௧〉◦𝑎෤⟨௧⟩ ൅ሺ1 െ Γ௨
〈௧〉ሻ ◦ 𝑎〈௧ିଵ〉 (18) 

 

 
Figure 5. The diagram of a GRU cell at time t. 
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4) Deep Network Architecture: The detailed 
architecture of the deep recurrent neural network 
used in the following experiment is given in Figure 
6. The network receives an input vector that is 
constituted with raw meteorological sensory         
data and the generated input data                                             
𝑥 ൌ ሼ𝑦𝑠, 𝑦𝑐, 𝑠𝑡, 𝑟ℎ, 𝑤𝑥, 𝑤𝑦, 𝑠𝑟ሽ. To incorporate 
temporal input data into the network training, the 
input data vector is arranged and 2,688 input data x 
back in time are used for the observation of the past 
input readings, therefore network looks back 40,320 
min (2,688 data points × 15 min), here 15 min is the 
sampling rate of the meteorological sensors. By 
dividing 40,320 min with 1,440 (60 min × 24 hours) 
results 28 days is the total days back in time where 
the network uses. 
 
However, instead of using every 15-minute input 
data, every 2 data points (i.e. every 30 min) are 
presented to the network, in this way dimensionality 
of the network inputs is reduced. There is no 
significant difference between 15- and 30-minute 
sampled data according to autocorrelation analysis 
[34]. As a result, 1,344 time-lag presents 28-day 
data observation in past (see Figure 5, where the 
1,344 time-lagged input vector 𝑥⟨௧⟩are shown at the 
bottom of the figure). 
 

Afterwards, time-lagged inputs are presented to the 
1D convolutional layer where 256 filters are used to 
extract sub-sequences from the input sequences of 
the network. The convolution operation leads to 
recognizing the input sequences at different 
timesteps, therefore the sequences become 
translation invariant. Then, the outputs from the 
convolutional layer become the inputs to the first 
recurrent layer. Here, two recurrent layers are 
stacked on the network architecture. By stacking 
multiple recurrent layers on top of each other, all 
intermediate recurrent layers must return their full-
time sequence outputs rather than the output at the 
last timestep [35]. This is shown in Figure 5 where 
the outputs from recurrent cells at the first recurrent 
layer (indicating with superscript [2] as the layer 
number) are all connected to the associated next 
recurrent cell on the following recurrent layer (i.e. 
layer number [3]). 

 
Figure 6. Deep recurrent network architecture for 

wind prediction. Superscripts ሾ𝑛ሿ and 
⟨𝑡⟩ indicate the nth layer and tth timestep, 
respectively. The dimensions of layers 
and the recurrent cell types for each 
model are given in the dashed box 

 
After each layer of the DRNN, a batch 
normalization (BatchNorm) layer was added. The 
BatchNorm layer is simply normalized to the 
outputs from the previous layer which is connected 
to the BatchNorm layer using the mean and standard 
deviation of the current batch of input samples 
during the training. The main advantage of using 
batch normalization is that it overcomes the 
accumulation of large error gradients that can cause 
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the exploiting-gradient problem. In addition, by 
obtaining normalized outputs, the backpropagation 
algorithm produces a similar range of gradient 
values that can help move directly and smoothly to 
the local minimum of the loss optimisation. The two 
parameters ሺ𝛾, 𝜆ሻ are learnable in the BathNorm 
process which is continuously learned during the 
training of the model, as given in Equation (18). 
 
𝑦௜ ൌ 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚ሺ𝑥௜ሻ ൌ 𝛾𝑥ො௜ ൅ 𝜆     (19) 
 
where 𝑥௜ indicates the previous activation outputs, 
𝑥ො௜ is the standardized value of 𝑥௜ using the batch 
mean and standard deviation value of the ith 
connection. 
 
Furthermore, the more layers are added to the 
network, the network is more prone to become 
overfitting. To overcome this issue, each node of the 
network is connected with its corresponding next 
node by using the dropout rate. Therefore, during 
the training of the network, randomly selected 
nodes and their connection weights are disabled 
from the network’s architecture so that the weight 
balance is spread to all the connection weights in 
order not to rely on one feature. The last 
timestamp’s output from the last recurrent layer is 
then connected to a fully connected dense layer, 
here the dense layer is an ordinary feedforward 
neural network layer where a hyperbolic tangent 
activation function is used. Then, another fully 
connected layer is used at the top of the first dense 
layer, and finally, the activation outputs from the 
final dense layer are connected to the output dense 
layer with linear (identity) activation function to 
predict one-hour ahead wind speed 𝑤𝑠ෞ . The 
network learns to predict t+4 timesteps forward of 
the output data during the training because the 
sampling rate of the sensory data is 15 min so t+4 
represents one hour ahead of the information. It is 
also important to note that only the recurrent layers 
(layers 2 and 3) in Figure 6 were replaced with one 
of the recurrent cell approaches (simple RNN, 
GRU, or LSTM); thus, three different models were 
generated: DRNN- with a simple RNN, LSTM, and 
GRU. These models were trained separately, and 
their validity was compared for this study. 

5) Network Training: Before the network is trained, 
the obtained dataset is split into training, validation, 
and testing sets with the ratio of 70%, 20%, and 
10% respectively. The training set is used to learn 
the model of the relationship between inputs and 
target outputs presented to the network. A 
validation set is used to validate the network 
whether the network’s training becomes overfitting, 
under-fitting, or optimal model therefore depending 
on the validation results in each run, the selected 
hyper-parameters can be changed to obtain the 
optimal model at the end of the training process. 
The initial learning rate α0 is selected based on some 
trial training runs and is found to be the best choice 
to set 0.001. Generally, it is important not to select 
a too-large learning rate, it may diverge the 
learning, or too small may slow the convergence. 
However, when the network learning is near the 
local minimum on the loss landscape of the 
network, the learning algorithm needs to make 
smaller steps to reach the corresponding minima, so 
this reason the learning rate is reduced 
exponentially in each epoch of the training. The 
current learning rate during the training can be 
computed as follows [35]: 
 
𝛼 ൌ 𝛼଴𝑒ିఛ௧ (20) 
 
In addition, momentum (β) and discount factor (ρ) 
parameters for the root mean square propagation 
(RMSprop) optimizer are also set apart from the 
learning rate to remove the oscillation on the 
computed gradients to speed up the network 
learning. RMSprop optimizer is a more 
sophisticated version than the ordinary 
backpropagation algorithm. This algorithm also 
computes the gradients of the loss function (i.e. 
mean of squares of errors as given in Equation (21) 
for the network’s connection weights by simply 
applying the chain rule to find the derivative from 
the loss of the output layer backwards to the 
corresponding layer’s connection weights. 
 

𝜉ሺ𝑤𝑠, 𝑤𝑠ෞ ሻ ൌ
ଵ

௠
∑ ሺ𝑤𝑠௜ െ 𝑤𝑠ෞ ௜ሻଶ௠

௜ୀଵ  (21) 
 
where m indicates the number of the data in the 
current batch.  
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Table 1. Training parameters for proposed DRNN 
model 

Parameter Description/Value 
Optimization algorithm RMSprop optimizer 
Initial Learning Rate (𝛼଴) 0.001 
Momentum (β) 0.99 
Discount factor (ρ) 0.9 
Decay rate (τ) 0.05 
Weight initialization Xavier initialiser 
Dropout rate 0.8 
Number of epoch  200 
Batch size 64 
 
Once the gradients of the corresponding layer’s 
connection weights are computed, then the 
momentum is applied to the acquired gradients of 
the connection weight matrix (Θ) and bias vector (b) 
as given in Equations (22) and (23), and finally, 
RMSprop is computed by taking the squared 
gradients of the corresponding connection weights 
in Equations (24) and (25). In this way, the moving 
average of the gradients for each connection weight, 
i.e. smoothed gradients, is used to update the current 
connection weights of the network. After applying 
momentum and RMSprop operations, Θ and b of 
the corresponding layer ሾ𝑙ሿ can be updated as given 
in Equations (26) and (27) [36]. 
 

𝑽డ௵
ሾ௟ሿ ൌ 𝛽𝑽డ௵

ሾ௟ሿ ൅ ሺ1 െ 𝛽ሻ
డక

డ௵ሾ೗ሿ (22) 

 

𝑽డ௕
ሾ௟ሿ ൌ 𝛽𝑽డ௕

ሾ௟ሿ ൅ ሺ1 െ 𝛽ሻ
డక

డ௕ሾ೗ሿ (23) 

 

𝑺డ௵
ሾ௟ሿ ൌ 𝜌𝑺డ௵

ሾ௟ሿ ൅ ሺ1 െ 𝜌ሻ ቀ
డక

డ௵ሾ೗ሿቁ
ଶ
 (24) 

 

𝛩ሾ௟ሿ ൌ 𝛩ሾ௟ሿ െ 𝛼
𝑽ങ೭

ሾ೗ሿ

ට𝑺ങ೭
ሾ೗ሿ ାఢ

 (25) 

 

𝑏ሾ௟ሿ ൌ 𝑏ሾ௟ሿ െ 𝛼
𝑽ങ್

ሾ೗ሿ

ට𝑺ങ್
ሾ೗ሿ ାఢ

 (26) 

 
where 𝜖 is a very small constant number to prevent 
the denominator from becoming zero, i.e.                     

𝜖 =10ି଻. Finally, the summary of all training 
parameters for DRNN is listed in Table 1. 
 

4. EXPERIMENTAL RESULTS AND 
ANALYSIS 
 
After three RNN layers-based DRNNs are trained, 
they are tested by using unseen test data from 
September 2019 to August 2020.  
 

Figure 7. Actual versus predicted values of all 
DRNN models for one-hour ahead wind 
speed prediction 

 
As a result, the one-hour-ahead wind speed 
predictions of the test dataset for the simple RNN, 
LSTM and GRU-based DRNN are demonstrated in 
Figure 7. As can be seen, there is some noise in the 
predicted signals in comparison with true signals. 
The data from training and testing must come from 
the same distribution, otherwise, the trained 
networks’ model can struggle to predict true values 
and could have some fluctuations. These results are 
expected because of global warming where the 
seasons are getting changed. The neural network is 
capable of learning the repeated patterns where 
there is a correlation between inputs and outputs, 
however, when the input data changes in the case of 
global warming and the target output data does not 
change in the way the inputs changed, it is certainly 
impossible that the neural network generalizes the 
altered data well enough because these data are not 
seen during the network training so that the 
knowledge of naturally altered data cannot be 
embedded within the network’s weights during the 
training. 
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Figure 8. Box plot of the prediction errors over 

months. 
 

Further analyses are also carried out to examine the 
network’s prediction errors along the months of the 
year. Figure 8 shows the box plot of the network’s 
prediction error in each month. It can be seen that 
the highest number of errors were in December 
2019 and August 2020. This is shown with the 
median error values (middle horizontal line in the 
box) which have the furthest distance to the zero 
error for the corresponding months.  
 
Furthermore, the difference between the lower and 
the higher end of the boxes indicates how the 
variability of the error data from the median error, 
in other words, this is also called mathematically 
interquartile range (IQR). The IQR values of these 
two months are higher than the other months so 
50% of the error data (the box indicates the middle 
50% of data) are spread out more because the 
network has high uncertainty on the predictions. In 
addition, the whiskers of the boxes for the 
corresponding months indicate that they have the 
highest positive and negative errors among the other 
months. There are also lots of outlier data points of 
the prediction error which are indicated with the (+) 
symbol for December 2019, May 2020, and June 
2020. The network makes these types of outlier 
predictions whenever the corresponding input data 
are significantly different from the training data. 
The data used in the network training are obtained 
from earlier years than the test data used for the 
network evaluation. This difference between the 
years is possible because global warming causes 
weather shifts over the years.  

To clarify whether the occurrence of the high errors 
in December 2019 and August 2020 whether or not 
is dependent on the distribution of training and 
testing datasets, the Kolmogorov Smirnov (KS) test 
is carried out to compare the raw meteorological 
sensory data of these months in each year from 2017 
to 2020. Suppose the relationship between the 
sensory data of the specific month at the different 
years is not changed due to global warming. In that 
case, the acquired model of DRNN can generalise 
the prediction well, even if the magnitude of those 
data is changed in the following year. First of all, 
the training data which belongs to August month 
from 2017 to 2019 are separately compared with the 
test data belonging to August 2020.  
 
The results show that only precipitation data in 2019 
and 2020 of the August month are from the same 
distribution at the 5% significance level and the null 
hypothesis is rejected for the other meteorological 
sensory data (i.e. temperature, humidity, solar 
radiation, wind speed, and direction). Similar 
results are also obtained when comparing the test 
data of December 2019 against the training data of 
December 2017 and 2018. This is an expected 
outcome and shows how well the acquired 
network’s model generalizes the meteorological 
data with an acceptable error rate even if they come 
from a different distribution. 
 
4.1. Comparison between LSTM, GRU and 

Simple RNN 
 
To assess the performance of the DRNN using 
different recurrent layers, various statistical 
analyses are carried out. Firstly, the correlation 
coefficient values between the DRNN’s predicted 
wind speed and the actual wind speed are computed 
by using three different correlation analyses, these 
are Spearman, Pearson, and Kendall correlation 
coefficients. The value of the correlation coefficient 
indicates how correlated predicted outputs are and 
actual outputs, the value 1 implies perfect 
correlation, 0 is a random guess and -1 means 
negative correlation. Furthermore, prediction errors 
of the network on the test data are also interpreted 
therefore mean absolute error (MAE), root mean 
square error (RMSE), and mean absolute 
percentage error (MAPE) are calculated.  
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Table 2 shows the statistical results of all recurrent 
layers using the same test data. As can be seen, there 
is a strong correlation between the network-
predicted and actual wind speed for all RNN layer-
based DRNN where their values are over 0.8 for 
both Spearman and Pearson correlations, however, 
both GRU and simple RNN-based recurrent layers 

on the DRNN architecture presents better than 
LSTM-based layer. In addition, the simple RNN-
based DRNN demonstrates slightly better 
performance than the GRU-based DRNN according 
to the Spearman and Kendall coefficients, whereas 
the GRU-based DRNN shows better performance in 
terms of the RMSE metric. 

 
Table 2. Correlation coefficient values and overall prediction errors between each RNN layer for 1-hour 

ahead prediction 
 Spearman Pearson Kendall MAE [m/s] RMSE [m/s] MAPE [%] 

LSTM 0.8312 0.8943 0.6477 1.4819 1.9360 34.3462 
GRU 0.8815 0.9237 0.7079 1.3402 1.7863 27.9873 
Simple RNN 0.8829 0.9166 0.7089 1.3088 1.8010 26.7737 

 
Similar results are also obtained when prediction 
errors of the networks are analyzed. Both GRU and 
simple RNN-based DRNN have close overall 
prediction error according to MAE and RMSE, 
however, the accuracy of the Simple RNN has 
slightly better accuracy than GRU layers according 
to the MAPE values which are 72.01% and 73.23% 
(100 - MAPE) for GRU and simple RNN-based 
layers, respectively. Further analyses are also 
carried out between GRU and simple RNN-based 
layers to investigate how widely prediction errors 
deviate from the mean error, therefore             
standard errors for both networks are                                
computed as 𝜎ீோ௎=0.0002056 m/s and 

𝜎௦௜௠௣௟௘ோேே=0.0002138 m/s. This shows that the 
prediction of using a simple RNN layer on the 
DRNN is slightly spread out more than the GRU-
based layer. On the other hand, the confidence 
intervals of the prediction errors with a 95% 
significant level for GRU and simple RNN layers 
are also reported as [0.6931, 0.6939] m/s and 
[0.5581, 0.5590] m/s respectively. Although the 
simple RNN-based DRNN has a higher standard 
error, its prediction errors lie in the smaller range in 
comparison with GRU-based DRNN. 
Consequently, the lower error range yields better 
network performance. 
 
5. CONCLUSIONS 
 
Due to global warming, weather conditions are 
changing, and previously obtained forecasting 

models may fail to predict wind speed accurately. 
Previous models that relied only on previous wind 
speed information are no longer sufficient, as global 
warming affects multiple meteorological factors 
such as precipitation, temperature, humidity, and 
solar radiation. Therefore, a deep recurrent neural 
network is proposed to model the relationship 
between multiple meteorological sensory data to 
produce more robust wind speed predictions. This 
approach can adapt to changes in weather 
conditions and is capable of producing accurate 
wind speed predictions even as wind speeds change 
each year. The proposed model is designed for one-
hour-ahead wind speed predictions in an 
agricultural area.  
 
To predict future wind speed, raw meteorological 
sensory readings are transformed into non-cyclical 
features such as wind vectors and timestamps. The 
mutual information of these features is analyzed to 
determine their contribution to the prediction. Three 
types of recurrent layers (LSTM, GRU, and simple 
RNN) are tested in a DRNN architecture to model 
the relationship between sensory data and wind 
speed. The models are validated using unseen 
sensory data from September 2019 to August 2020, 
and statistical analyses are performed to compare 
their performance. The results show that there is a 
strong correlation between the predicted and actual 
wind speeds for all models, which used different 
types of recurrent layers. Furthermore, the 
distribution of the mean prediction error along the 
months of the year is also analyzed using box plot 
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analyzes to highlight the month in which the highest 
average error occurred. It is reported that the 
networks performed worse in December 2019 and 
August 2020 than in other months. To clarify this, 
the Kolmogorov-Smirnov test is carried out, and it 
is found that the training and the test sensory data in 
these two months are not from the same continuous 
distribution. These results are expected because 
global warming affects the weather in different 
ways between consecutive years. Thus, the sensory 
readings between the years become significantly 
different. In conclusion, a deep recurrent network is 
capable of learning very high-degree nonlinear data, 
and by combining multiple recurrent layers on the 
network’s architecture, it becomes more powerful 
than an ordinary one-layer recurrent neural network 
to model the noisy sensory data. 
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