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Abstract

In this article, we seek to formulate a robust mathematical model to study the Ebola disease through
fractal-fractional operators. The study thus incorporates the transmission rate in the treatment centers
and the relapse rate, since the Ebola virus persists or mostly hides in the immunologically protected
sites of survivors. The Ebola virus disease (EVD) is one of the infectious diseases that has recorded a
high death rate in countries where it is endemic, and Uganda is not an exception. The world at large
has suffered from this deadly disease since 1976 when it was declared epidemic by the World Health
Organization. The study employed fractal-fractional operators to identify the epidemiological patterns
of EVD, especially in treatment centers and relapse. Memory loss and relapse are mostly observed
in EVD survivors and this justifies the use of fractional operators to capture the true dynamics of the
disease. Through dynamical analysis, the model is proven to be positive and bounded in the region.
The model is further explicitly shown to have a solution that is unique and stable. The reproduction
number was duly computed by using the next-generation matrix approach. By taking EVD epidemic
cases in Uganda, the study fitted all parameters to real data. It has been shown through sensitivity
index analysis that the transmission rate outside treatment centers and relapse have a significant effect
on the endemic state of the disease, as they lead to an increase in the basic reproduction ratio.
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1 Introduction

The Ebola virus is the source of the highly infectious and often fatal disease known as Ebola virus
disease (EVD) [1]. The most typical ways of transmitting the Ebola virus to individuals are via
direct interaction with secretions, organs, blood, or additional body fluids of an infected person,
in addition to interaction with surfaces and items (clothes and bedding) stained with these fluids.
Wild animals, including fruit bats, porcupines, and nonhuman primates, are the main carriers of
the disease to people. On average, 50% of cases of EVD result in death. Case death rates have
varied from 25% to 90% in prior epidemics [1, 2]. Several epidemics of EVD are initiated by a
single overflow event and spread from person to person via intimate interactions, often in remote,
densely forested locations. Index cases are often associated with hunting, forest work, or land
modification.
Infected individuals can spread the virus to other individuals directly, but close contacts such as
family members, caregivers, or medical professionals are at more risk of contracting the disease
[3]. For instance, the 2014–2015 West Africa Ebola outbreak claimed 109 lives among healthcare
professionals in Guinea, sparking alarm worldwide and subsequent instances in Spain and the
US. Ebola Rehabilitation Facility for Medical Personnel in Conakry, Guinea, diagnoses and treats
healthcare professionals who are infected (either confirmed or suspected) with EVD and are
provided with comprehensive medical care, such as biologic monitoring and blood transfusions
[4]. The early symptoms of an Ebola infection are fever, myalgia, and asthenia, progressing to
gastrointestinal syndrome, including vomiting and diarrhoea. Subsequently, shock, hypoperfusion,
failure of several organs, such as serious kidney damage, and depletion of intravenous fluid
may occur. Haemorrhage syndrome, primarily gastrointestinal bleeding, may also occur [5].
Furthermore, an Ebola infection may result in several neurological problems. These comprise
tremors, migraines, loss of memory, epilepsy, and anomalies of the cranial nerves [6]. Studies
have shown that either waning of immunity or weak immunity can lead to virus reinfection in
Ebola victims. Some survivors’ immunity declines after recovery, while stronger immune systems
experience subclinical or asymptomatic sickness [7, 8]. In 2014, during the West African Ebola
outbreak, thousands of people survived. It has been reported that the Ebola virus may relapse
and cause a potentially fatal and spreadable illness since survivors can harbour the infection for
months in immune-privileged sites like the brain, the testes, the central nervous system, and the
eyes [6, 8].
In 1976, the world recorded two significant EVD epidemics in South Sudan and also DR Congo
(DRC), which led to the initial recognition of the disease worldwide. From that period, countries
like DR Congo (DRC) in 1994 and Uganda in 1995 experienced another Ebola outbreak. Ebola
outbreaks following this, outbreaks have been reported often and widely in Nigeria, Gabon, the
DR Congo, Guinea, Uganda, Liberia, and Sierra Leone. Additionally, rare outbreaks of EVD have
been reported from South Africa, the USA, Italy, and the United Kingdom [9].
Recently, mathematical modelling has come to be seen as an important and valuable instrument for
understanding the behaviour and cause of the spread of many prevalent infectious diseases, such
as diabetes mellitus [10], Ebola [1], measles [11], monkey pox [12], COVID-19 [13], diarrhoea [14],
and query fever [15] as stated in [1, 10]. It can also be employed to demonstrate the effective way
to mitigate disease propagation and assist in making decisions during an outbreak of disease [1].
For instance, [14] employed Ghana’s Ministry of Health data to validate an epidemiological model
for diarrhoea transmission dynamics from 2008-2018. They concluded that reducing transmission
rates and increasing treatment can significantly control or eradicate the disease. [16], analysed the
Hepatitis E model’s dynamics and optimal control analysis using the Atangana-Baleanu derivative.
When their reproduction number is below one, their model becomes locally asymptotically stable.
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They formulated an optimal control system using appropriate control strategies. Numerical
results suggest the proper application of control strategies for early Hepatitis E elimination. The
Atangana-Baleanu derivative allows for disease status monitoring and effective strategies. A
mathematical model predicting giardiasis spread that considers carriers, preventative measures,
and interaction between humans and the environment was proposed by [17].
The model uses the Lyapunov function, Metzler constancy hypothesis, and advanced next-
generation matrix. Implementing solutions in endemic areas effectively stops giardiasis spread.
[18], proposed an article to review malaria biology, mathematical modelling methods, uncertain-
ties, and controversies, and provides a timeline from Ross and MacDonald’s classical works to
recent climate-focused studies, contextualising mathematical work within the "million-murdering
death" of malaria. [19], conducted a pneumonia and HIV/AIDS deterministic co-infection model
and used it to assess the impact of these diseases on each other. Their model includes sub-models
and sensitivity analysis, revealing that the spreading rate of HIV and the treatment rates are
the most sensitive parameters. Their model incorporated intervention strategies and numerical
simulations, which shown that prevention and treatment of both diseases reduce the co-infection
burden. For more articles on the application of mathematical modelling to study infectious
diseases, see [20, 21].
Now, we concentrate on some mathematical models of EVD that have been published earlier
by different authors. A nonlinear mathematical model for Ebola was published in 2024 by [1],
with an emphasis on burial practices and environmental contamination. They determine the
reproduction number, Ebola-free, and Ebola-present equilibrium, as well as the boundedness,
positivity, and well-posedness of the model. The sensitivity analysis reveals forward bifurcation,
suggesting suppression of Ebola spread. Control strategies include reducing contact with infected
people, educating the public, vaccinating the susceptible, and promoting education against funeral
customs. Personal protection, vaccination, and safe burial are the most cost-effective methods. In
the research of [22], they presented an Ebola virus disease model built using a novel exponentially
nonlinear incidence function, which incorporates the curtailment in disease spread as a result
of human behaviour. The steady states of the model were determined, and the model’s global
stability was demonstrated using Lyapunov functions. Their results indicate a good fit when
effectiveness and the rate of change of behaviour are faster, after fitting the model to Liberia and
Sierra Leone’s Ebola data.
In another study, [23], developed an article to explore the dynamics of EVD in domestic and
wild animals. They employ an SEIR-type model developed to study the virus’s stability in the
human population. Their model comprises a nonlinear coupled differential equation, determining
Ebola-free and present equilibrium states. The model is asymptotically stable, and global stabilities
are carried out using Lyapunov functions theory. The Runge-Kutta method and non-standard
finite difference scheme are used for the SEIR model. They concluded that compared to RK4,
the NSFD numerical approach is more dependable, preserving non-negativity and boundedness
for different step sizes. State-variable simulations provided a numerical analysis of their disease
model.
Further, authors of [24] developed a SIR-type model to study Ebola virus disease (EVD) spread
using conformable derivatives. Their model incorporates direct and indirect transmission methods,
including funeral practices, tainted bush meat consumption, and environmental contamination.
The model also considers the possibility of infected individuals birthing and migrating to the
existing population. According to their research, the only state in which there is no sickness is
when there is no environmental spread of the Ebola virus. In addition, authors of [25] presented a
model on the Ebola virus disease. Their model employed mathematical models to understand the
spread of the virus validated a new model incorporating vaccination and applied optimal control
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analysis to study its impact on numerous shooting techniques with direct multiple shooting
methods. Their numerical simulations indicate that an optimal control strategy implemented
significantly reduces the number of people prone to Ebola and Ebola-infected people and increases
the number of people who recover.
Notwithstanding this, the Ebola virus disease is known to be deadly as it leaves the survivor
with severe neurological effects such as seizures, cranial nerve disorders, and memory loss.
Authors of [2] presented a mathematical model to explain the dynamics of Ebola transmission
between humans and dogs through fractional operators. Caputo-Fabrizio derivative served as the
foundation for their model. Fractional orders were shown to have a considerable influence on the
model when it was fitted to Uganda’s reported Ebola outbreak. According to them, Controlling the
spread of Ebola can be achieved by improving recovery rates and decreasing contact rates between
dog compartments. They concluded that it is advisable to implement quarantine procedures to
regulate encounters during outbreaks. In [26], the Grunwald-Letnikov fractional operator was
applied to study the Ebola disease physical patterns in the population, and in [27], the Atangana-
Baleanu Caputo operator was also applied to investigate the outbreak of the contagious Ebola
disease.
Our motivation for the current research is that all the related literature discussed considers Ebola
spreads and how to mitigate the infection. However, we observed that none of the articles
examined the following: transmission of Ebola virus disease at treatment centres; Ebola virus
persistent in the immunologically protected sites of survivors’ bodies and the associated relapse-
symptomatic infection; the application of susceptible, infected, treatment and recovered, SITR-type
model to investigate the dynamics of Ebola Virus Disease (EVD). Although the authors of [28]
employed SITR-type to examine their Ebola model, there are some limitations to their research.
These include the use of some parameter values based on assumptions and parameters from
existing literature instead of using real Ebola data to carry out their analysis. There are several
neurological side effects linked to Ebola. This includes seizures and loss of memory. The memory
effect is a crucial characteristic of biological systems. The use of fractional-order models allowed
for the realisation of this [6, 29–31]; however, the deterministic approach that was employed in
their research was unable to do that. The current research seeks to address these gaps by:

i. Studying the dynamics of EVD transmission at the treatment centres,
ii. Incorporating the dynamics of relapse in survivors due to virus persistence in their bodies
after recovery,

iii. Applying the least square estimation technique to fit all the model parameters to real data
from Uganda,

iv. Employing the novel fractal-fractional Caputo derivative to capture the exact dynamics of
EVD in the population.

The remaining sections of the article are categorised in this pattern. Section 2 deals with formu-
lating the Ebola model that incorporates transmission dynamics at the treatment centres and the
relapse patterns in survived individuals. The basic or preliminary results are presented in Section 3.
In Section 4, we investigate the positivity and boundedness of the Ebola model understudy. The
Ebola model is now studied through fractal-fractional Caputo operators in Section 5 where we
performed thorough existence and uniqueness analysis through the fixed point theorem. Also, the
Hyers-Ulam and Hyers-Ulam-Rassias stability criterion is used to establish that the Ebola model
is stable and is discussed here. Again, we subjected the Ebola model to real data to estimate all the
parameters of the study in Section 6, whereas Section 7 performs the local stability analysis and
also measures the fundamental reproduction number. In Section 8, the sensitivity analysis of the
model’s parameters to the R0 is discussed. Finally, the numerical simulations and conclusion of
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the research study are discussed in Section 9 and Section 10, respectively.

2 Ebola model formulation

We propose an integer Ebola transmission model in this section. The entire population is classified
into four classes: Susceptible S(t), these are people who are prone to contracting Ebola disease.
Infected I(t) are those actively infected with Ebola, show clinical symptoms, and can spread the
disease to other individuals. Treated T(t), these are individuals who have received treatment after
infection from Ebola. Some individuals of the treated class can still transmit Ebola diseases to
other people through direct or indirect means due to the waning of Ebola virus antibodies after a
few years of recovery [32]. People who have recovered from the Ebola infection are denoted by
R(t). The natural mortality rate is denoted by µ. β is the transmission rate from the infectious
class to the treatment class, δ1 is the Ebola-induced death rate of individuals, and k is the relapse
rate of individuals under treatment. The recruitment rate is given by ψ. α1 is the transfer rate of
susceptible to infectious class. α2 is the transmission rate of partially recovered individuals at
the treatment centres to caregivers, σ1 is the immunity loss rate, and σ2 denotes the recovery rate.
Hence, the entire populace is denoted by N = S + I + T + R. The assumptions below formed the
basis of the development of the Ebola model:

i. Ebola can spread to susceptible people via any of the following ways: having interpersonal
relationships with recovered Ebola victims, touching contaminated animals, or coming into
contact with the bodily fluids and clothing of an infected individual,
ii. Recovered individuals can become susceptible to Ebola infection after recovery,

iii. Recovered individuals can transmit Ebola to other people within a few years after recovery
due to waning immunity,

The following four (4) integer-order differential equations were developed using the assumptions
as basis. The model equations are therefore given by

dS
dt

=ψ + σ1R(t)− α1S(t)I(t)− µS(t),

dI
dt

=α1S(t)I(t) + kT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t),

dT
dt

=α2 I(t)R(t) + βI(t)− (µ + k + σ2)T(t),

dR
dt

=σ2T(t)− (σ1 + µ)R(t),

(1)

with initial conditions S(0) = S0> 0, I(0) = I0 ≥ 0,T(0) = T0 ≥ 0, and R(0) = R0 ≥ 0.

3 Preliminary results

In this section, the studies highlight some essential definitions regarding the dynamical analysis
to be carried out on the Caputo fractal-fractional Ebola disease model. The definitions are stated
below based on literature [33–35].

Definition 1 Let us suppose there is a continuous domain (A, E), and further assume that H has a
derivative existing in the fractal dimension range Φ2. Then, the Caputo fractal-fractional differential
operator of H with the fractional order Φ1 is given as

FFCDΦ1,Φ2
A,E H(E) = 1

Γ(q − Φ1)

d
dEΦ2

∫E
A
(E − k)q−Φ1−1H(k)dk, (q − 1 < Φ1, Φ2 ≤ q ∈ N),
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following differentiation results;

dH(k)
dkΦ2

= lim
E→k

H(E)−H(k)
EΦ2 − kΦ2

.

By supposing that Φ2 = 1, then the Caputo fractal-fractional derivative FFCDΦ1,Φ2
G,E yields Φth

1 -

Riemann-Liouville derivative RLD
Φ1
G,E .

Definition 2 If we further assume that the map H is unperturbed in the neighborhood of the open interval
(A, E ). Then, it is obvious that the Caputo fractal-fractional integral of H results in

FFCIΦ1,Φ2
A,E H(E) = Φ2

Γ(Φ1)

∫E
A

kΦ2−1(E − k)Φ1−1H(k)dk.

By classifying A t be a non-decreasing transformation, that is b : R≥0 → R≥0 with b(E) < E , ∀E > 0,

∞∑
u=1

au(E) < ∞.

Definition 3 Let us define the map H : V → V and ψ : V2 → R≥0, with V to be a normed linear space.
We then have

i. In the case where each x1, x2 ∈ V,

ϕ(x1, x2)d(Hx1,Hx2) < a(d(x1, x2)),

then H is ψ − a-contraction,
ii. Also, assuming ψ(x1, x2) ≥ 1 yields ψ(Hx1,Hx2) ≥ 1, we have that H is ψ - admissible.

4 Positivity and boundedness

This section establishes the positivity and boundedness of solutions to the proposed Ebola model.
By following a similar procedure as performed in literature [20], we obtain the positivity and
boundedness of the Ebola model in this manner.

Positivity of solutions

To establish the positivity of the model’s solutions, we show that the solutions to each equation of
the model are non-negative for any t > 0. Let us begin the proof by first supposing that S(t) and
I(t) possess the same signs and α1 > 0. In this manner, we suppose that the following inequality
holds for T(t) compartment,

T(t) ≥ T0e−(µ+k+σ2), ∀t > 0.

Noting from the above that T(t) is positive, it suffices that

I = α1SI + kT − α2 IR − (β + δ1 + µ)I

≥ −(β + δ1 + µ)I.
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Thus, we have

I ≥ I0e−(β+δ1+µ).

Subsequently, by following the same approach, we have

R ≥ R0e−(σ1+µ).

Now, let us suppose that the I(t) and T(t) compartments are integrable, this implies that the
following inequality arises:

G(t) ≥ G0 +

∫
[δ1(I + T)]dt, ∀t > 0.

Importantly, we explicitly establish the positivity of the S(t) compartment by first supposing the
norm below exists: ||g|| = supt∈Dg

|g|. This suffices that for the susceptible compartment, S(t), we
have

Ṡ(t) = ψ + σ1R − α1SI − µS

≥ σ1R − (α1 I + µ)S ≥ −(α1|I|+ µ)S

≥ −(α1 sup
t∈Dg

|I|+ µ)S ≥ −(α1||I||∞ + µ)S

≥ −φS,

where we define

φ = (α1||I||∞ + µ).

Obviously, this yields

S(t) = S0e−φt.

We observe that these results hold for all other compartments. Hence, all the solutions of the Ebola
model are positive.

Boundedness of solutions

To prove the boundedness of solutions to the model, we first consider the total human population,

N(t) = S(t) + I(t) + T(t) + R(t). (2)

Substituting all equations of the model, we obtain,

dN(t)
dt

=
dS(t)

dt
+

dI(t)
dt

+
dT(t)

dt
+

dR(t)
dt

= ψ + σ1R(t)− α1S(t)I(t)− µS(t) + α1S(t)I(t) + kT(t)− α2 I(t)R(t) (3)

−(β + δ1 + µ)I(t) + α2 I(t)R(t) + βI(t)− (µ + k + σ2)T(t) + σ2T(t)− (µ + σ1)R(t)

= ψ − µN − δ1 I(t).
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In the absence of Ebola-related deaths, (δ1 = 0), we have

dN
dt

≤ ψ − µN. (4)

Now taking the Laplace transform of (4), we obtain

L{N ′(t)}+ µL{N(t)} ≤ L{ψ},

sN (s)− N(0) + µN (s) ≤ ψ

s
,

N (s) ≤ ψ

s(s + µ)
+

N(0)
s + µ

.

(5)

The inverse Laplace of (5) is

N(t) ≤ ψ

µ
(1 − e−µt) + N(0)e−µt. (6)

Taking the lim supt→∞ of the above equation, we get

N(t) ≤ ψ

µ
. (7)

Now, the solutions of the Ebola model are bounded and feasible in the region

V =

{
(S, I, T, R) ∈ R4

+|N ≤ ψ

µ

}
. (8)

5 Caputo fractal-fractional Ebola model

It has been reported in the literature that individuals who have suffered from the Ebola virus
disease mostly face severe neurological disorders such as cranial nerve disorders, memory loss,
recurring seizures, and others for about six months or more even after recovery [6]. As a result
of this, using integer order operator models to study the dynamics of the Ebola disease virus
may yield uncertain or unreliable conclusions. In addition, since there occurs mostly structural
variability in the dynamics of the Ebola disease, that is, the disease is influenced by physical
occurrences, a fractional analysis of the dynamics of the Ebola is the appropriate operator to
measure the physical dynamics of the disease [7]. The Caputo fractal-fractional derivative has
been chosen for this study due to its enormous advantages over the other fractional operators. For
instance, it has been reported in the literature that the Caputo fractal-fractional derivative presents
a better description of complex systems, such as biological processes, by accurately measuring
these systems’ inherent hereditary and memory properties.Again, the Caputo fractal-fractional
derivative is quite simplified as it allows the use of standard initial conditions compared to the
Riemann-Liouville derivative. As a result, the Caputo fractal-fractional derivative has a min-
imal computational complexity and requires a minimum storage space when its algorithm is
simulated [36–38]. In this study, the Ebola virus disease is thus investigated using the Caputo
fractal-fractional operator. From this knowledge, Eq. (1) is reformulated into a non-integer model
using Caputo operators in this manner:
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FFCDΦ1,Φ2
0,t S(t) = ψ + σ1R(t)− α1S(t)I(t)− µS(t),

FFCDΦ1,Φ2
0,t I(t) = α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t),

FFCDΦ1,Φ2
0,t T(t) = α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t),

FFCDΦ1,Φ2
0,t R(t) = σ2T(t)− (σ1 + µ)R(t),

(9)

with initial conditions S(0) = S0 > 0, I(0) = I0 ≥ 0, T(0) = T0 ≥ 0, and R(0) = R0 ≥ 0.

Existence and uniqueness of the Caputo fractal-fractional Ebola disease model

A key aspect of mathematical modelling is to examine if there exists a unique solution for the
model under study. To establish that model (9) is injective, a thorough existence and uniqueness
analysis is carried out using the fixed point theory as done in literature [39–42]. By supposing that
there exists the norm B(τ) which is defined to be a Banach space and further assumed to be a
continuous real-valued map defined in the domain τ(0, T) with a defined sub norm. Then we note
that there is G = B(τ1)× B(τ2)× B(τ3)× B(τ4) which is imposed on the norm ||(S, I, T, R)|| =
||S||+ ||I||+ ||T||+ |R||, where ||S|| = supt∈τ |S|, ||I|| = supt∈τ |I|, ||T|| = supt∈τ |T|, ||R|| = supt∈τ |R|.
From the suppositions above, the fractal-fractional Ebola disease model in the Caputo sense is
reconstructed as;

S(t)− S(0) = CDΦ1,Φ2
t [ψ + σ1R(t)− α1S(t)I(t)− µS(t)] ,

I(t)− I(0) = CDΦ1,Φ2
t [α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t)] , (10)

T(t)− T(0) = CDΦ1,Φ2
t [α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t)] ,

R(t)− R(0) = CDΦ1,Φ2
t [σ2T(t)− (σ1 + µ)R(t)] .

For convenient evaluations, the equations in (10) are redefined as,
J1(S, I, T, R) = ψ + σ1R(t)− α1S(t)I(t)− µS(t),

J2(S, I, T, R) = α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t),

J3(S, I, T, R) = α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t),

J4(S, I, T, R) = σ2T(t)− (σ1 + µ)R(t).

(11)

Now through the Riemann-Liouville integral operator, the fractal-fractional Ebola disease model
(9) suffices that;

RLDΦ1
t S(t) = Φ2∗ t∗Φ2−1J1(S, I, T, R),

RLDΦ1
t I(t) = Φ2∗ t∗Φ2−1J2(S, I, T, R),

RLDΦ1
t T(t) = Φ2∗ t∗Φ2−1J3(S, I, T, R),

RLDΦ1
t R(t) = Φ2∗ t∗Φ2−1J4(S, I, T, R).

(12)

Now in order to solve the model, Eq. (12) is reformulated as an initial value problem{
RLDΦ1

t Q(t∗) = Φ2∗ t∗Φ2−1J (t,Q(t))

Q(0) = Q0, Φ1, Φ2∗ ∈ (0, 1],
(13)
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where t∗ ∈ U , such that

Q(t∗) = (S(t∗), I(t∗), T(t∗), R(t∗)),

Q(0) = (S0, I0, T0, R0)
t.

(14)

Also,

J (t,Q(t)) =


J1(S(t∗), I(t∗), T(t∗), R(t∗)),

J2(S(t∗), I(t∗), T(t∗), R(t∗)),

J3(S(t∗), I(t∗), T(t∗), R(t∗)),

J4(S(t∗), I(t∗), T(t∗), R(t∗)).

(15)

Now by applying the fundamental theorem of calculus to (13), we obtain

Q(t∗) = Q(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1J (Ω∗Q(Ω∗))h∗Ω∗, (16)

thus, leading to the following relations:

S(t∗) = S(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J1

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)],

I(t∗) = I(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J2

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)],

T(t∗) = T(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J3

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)],

R(t∗) = R(0) +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

2−1J4

× [S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗)].

(17)

Now model (9) is reconstructed as a fixed point problem by using the fixed point theory technique.
We initially suppose that the given dual function W = H∗ −→ H∗ be defined as

W [Q(t∗)] = Q(0) +
Φ2∗

Γ(Φ1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1J (Ω∗Q(Ω∗))h∗Ω∗. (18)

We explicitly define the fixed point theorem for Θ∗ − ψ∗ contractions to suffice our proof.

Theorem 1 ([35]) Let us suppose a complete metric space is stated such that ψ∗ ∈ B, Θ∗ : H∗2 −→ R,
and W : H∗ −→ H∗ which is an Θ∗ − ψ∗ contraction such that the following properties are valid:
a. W is θ∗ permissible.
b. We have h0, which is in the function H∗ such that Θ∗(ψ∗

0 ,Wψ∗
0) ≥ 1.

c. Supposing that for any h∗ψ∗ which is an improper subset of W∗ where h∗ψ∗ −→ h∗ and Θ∗(h∗ψ∗ , h∗ψ∗+1) ≥
1, ∀ψ∗ ≥ 1, then there exists Θ∗(h∗ψ∗ , h∗) ≥ 1 for every ψ∗ ≥ 1.
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The proof of the theorem is carried out through Θ∗ − ψ∗ contractions.

Theorem 2 Let us suppose that we have a φ∗ such that R×R −→ R and also there is an ψ∗ ∈ B for any
given operator J ∈ W(K×H∗,H∗). Also, B1 for any given J1,J2,J3,J4 ∈ H∗ and there is t∗ ∈ A,

|J (t∗,Q1(t∗)−J (t∗,Q2(t∗)| ≤ Θ∗ϑ∗(|Q1(t∗)−Q2(t∗)|),

also realising that χ∗(Q1(t∗),Q2(t∗)) ≥ 0 and also ϑ∗ =
Γ(Φ2∗+Φ1∗ )

Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗ )
.

G2 Also, for any given t∗ ∈ A there is a Q0 ∈ H∗ such that

a∗(Q0(t∗), C(Q0(t∗))) ≥ 0,

given further that

a∗(Q1(t∗),Q2(t∗)) ≥ 0 −→ a∗(C(Q0(t∗)), C(Q0(t∗))) ≥ 0.

G3 Supposing that {Qψ∗}ψ∗≥1 ⊆ H∗ for Qn∗ −→ Q, such that

a∗(Qψ∗(t∗),Qψ∗+1(t∗)) ≥ 0 −→ a∗(Qψ∗(t∗)), (Q(t∗)) ≥ 0,

with any given ψ∗ and t∗ ∈ A.
We hereby validate the Caputo fractal-fractional Ebola model to have a solution by the proof below.

Proof Let us suppose that there exists the functions J1,J2,J3,J4 ∈ H such that J1(t∗),J2(t∗),J3(t∗),
J4(t∗) are non-negative given any time dimension t∗ ∈ A. Applying some basic mathematical
ideas in addition to the beta function yields the following;

|W(Q1(t∗))−W(Q2(t∗))| ≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
Ω∗ϕ2∗−1(t∗ − Ω∗)Φ∗

1−1

×|J (Ω∗Q1(Ω∗))−J (Ω∗Q2(Ω∗))|d∗Ω∗

≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1Θ∗η∗(|Q1(Ω∗)−Q2(Ω∗)|)d∗Ω∗

≤ Φ2∗η∗ηΦ2∗+Φ1∗−1B(Φ2∗ , Φ1∗)

Γ(Φ1∗)
Θ∗(||Q1 −Q2||H∗) (19)

≤ Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗)

Γ(Φ1∗ + Φ1∗)
η∗Θ∗(||Q1 −Q2||H∗).

This suffices that

||W(Q1)−W(Q2)||H∗ ≤ Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗)

Γ(Φ1∗ + Φ1∗)
η∗Θ∗(||Q1 −Q2||H∗) = Θ∗(||Q1 −Q2||H∗).

Supposing further that given any values for Q1,Q2H∗, we assume that Θ∗ is defined to be
H∗ ×H∗ −→ [0,∞) as stated in

Θ∗(Q1,Q2) =

{
1, if a∗(Q1(t∗) ≥ 0,

0, otherwise,
(20)
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which suffices that,

Q1,Q2 ∈ H∗(W(Q1),W(Q2)) ≤ (Q1,Q2),

for any Q1,Q2 ∈ H∗.

We hereby establish the function W to be Θ∗ − ψ∗ contraction. Whenever there are Q1,Q2 ∈
H∗, we observe that Q1,Q2 ∈ H∗ ≥ 1. Stating explicitly the properties of Θ∗, it implies that
a∗(Q1(t∗),Q2(t∗)) as non-negative. Then from (G2), we see that a∗(W(Q1(t∗)),W(Q2(t∗))) is
non-negative. Then we have Θ∗ implying that Θ∗(W(Q1(t∗)),W(Q2(t∗))) ≥ 1. This explicitly
suffices that the operator W is a Θ∗ admissible.

We then strongly see that (G2) implies that there exist an Q0 ∈ H∗. This then suffices that
t∗(Q0(t∗),W(Q0(t∗))) is non-negative for any given t∗ in the set H and

Θ∗(Q0,W(Q0)) ≥ 1.

We can further assume that Qψ∗>1 is an improper subset of the set H∗ such that Qψ∗ has a limit
point Q anytime Θ∗(Qψ∗ ,Qψ∗+1) ≥ 1. It is explicitly seen in Θ∗ that

a∗(Qψ∗(t∗),Qψ∗+1(t∗)) ≥ 0.

This then suffices from (G3) that a∗(Qψ∗(t∗),Q(t∗)) ≥ 0, implying further that Θ∗(Qψ∗(t∗),Q) ≥
1 for every given ψ∗. Now from Theorem 1, it is observed that there is an Q∗H∗ in a manner
that W(Q∗) = Q∗. This then suffices that Q∗ = (S∗, I∗, T∗, R∗)T is a solution to the Caputo
fractal-fractional Ebola disease model.

Theorem 3 ([43]) By assuming that H∗ is said to be a Banach space, which is a convex function O which
is bounded and closed in H∗, and we have α ∈ O which is an open set for 0 ∈ α. By defining P : α −→ O
to be continuous and compact, then it is either
a. There exists b∗∗ ∈ O such that P(b∗∗) = b∗∗, or
b. There is b∗ ∈ µO and ν∗ ∈ (0, 1) such that ν∗P(b∗) = b∗

should hold.

Remark 1 Let us define the relation

∆ = J0, (21)

and also

⊛ =
Φ2∗ηΦ2∗+Φ1∗−1Γ(Φ2∗)

Γ(Φ2∗ + Φ1∗)
. (22)

Theorem 4 Assuming that the function J ∈ C(Q ×H∗,H∗). Then;
M1: we have Θ∗ ∈ N 1(Q, R+) and there have also a non decreasing monotonic function K ∈ C([0,∞), R+),
implying that for any t∗ ∈ Q and also Q ∈ H∗, we have

|J (t∗),Q(t∗)| ≤ Θ∗(t∗)G(|Q(t∗)|).
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M1: If there exists X that is positive and also

X
λ + ζΘ∗(t∗P(X ))

> 1,

where Θ∗∗ = supt∗∈Q |Θ∗t∗| and also λ, ζ are defined in Eq. (20) and Eq. (19). We then say that the
Caputo fractal-fractional Measles disease model’s solution exists.

Proof Let us consider W : H∗ −→ H∗ as defined in (18) and

Nν = {Q ∈ H∗ : ||Q||H∗ ≤ ν}, ∀δ > 0.

Consequently, the operator W is obtained from the continuous and limited operator J . Then for
Q ∈ Nν there is;

|W(Q(t∗))| ≤ |Q(0)|+
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1|J (Ω∗,Q(k∗))|dk∗

≤ Q0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1Θ∗(k∗)G|J (Q(k∗))|dΩ∗

≤ Q0 +
Φ2∗η∗ηΦ2∗+Φ1∗−1B(Φ2∗ , Φ1∗)

Γ(Φ1∗)
Θ∗0∗A(||Q||H∗)

≤ λ + ζΘ∗0∗A(ν).

(23)

Implying further that

||WQ|| ≤ λ + ζΘ∗0∗A(ν) < ∞. (24)

We then obtain a complete continuous operator of W from H∗. Let us now suppose some arbitrary
values t∗, t∗∗ ∈ [0.T] such that t∗ ≤ t∗∗ and also Q ∈ Nν with the assumption that

sup
(t∗,Q)∈A×Nν

|J (Ω∗,Q(t∗))| = J ∗ < ∞.

It then suffices that

|W(Q(t∗∗))−W(Q(t∗))| = |
Φ2∗

Γ(Φ∗
1)

∫ t∗∗

0
Ω∗Φ2∗−1(t∗∗ − Ω∗)Φ∗

1−1|J (Ω∗,Q(k∗))|dk∗

−
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1Θ∗(k∗)J |J (Q(k∗))|dΩ∗

≤ ψ2∗P∗

Γ(ψ∗
1)

|

∫ ♭∗∗
0

Ω∗Φ2∗−1(t∗∗ − Ω∗)Φ∗
1−1dk∗ −

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1dk∗|

≤ Φ2∗B(Φ2∗ , Φ1)J ∗

Γ(Φ∗
1)

[t∗∗Φ2∗+Φ1∗−1 − t∗Φ2∗+Φ1∗−1] (25)

≤ Φ2∗Γ(Φ2∗)J ∗

Γ(Φ∗
1 + Φ1∗)

[(t∗∗)Φ2∗+Φ1∗−1 − t∗Φ2∗+Φ1∗−1],

we therefore observe that Q is independent of t∗∗ has a limit point in t∗, then the RHS of Eq. (25)
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is asymptotic to 0. This leads to

||W(Q(t∗∗))−W(Q(t∗))||H∗ −→ 0.

We then observe from the above that the function W is equi-continuous and we further show
the compactness of W on Nν through means of the Arzela and Ascoli theorem. It is observed in
furtherance that the assumptions given in Theorem 3 are explicitly valid on the function V . This
implies that either (a) or (b) is valid. From (M1), we formulate;

R = {Q ∈ H∗ : ||Q||H∗ < Z},

where we define the function Z to be positive through

λ + ζΘ∗0∗B(Z).

Now by applying (M1) on Eq. (25) we derive the relation

||WQ||H∗ ≤ λ + ζΘ∗0∗A(Q). (26)

Now from the existence of the operator Q ∈ βR and β ∈ (0, 1) in a manner that Q = ϱW(Q).
Now by the given function Q in the domain β, then from Eq. (26), we have,

Z = ||Q||H∗ = β||W(Q)||H∗ < λ + ζΘ∗0∗A(||Q||H∗) < λ + ζΘ∗0∗Z(R) < R.

From the above, we observe that we cannot validate it. This implies that (b) is invalid and the
operator W has a solution or a fixed point in the function R from Theorem 3. Then, the Caputo
fractal-fractional model has at least one solution.
Now we establish explicitly that the Caputo fractal-fractional model has only one solution. We
begin by stating the lemma below;

Lemma 1 Supposing that there exist the following functions:
(S, I, T, R, S∗, I∗, T∗, R∗) ∈ G = C(N ,Y) and there is the norm
(N1): ||S|| ≤ ℑ1, ||I|| ≤ ℑ2, ||T|| ≤ ℑ3, ||R|| ≤ ℑ4 where ℑ1, ℑ2, ℑ3, ℑ4 are positive, and the given norms
suffices the criteria of the least upper bound-norm regarding t∗. Now, further considering the case where,
J1,J2,J3,J4 in view that equation the individual components in (11) meets the Lipschitz criterion of
boundedness anytime there is K1,K2,K3,K4 > 0 where

K1 = α + µ,

K2 = (α − β + δ1 + µ),

K3 = (µ + κ + σ2),

K4 = σ1 + µ.

Proof Given the first operator P1, for the dual functions, S, S∗, we compute;

||J1(t∗, S(t∗), I(t∗), T(t∗), R(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||ψ + σ1R(t)− α1S(t)I(t)− µS(t)|| ≤ −α(S − S∗)− µ(S − S∗)

≤ K1||S − S∗||.
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We observe from the above that the function J1 about the compartment S for the constant K1 is
positive and therefore bounded. Also, let us consider J2, for the dual functions, I, I∗, we obtain;

||J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||α1S(t)I(t) + κT(t)− α2 I(t)R(t)− (β + δ1 + µ)I(t)||

≤ [−α − (β + δ1 + µ)](I − I∗)

≤ −[α − (β + δ1 + µ)]||I − I∗||

≤ (α − β + δ1 + µ)||I − I∗||

≤ K2||I − I∗||.

We further observe that the function J2 about the compartment I for the constant K2 is positive
and also bounded. Let us again consider J3, for the dual functions, T, T∗, we have;

||J1(t∗, S(t∗), I(t∗), T(t∗), R(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||α2 I(t)R(t)βI(t)− (µ + κ + σ2)T(t)||

≤ −(µ + κ + σ2)(T − T∗)

≤ (µ + κ + σ2)||T − T∗||

≤ K3||T − T∗||.

In addition, we see again that the function J3 about the compartment T for the constant K3 is
positive and therefore bounded. Let us finally consider J4, for the dual functions, R, R∗, we derive;

||J1(t∗, S(t∗), I(t∗), T(t∗), R(t∗))−J1(t∗, S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))||

≤ ||σ2T(t)− (σ1 + µ)R(t)||

≤ −(σ1 + µ)(R − R∗)

≤ (σ1 + µ)β||R − R∗||

≤ (σ1 + µ)||R − R∗||

≤ K4||R − R∗||.

Finally, we observe that the function J4 about the state variable R for the constant K4 is positive
and therefore bounded. This suffices that the constants K1,K2,K3,K4 meets the Lipscitz criterion
for boundedness.
Let us finally state and prove the theorem below.

Theorem 5 By assuming further that the condition (N1) is true, it is obvious that the Caputo fractal-
fractional Ebola disease model admits only one solution whenever

⊛KΩ < 1, Ω ∈ {1, 2, 3, 4}, (27)

recalling the definition of ⊛ in Eq. (22).

Proof By recalling and applying the concept of proof by contradiction, the study posits that the
Caputo fractal-fractional Ebola model admits several solutions. We then commence the proof by
assuming that there exists another solution to the Caputo fractal-fractional Ebola model, which is
given as (S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗)) with the following initial values; (S0, I0, T0, R0) such that
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Eq. (18) yields;

S∗(t∗) = S0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J1(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗,

I∗(t∗) = I0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J2(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗,

T∗(t∗) = T0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J3(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗,

R∗(t∗) = R0 +
Φ2∗

Γ(Φ1∗)

∫ ♭∗
0

Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗
1−1

×J4(Ω∗, S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))g∗Ω∗.

(28)

We then obtain the following results;

|S(t∗)− S∗(t∗)| ≤ S0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J1(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J1(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||S − S∗||g∗Ω∗

≤ ⊛K1||S − S∗||,

(29)

which in this case results in

(1 −⊛K1)||S − S∗|| ≤ 0.

It is therefore obvious from Eq. (29) the inequality above will be true if ||S − S∗|| = 0 or S being the
same as S∗.

Also considering the infected compartment, that is, I(t), we obtain;

|I(t∗)− I∗(t∗)| ≤ I0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J2(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J2(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||I − I∗||g∗Ω∗

≤ ⊛K2||I − I∗||,

(30)

which in this case results in

(1 −⊛K2)||V1 − V∗
1 || ≤ 0.
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It is then an obvious observation that from Eq. (30), the above inequality will be valid if ||I − I∗|| = 0
or I being the same as I∗.
Let us consider also the third compartment, that is, T(t), we have;

|T(t∗)− T∗(t∗)| ≤ T0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J3(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J3(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||T − T∗||g∗Ω∗

≤ ⊛K3||T − T∗||,

(31)

which also leads to

(1 −⊛K3)||T − T∗|| ≤ 0.

We also see that from Eq. (31) the above inequality will be correct if ||T − T∗|| = 0 or T being the
same as T∗.
Finally, considering the last state variable, that is, R(t), we obtain;

|R(t∗)− R∗(t∗)| ≤ R0 +
Φ2∗

Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1

× |J4(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))

−J4(Ω∗, S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))|g∗Ω∗

≤ Φ2∗
Γ(Φ1∗)

∫ t∗

0
Ω∗Φ2∗−1(t∗ − Ω∗)Φ∗

1−1m1||R − R∗||g∗Ω∗

≤ ⊛K4||R − R∗||,

(32)

a similar result is obtained as

(1 −⊛K4)||R − R∗|| ≤ 0.

It is therefore obvious from Eq. (32) the inequality above will be true if ||R − R∗|| = 0 or R being
the same as R∗.
From the above results, it is implied that the current solution (S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗)) and
the previous solution (S(t∗), I(t∗), T(t∗), R(t∗)) are the same. This suffices therefore that the
Caputo fractal-fractional Ebola disease model admits a single solution. This ends the proof.

Hyers-Ulam and Hyers-Ulam-Rassias stability of the Caputo fractal-fractional Ebola model

This section is dedicated to the stability analysis of the model in Eq. (9). Stability analysis is
carried out in this study to establish that the solutions of the model obtained are not absolutely
dependent on the changes that may occur in the neighbourhood. This is essential as biological
systems undergo changes sometimes and this may affect the nature of the solution obtained.
The stability studies are therefore carried out to find out if a small change in the neighbourhood
may exert the same small amount of change in the solution of the model. To conduct this study,
we employ the Hyers-Ulam (HU) stability criterion [44] and its extended form referred to as
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the Hyers-Ulam-Rassias stability (HUR) criterion [45]. Also, many models do not have exact
solutions therefore resulting in mostly reliance on numerical solutions which also come from
approximation algorithms. The HU and HUR stability criteria have shown enough strength in
studying instabilities that may occur. This section therefore deals with applying the HU and HUR
stability criteria to understand the stability patterns of the Caputo Ebola fractal-fractional model’s
solution.

Definition 4 Let us suppose that the Caputo fractal-fractional Ebola model meets the HU stability criterion
whenever there exist DJi > 0 ∈ R for i = 1, 2, 3, 4 such that ∀℘ > 0 and also for every S∗, I∗, T∗, R∗ in
the set S∗, then we have,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ S(t∗)−J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘1,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ I(t∗)−J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘2,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ T(t∗)−J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘3,

|FFCDΦ∗
1 ,Φ2∗

0,t∗ R(t∗)−J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘4,

(33)

and noting also that there exists (S, I, T, R) ∈ S∗ then it is obvious that the Caputo fractal-fractional Ebola
disease model satisfy

|S∗(t∗)− S(t∗)| < DJ1℘1,

|I∗(t∗)− I(t∗)| < DJ2℘2,

|T∗(t∗)− T(t∗)| < DJ3℘3,

|R∗(t∗)− R(t∗)| < DJ4℘4.

(34)

Remark 2 We then suppose that (S∗, I∗, T∗, R∗) ∈ G∗ is a solution to the Caputo fractal-fractional Ebola
model whenever we have ℓ1, ℓ2, ℓ3, ℓ4 ∈ C([0, T], R) (based on (S∗, I∗, T∗, R∗) respectively) such that
∀t∗ ∈ (V, (Ω)).|ℓΩ(t∗)| < ℘Ω for Ω = 1, 2, 3, 4, given

FFCDΦ∗
1 ,Φ2∗

0,t∗ S∗(t∗) = J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘1(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ I∗(t∗) = J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘2(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ T∗(t∗) = J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘3(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ R∗(t∗) = J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘4(t∗).

(35)

Definition 5 We assume that the Caputo fractal-fractional Ebola model is HUR stable whenever we have
a function Φi for i = 1, 2, 3, 4 for DJi,Φi > 0 ∈ R for i = 1, 2, 3, 4 such that for every ℘i > 0 and also
anytime (S∗, I∗, T∗, R∗) ∈ S∗ satisfying

|FFCDΦ∗
1 ,Φ2∗

0,t∗ S(t∗)−J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘1Φ1(t∗),

|FFCDΦ∗
1 ,Φ2∗

0,t∗ I(t∗)−J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘2Φ2(t∗),

|FFCDΦ∗
1 ,Φ2∗

0,t∗ T(t∗)−J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘3Φ3(t∗),

|FFCDΦ∗
1 ,Φ2∗

0,t∗ R(t∗)−J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))| < ℘4Φ4(t∗),

(36)
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this implies that (S∗, I∗, T∗, R∗) ∈ U ∗ satisfying the Caputo fractal-fractional Ebola model as given in

|S∗(t∗)− S(t∗)| < DJ1Φ1℘1Φ1(t∗),

|I∗(t∗)− I(t∗)| < DJ2Φ2℘2Φ2(t∗),

|T∗(t∗)− T(t∗)| < DJ3Φ3℘3Φ3(t∗),

|R∗(t∗)− R(t∗)| < DJ4Φ4℘4Φ4(t∗).

(37)

Remark 3 We then assume further that (S∗, I∗, T∗, R∗) ∈ U ∗ is a solution to the Caputo fractal-fractional
Ebola model whenever we have ℓ1, ℓ2, ℓ3, ℓ4 ∈ C([0, T], R) (depending on (S∗, I∗, T∗, R∗) respectively)
such that ∀t∗ ∈ (M, (Ω)).|ℓΩ(t∗)| < Φi℘Ω for Ω = 1, 2, 3, 4, given that

FFCDΦ∗
1 ,Φ2∗

0,t∗ S∗(t∗) = J1(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘1(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ I∗(t∗) = J2(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘2(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ T∗(t∗) = J3(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘3(t∗),

FFCDΦ∗
1 ,Φ2∗

0,t∗ R∗(t∗) = J4(S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗))|+ ℘4(t∗).

(38)

Theorem 6 Let us suppose that the Caputo fractal-fractional Ebola model is HU stable and satisfies the
condition that U := [0, T] such that ⊛Ki for i = 1, 2, 3, 4, and ⊛ as defined in Eq. (22) and the axiom N1
is true.

Proof By assuming that ℘ > 0 and also we define S∗ ∈ G given further that

|FFCDΦ∗
1 ,Φ2∗

0,t S∗(t)−J1(S∗, I∗, T∗, R∗)| < ℘1,

we then have ℓ1 which is deduced from the condition in Remark 2, this then implies that;

FFCDΦ∗
1 ,Φ2∗

0,t S∗(t) = J1(S∗, I∗, T∗, R∗)

< ℓ1(t∗), (39)

where |ℓ1(t) ≤ ℘1|. This results in,

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗

+
Φ2∗

Γ(Φ∗
1)

∫ t∗∗

0
(t∗ − Θ∗)Φ2

1−1℘1(Θ∗)dΩ∗.
(40)

Now from Theorem 5, we let S ∈ G to be a unique solution of the measles disease model with
Caputo fractal-fractional operators. The function S(♭∗) in the form

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

×J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗,
(41)
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and this leads to,

|S∗(t∗)− S(t∗)| ≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1|℘1(Ω∗)|dΩ∗ +

Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

× |J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗ −A1(S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))dΩ∗

≤ ⊛℘1 +⊛K1||S∗ − S||.
(42)

We then have;

||S∗ − S|| ≤ ⊛℘1

1 −⊛K1
.

It is supposed that DJ1 = ⊛
1−⊛K1

, this then results in the norm ||S∗ − S|| ≤ DJ1,℘1 . By following
the same approach for the other state variables of the model, we obtain the norms below;

||I∗ − I|| ≤ DJ2,℘2 ,

||T∗ − T|| ≤ DJ3,℘3 ,

||R∗ − R|| ≤ DJ4,℘4 .

(43)

Since we have the results DJi,℘i =
⊛

1−⊛Ki
for i = 2, 3, 4, then the condition for stability is satisfied.

Hence we posit that the Caputo fractal-fractional Ebola model meets the Hyers-Ulam stability
criterion.

Theorem 7 By assuming further that (N1) is valid, and we have some non-decreasing maps Φi contained
in the set C([0, T], R) for i = 1, 2, 3, 4 and also there exist some ℓΦi > 0 such that ∀t∗ ∈ U, then we have

FFCDΦ∗
1 ,Φ2∗

0,t Φi(t∗) < ℓΦi Φi(t∗), i = 1, 2, 3, 4.

Whenever condition (N1) is satisfied, we say that the Caputo fractal-fractional Ebola model is Hyers-Ulam-
Rassias stable.

Proof Given that ℘ > 0 and also S∗ ∈ G, thius results in

|FFCDΦ∗
1 ,Φ2∗

0,t S∗(t∗)−J1S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗)| < ℘1Φi(t∗).

Now assuming that there is ℓ1(t∗) such that;

FFCDΦ∗
1 ,Φ2∗

0,t S∗(t∗) = J1S∗(t∗), I∗(t∗), T∗(t∗), R∗(t∗) + ℓ(t∗),

noting that |ℓ1(t∗) ≤ ℘1Φ1(t∗)|, leading to,

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗

+
Φ2∗

Γ(Φ∗
1)

∫ t∗∗

0
(t∗ − Ω∗)Φ2

1−1ℓ1(Ω∗)dΩ∗.

(44)

In addition, we recall from Theorem 5 and suppose that there exists a unique solution to the
Caputo fractal-fractional Ebola model, relating to the state variable S ∈ G. We then obtain the
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function S(t∗) in the form

S∗(t∗) = S0 +
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

×J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗,
(45)

which then leads to,

|S∗(t∗)− S(t∗)| ≤ Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1|℘1(Ω∗)|dΩ∗

+
Φ2∗

Γ(Φ∗
1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1

× |J1(S∗(Ω∗), I∗(Ω∗), T∗(Ω∗), R∗(Ω∗))dΩ∗

−A1(S(Ω∗), I(Ω∗), T(Ω∗), R(Ω∗))dΩ∗

≤ ℘1Φ2∗
Γ(Φ∗

1)

∫ t∗

0
(t∗ − Ω∗)Φ1−1Φ1(t∗) +⊛K1||S∗ − S||

≤ ℘1ℓΦ1 Φ1(t∗) +⊛K1||S∗ − S||.

(46)

It is observed that the state variable S is in the form;

||S∗ − S|| ≤
℘1ℓΦ1 Φ1(t∗)

1 −⊛K1
.

By concluding on this, from the above we define DJ1 =
ℓΦ1

1−⊛K1
, implying that the norm ||S∗ − S|| ≤

℘1DJ1,Φ1 Φ1(t∗) is satisfied. Applying the same procedures we obtain the norms for the remaining
state variables;

||I∗ − I|| ≤ ℘2DJ2,Φ2 Φ2(t∗),

||T∗ − T|| ≤ ℘3DJ3,Φ3 Φ3(t∗),

||R∗ − R|| ≤ ℘4DJ4,Φ4 Φ4(t∗).

(47)

Finally, we recall that DJi,Φi =
ℓΦi

1−⊛Ki
for i = 2, 3, 4. It is then easy to conclude that the Caputo

fractal-fractional Ebola model meets the Hyers-Ulam-Razzias stability criterion. This completes
the proof.

6 Estimation of parameters

In this section, the estimation of parameters from real Ebola data is done for the model which
is a crucial element of epidemiological modelling [46]. Future outcomes can be predicted using
the model and advance our comprehension of the factors that influence the transmission of
disease. Additionally, this method effectively finds the parameters that are very close to their
actual data while producing the appropriate curve generated from actual data [47, 48]. In this
study, the parameters of the model were obtained by applying the least-squares technique as
used in literature, see for instance [49–52] and this yields estimated parameters that have the
highest likelihood of being accurate, assuming certain crucial assumptions are met. Nonlinear
least-squares analysis is a collection of numerical methods used to determine the best value for
the parameters in a vector form based on experimental data. As a result, the model’s solution is
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accurately adjusted using the epidemic’s real data. Eq. (48) provides the method of least-squares
that we apply to investigate the model system. The method is to choose initial approximations
and pre-calculated model parameters that offer a good fit or incorporate all of the data points by
minimising the sum of the squared discrepancies between the model’s solution and the observed
data ⨿(g, m̃) [53, 54], such that:

⨿(m̃) =
n∑

g=1

(m̃g −⨿(g, m̃))2. (48)

Data from the Ebola cases that took place in Uganda between September 10, 2022, and November
2, 2022, were utilised for the model fitting, and it is displayed in Table 1. As mentioned in [55, 56],
the set of data was sourced from GitHub. In collaboration with the WHO Regional Office for
Africa (WHO AFRO), the Ministry of Health in Uganda, and the ECDC surveillance provided
the data. According to the data obtained from the Worldometer, the total population of Uganda
was estimated to be 47,249,585 in 2022 [57]. Therefore, we chose this number to represent the
entire population of Uganda, N(0) = 47249585. Initial populations of the state variables were
selected as follows: I(0) = 58, T(0) = 0, R(0) = 0, and the initial number of susceptible humans is
computed as S(0) = N(0)− (I(0)) + T(0) + R(0)) = 47249527. The incubation period, normally
lasts between 2 and 21 days, by the WHO [58]. As per [2], 64.06 years was Uganda’s life expectancy
in 2022. Thus, the natural mortality rate is estimated to be µ = 1

64.06×365 . Hence, the rate at which
people are recruited to join the susceptible class is computed as ψ = µ × N = 2020. Figure 1
displays the model fitting to the entire set of real data in Table 1. The data listed above and some
educated guesses regarding the parameters were used to accomplish this. Table 2 displays the
model parameters derived from the model calibration shown in Figure 1.

Table 1. Ebola disease human cases, from 10th October, 2022 to 2nd November, 2022

Day Cases Day Cases
10/15/2022 58 10/25/2022 109
10/16/2022 60 10/26/2022 115
10/17/2022 60 10/27/2022 121
10/18/2022 61 10/28/2022 126
10/19/2022 64 10/29/2022 128
10/20/2022 65 10/30/2022 129
10/21/2022 71 10/31/2022 130
10/22/2022 75 11/01/2022 131
10/23/2022 90 11/02/2022 131
10/24/2022 95

Table 2. Ebola model parameters

Parameter Value/day Source Parameter Value/day Source
ψ 2020 Estimated β 0.298548 Fitted
µ 1

64.06×365 Estimated σ2 0.004703 Fitted
α1 0.000019 × 10−3 Fitted δ1 0.603885 Fitted
σ1 0.002182 Fitted α2 0.023848 Fitted
κ 0.096099 Fitted
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Figure 1. Comparison of the real data (blue dots) for the number of Ebola-infected individuals with the model
under fractal-fractional Caputo derivative when Φ1 = 0.80 and Φ2 = 0.86 from 10th October, 2022 to 2nd
November, 2022

7 Equilibrium points, stability of equilibrium points, and basic reproduction number

Disease-free equilibrium

The disease-free equilibrium denotes a situation where there is no disease in the population. It can
be obtained in this model by setting S, I, T and R to zero in Eq. (1) and the resulting solution is
given as

E0 =

(
ψ

µ
, 0, 0, 0

)
. (49)

The fundamental reproduction number

The reproduction number(R0) is the mean number of subsequent infections introduced into a fully
susceptible population by a single infected individual [1]. In epidemiology, R0 is essential for
comprehending how infectious diseases spread, directing public health initiatives, and assessing
pathogen infectiousness for efficient disease control and prevention [28]. The R0 value below 1
signifies the end of a disease outbreak, while an R0 value above 1 suggests a potential epidemic.
A reduction in reproduction numbers due to vaccination, social isolation, or quarantine measures
indicates containment. Employing next-generation matrix approach, we derive the R0 of the
model (1) to be;

R0 =
1

(β + µ + δ1)

[
α1ψ

µ
+

βk
(µ + k + σ2)

]
. (50)
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Analysis of disease-free equilibrium

In this subsection, we prove the local stability of E0.

Theorem 8 The disease-free equilibrium is locally asymptotically stable if R0 < 1 and (β + µ + δ1) +

(µ + k + σ2) > α1
ψ
µ and unstable if R0 > 1.

Proof The corresponding Jacobian matrix of model (1) at E0 is given by

J(E0) =


−µ −α1

ψ

µ
0 σ1

0 α1
ψ

µ
− (β + µ + δ1) κ 0

0 β −(σ2 + κ + µ) 0
0 0 σ2 −(µ + σ1)

 . (51)

It is obvious that Eq. (51) has two negative roots ϵ1 = −µ and ϵ2 = −µ − σ1. The rest of the roots
would be obtained from the characteristic equation below

ϵ2 + [(β + µ + δ1) + (µ + κ + σ2)] ϵ + (β + µ + δ1) (µ + κ + σ2) (1 − R0). (52)

From Eq. (51),

det(ϵ3ϵ4) = (β + µ + δ1) (µ + κ + σ2) (1 − R0). (53)

Also,

tr(ϵ3 + ϵ4) = α1
ψ

µ
− (β + µ + δ1)− (µ + κ + σ2) . (54)

It is obvious that, since its trace is negative and its determinant is positive. det(ϵ3ϵ4) > 0 if R0 < 1.
If

(β + µ + δ1) + (µ + κ + σ2) > α1
ψ

µ
, (55)

then tr(ϵ3 + ϵ4) < 0, implying that model (1) is asymptotically stable.

Existence of endemic equilibrium

Here, we examine the requirements for model (1)’s endemic equilibrium. The endemic equilibrium
denoted by E∗∗

1 = (S∗∗, I∗∗, T∗∗, R∗∗) is obtained by substituting the derivatives in the left-hand
side of the model (1) and equate it to zero. We then solve the associated system of S∗∗, I∗∗, T∗∗,
and R∗∗, we obtain

S∗∗ =
ψ(µ + σ1)(µ + k + σ2) + σ2 I∗∗(ψα2 + σ1β)

(α1 I∗∗ + µ)[(µ + σ1)(µ + k + σ2)− α2σ2 I∗∗]
,

T∗∗ =
β(µ + σ1)I∗∗

(µ + σ1)(µ + k + σ2)− α2σ2 I∗∗
,

R∗∗ =
βα2σ2 I∗∗

(µ + σ1)(µ + k + σ2)− α2σ2 I∗∗
.

(56)
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The endemic equilibrium (56) satisfies

P(I∗∗) = I∗∗(Q1 I∗∗)2 + Q2 I∗∗ + Q3) = 0, (57)

where

Q1 = α1α2σ2(µ + δ1),

Q2 = α2σ2[ψα1 + µ(µ + δ1)] + α1ησ2 + α1(η + µ)[kβ − (k + µ + σ2)(β + µ + δ1)],

Q3 = (k + µ + σ2)(β + µ + δ1)(η + µ)(R0 − 1).

The root I∗∗ = 0 of Eq. (57) corresponds to disease-free equilibrium. Thus, we regard the quadratic
equation

P(I∗∗) = Q1(I∗∗)2 + Q2 I∗∗ + Q3 = 0, (58)

in determining the existence of endemic equilibrium. It should be noted that the positive root of
the equation provides the endemic equilibrium (56).

One can easily see that Q1 > 0 whether R0 > 1 or not. If R0 > 1, Q3 > 0 and if Q2 < 0
when R0 > 1, then the graph of the polynomial (58) indicates that model (1) has one endemic
equilibrium. If R0 < 1, and Q3 < 0. Then model (1) has no endemic equilibrium. If R0 = 1,
Q2 > 0 and Q3 = 0, then Eq. (58) has no positive root. In conclusion, we arrive at the results
below.

Theorem 9 The model (1) has a unique endemic equilibrium if Q2 < 0 and R0 > 1, and no endemic
equilibrium when R0 ≤ 1.

Local stability of endemic equilibrium and bifurcation analysis

We examine the possibility of bifurcation and discuss the local stability of endemic equilibrium.
The bifurcation phenomenon is established in this section by using the centre manifold theory
as explained in Theorem 4.1 by both Carlos Castillo-Chavez et al. [59] and Buonomo et al. [60]
respectively as follows:

We consider the transmission rate of Ebola α1 as the bifurcation parameter so that R0 = 1 if and
only if

α1 = α∗1 =
µ(β + µ + δ1)(µ + k + σ2)− βkµ

ψ(µ + k + σ2)
.

Introducing S = x1, I = x2, T = x3, and R = x4, model (1) becomes

f1 = x ′
1 = ψ + σ1x4 − α1x1x2 − µx1,

f2 = x ′
2 = α1x1x2 + kx3 − α2x2x4 − (β + µ + δ1)x2,

f3 = x ′
3 = α2x2x4 + βx2 − (µ + k + σ2)x3,

f4 = x ′
4 = ϕx3 − (µ + σ1)x4.

(59)
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We know that the Ebola-free equilibrium is
[

x∗1 =
ψ

µ
, x∗2 = 0, x∗3 = 0, x∗4 = 0

]
. We linearised the

matrix of the model (59) around the disease-free equilibrium when α1 = α∗1 and obtained

J(E0
1) =


−µ −α1

ψ

µ
0 σ1

0 α1
ψ

µ
− (β + µ + δ1) κ 0

0 β −(σ2 + κ + µ) 0
0 0 σ2 −(µ + σ1)

 . (60)

The matrix J(E0
1) possesses a simple eigenvalue, with other eigenvalues endowed with negative

real parts. Therefore, the centre manifold theorem as performed in [2] can be applied. We therefore
need to derive the values of a and b. We begin this by calculating the right and left eigenvalues of
J(E0

1) denoted by

W = [w1, w2, w3, w4]
T and V = [v1, v2, v3, v4], respectively.

We obtain

w1 = −
ψα∗1(µ + k + σ2)(µ + σ1) + σ2σ1βµ

µ2βσ2
, w2 =

(µ + k + σ2)(µ + σ1)

βσ2
, w3 =

(µ + η)

σ2
,

w4 = 1,

and

v1 = 0, v2 =
(µ + k + σ2)

k
, v3 = 1, and v4 = 0.

Next, we compute the values of a and b. From model (59), all the associated partial derivatives of
F = ( f1, f2, f3, f4)

T in (59) are zero at the Ebola-free equilibrium (DFE) except the following:

∂2 f1

∂x1∂x2
=

∂ f1

∂x2∂x1
= −α∗1,

∂2 f2

∂x1∂x2
=

∂2 f2

∂x2∂x1
= α∗1,

∂2 f2

∂x2∂x4
=

∂2 f2

∂x4∂x2
= −α2,

∂2 f3

∂x2∂x4
=

∂2 f3

∂x4∂x2
= α2,

∂2 f2

∂x2∂α∗1
= α2,

∂2 f2

∂x3∂α∗1
=

ψ

µ
.

Substituting the above equations into a and b in

a =
n∑

k,i,j=1

vkωiωj
∂2 fk

∂xi∂xj(0, 0)
,

b =
n∑

k,i=1

vkωi
∂3 fk

∂xi∂ϕ
(0, 0),
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it follows that

a = 2v2w1w2
∂2 f2

∂x1∂x2
+ 2v2w2w4

∂2 f2

∂x2∂x4
+ 2v3w2w4

∂2 f3

∂x2∂x4

= 2v2w1w2α∗1 − 2v2w2w4α2 + 2v3w2w4α2

=
2(µ + k + σ2)

2(µ + σ1)

kβ2µ2σ2
2

[
α2

(µ + k + σ2)
−
(

ψα∗2
1 (µ + k + σ2) (µ + σ1) + βµ(α2µ + σ2σ1)

)]
> 0,

b = v2w2
∂2 f2

∂x2∂α∗1
+ v3w3

∂2 f2

∂x3∂α∗1

=
ψ(k + σ2 + µ)2(µ + σ1)

βµkσ2
> 0.

Here, it is obvious that the coefficient b > 0. It follows from the results given in [61], that model (1)
undergoes backward bifurcation whenever a > 0, that is α2

(µ+k+σ2)
>

(
ψα∗2

1 (µ + k + σ2) (µ + σ1) + βµ(α2µ + σ2σ1)
)

and would be a forward bifurcation whenever a < 0, that is
α2

(µ+k+σ2)
<

(
ψα∗2

1 (µ + k + σ2) (µ + σ1) + βµ(α2µ + σ2σ1)
)
. The endemic equilibrium, which ex-

ists whenever R0 > 1, is locally asymptotically stable whenever R0 > 1 and α∗1 < α1 with α1 close
to α∗1.

Theorem 10 The unique endemic equilibrium of model (59) is locally asymptotically stable when R0 > 1.

8 Sensitivity analysis of R0

In this subsection, we conduct a sensitivity analysis of some key parameters in support of the
graphs in Figure 6. The significance of conducting the sensitivity analysis is to identify parameters
influencing the R0. It is a useful tool for determining essential parameters to be considered while
developing intervention strategies [2, 62, 63]. The forward normalised sensitivity index of R0 is
employed in this section. It is therefore defined as:

χ
R0
ℓ =

∂R0

∂ℓ
× ℓ

R0
, (61)

where ℓ denotes the parameters in the R0. The resulting sensitivity indices utilising Eq. (4) and
the parameter values in Table 2 are given in Table 3 below.

Table 3. Sensitivity analysis of R0 to parameters for the Ebola model

Number Parameter Index
1 α1 +0.99968
2 ψ +0.99968
3 κ +1.49150 × 10−5

4 µ −0.99973
5 β −0.33049
6 δ1 −0.66914
7 σ2 −1.47801 × 10−5

Parameters with negative sensitivity indices lower R0 value as the values assigned to them are
increased. Parameters with positive indices increase R0 value as the values assigned to the
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(a) 3D plot of κ and σ2 on R0
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Figure 2. The effect of κ and σ2 on R0

parameters are increased. It can be seen from Table 3 that α1, κ and ψ are positive. Therefore,
increasing their values increases the value of R0. For instance, increasing α1 by 10% raises or
reduces the R0 value by 9.9968%. Figure 2 indicates the 3D and contour plots in support of the
impact of relapse rate, κ and the recovery rate, σ2 on R0. It can be seen in Figure 2a and Figure 2b
that the value of R0 increases as the values of κ increase. Also, the R0 value decreases as the value
of σ2 increases. This implies that Ebola transmission can be reduced if the values of κ are reduced
while increasing the value of σ2 so that the value of R0 would be less than unity. This can be
achieved by educating the susceptible to ensure personal protection against Ebola, disinfecting
the environment of the infectious and Ebola-related death victims, and advising the infectious
individuals to visit health centres for treatment and vaccination of susceptible individuals. Also,
β, δ1, σ2, and µ have negative values. Therefore, an increase in any of them decreases the R0. For
instance, raising or lowering β by 10% raises or lowers the R0 value by 3.3049%. This implies that
if infectious people are advised to visit treatment centres Ebola infection decreases. Moreover, the
rate of recovery of the infectious populace has been dominant. Thus, a reduction in R0 to less than
one will be possible if infected persons recover early from Ebola. However, the natural mortality
rate, the disease-related death rate, and the recruitment rate cannot be used as control measures to
eradicate the transmission of disease in our communities.

9 Numerical trajectories and discussion of results

In this subsection, the numerical results and the discussion of the outcomes of the analysis that
was conducted in this study are presented. Based on the fractal-fractional Caputo, our model of
the Ebola outbreak in Uganda may be numerically examined and utilised to predict the disease’s
trajectory. We used Newton’s polynomial numerical scheme to carry out extensive numerical
simulations, taking into consideration the estimated parameter values provided in Table 2. The
numerical simulations were carried out using these initial state variable values: S(0) = 47249527,
I(0) = 58, T(0) = 0, R(0) = 0, and the parameter values given in Table 2. Numerous simulations
were conducted to assess the influence of the parameters on the Ebola virus disease state variables.
Additionally, we performed sensitivity analyses on some of the key parameters to see how they
affect the possibility of Ebola disease transmission.
The graphical results for our model’s compartments, S, I, T, and R, utilising different fractal-
fractional order values are presented in Figure 3, Figure 4, and Figure 5 accordingly. It is observed
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that all the state variables’ trajectories show a consistent pattern of convergence toward the precise
endemic equilibrium point. This portrays the real dynamics of the Ebola virus disease outbreak.
First, we show the numerical solution for both the integer order and the fractal-fractal Caputo
orders of model (2) in Figure 3. It is obvious from Figure 3a, Figure 3b, Figure 3c and Figure 3d
that integer model with Φ1 = Φ2 = 1 recorded a lower count of susceptible whiles infectious,
treatment and recovery classes recorded a higher count as compared to the fractal-fractional
order models. The integer order raises the impact of Ebola. An interesting result was observed
in Figure 3b. The number of individuals infected with the Ebola virus increases more quickly
as the fractional values get closer to unity, but after 18 days, it begins to decline sharply. The
disease’s trajectory seems to record a moderate growing pace, we record greater sensitivity to it at
Φ1 = Φ2 = 1. A similar result was obtained in Figure 4b and Figure 5b.
The simulation results in Figure 4 depict the impact of keeping the fractal dimension constant
at Φ1 = 1 while varying the fractional order value. It was observed in Figure 4a, Figure 4b,
Figure 4c, and Figure 4d that, individuals in the susceptible class increase as fractional order
values decrease. Also, individuals in the infectious, treatment, and recovery classes reduce
as the fractional value reduces. As shown in Figure 5a, Figure 5b, Figure 5c, and Figure 5d,
increasing the fractal dimension for a constant fractional order value produces dynamics that are
similar to those obtained by keeping the fractal dimension constant at Φ1 = 1 and varying the
fractional order. The findings underscore the significance of employing fractal-fractional models
modelling infectious diseases. Hidden patterns and structures in the natural phenomena of Ebola
transmission have been discovered by the application of fractal-fractional Caputo derivatives.
Additionally, we analysed the contribution of some key parameters to the Ebola transmission
and presented the results in Figure 6a, Figure 6b, Figure 6c and Figure 6d. We observed that, as
the values of transmission rate outside the treatment centres, α1, and the relapse rate, κ increase,
the number of Ebola infectious individuals increases as indicated in Figure 6a, and Figure 6d
respectively. This implies that α1, and κ significantly contribute to the endemic status of the disease
by increasing the value of the reproduction ratio. They are among the essential components that
need to be considered while developing intervention strategies to curb the Ebola outbreak. We
suggest that the provision of an immune booster vaccination after treatment could offer active,
long-term protection, lower relapse rates, and prevent fatal outcomes. Furthermore, implementing
control measures like quarantine, isolation, and disinfecting the environment in Ebola-affected
communities could potentially help many individuals recover from the disease. Moreover, we
considered the transmission rate at treatment centres, α2, and the rate of transfer from the treated
class to the infected class, β. We observed from Figure 6c and Figure 6b that recovery increases at
treatment centres as the transmission rate within treatment centres, α2 decreases in value. Also, as
the value of β increases, the rate of Ebola infection declines, as depicted in Figure 6b. This implies
if many infectious individuals are advised to visit treatment centres, Ebola transmission reduced,
in communities. This also implies that transmission of Ebola disease could be controlled if proper
measures are put in place at treatment centres. For instance, the implementation of clinical daily
surveillance or prophylaxis after exposure (PEP) with favipiravir, health care worker training, and
the provision of personal protective equipment (PPE) items may all contribute to the reduction of
infection rates within Ebola treatment centres. Again, Figure 7 indicates the effects of σ2 on the R0.
It is obvious that as the value of σ2 increases the number of Ebola infectious individuals decreases.
Hence reduction in its value increases recovery of the disease. This suggests that if the transmission
rate is lowered, the number of subsequent infections in the community can be decreased and
the relapse rate of Ebola is reduced. These can be achieved through personal protection against
the disease, vaccination, and treatment, and disinfecting the surroundings of the deceased Ebola
victims. Finally, it is obvious that the fractional model is essential to comprehend the vital factors
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and attain accuracy and consistency. Its memory effects are demonstrated through graphs, unlike
the integer-order models. According to the World Health Organisation (WHO), the Ebola virus
disease is severe and recorded a mortality rate of up to 90% in humans. Notwithstanding this, it
further reports that by carrying out effective treatment strategies, the mortality rate has decreased
drastically from 90% to 25% in current epidemics. This report is in line with the results from our
study since when proper precautions are put in place at the treatment centres we observed an
increase in the recovery compartment which implies a decline in the disease-induced mortality
rate.
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Figure 3. Effect of Fractal-Fractional order on the S(t), I(t), T(t), and R(t) respectively. Considering
Φ1 = Φ2 = 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88
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Figure 4. Effect of fractional order on the S(t), I(t), T(t), and R(t) respectively. Considering Φ1 = 1 and
Φ2 = 1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88
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Figure 5. Effect of Fractal order on the S(t), I(t), T(t), and R(t) respectively. Considering Φ1 =
1, 0.98, 0.96, 0.94, 0.92, 0.90, 0.88 and Φ2 = 1
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Figure 6. Effect of α1,β,κ on the infectious class, I(t) and α2 on the recovery class, R(t) at Φ1 = Φ2 = 0.90

0 10 20 30 40 50

Time (Days)

0

20

40

60

80

100

120

140

In
fe

ct
io

u
s 

p
o

p
u

la
tio

n

2
=0.004703

2
=0.014703

2
=0.024703

2
=0.034703

2
=0.044703

2
=0.054703

2
=0.064703

Figure 7. Effect of σ2 on the infectious class, I(t) at Φ1 = Φ2 = 0.90
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10 Conclusion

In this paper, the dynamics of the Ebola virus disease are investigated with a keen focus on the
transmission of the Ebola virus disease at the treatment centres and also how the virus persists in
the immunological sites of the treated patient which mostly results in the relapse of the disease.
These dynamics of the Ebola virus disease are essential and contribute massively to the spread of
the disease in the population. Therefore a Caputo fractal-fractional Ebola model was formulated to
study how to control the disease in the population. The fractional operators were employed due to
their ability to capture the memory effect exhibited by the Ebola virus disease. Through the fixed
point theory, it was established that the Caputo fractal-fractional Ebola model possesses a unique
solution. The study further applied the HU and HUR stability criteria to establish that the model
was stable. In the studies, all parameters were fitted to real data from Uganda making the model’s
parameter values more reliable. It was observed from the sensitivity analysis that parameters
like α1, ψ and κ have a direct relationship with the spread of the disease whereas parameters like
µ, β, δ1 and σ2 are inversely related to the fundamental reproductive number. From the numerical
simulations, it was discovered that the hidden patterns or dynamics of the Ebola virus disease
are well captured using fractional operators. It was observed that the transmission rate outside
the treatment centres and relapse rate resulted in a high number of infections as compared to the
transmission rate at the treatment centres. The study therefore suggests that infected individuals
be sent to the treatment centres and proper treatment should also be carried out. The studies hence
suggest that transmission of Ebola disease could be mitigated if proper measures are carried out at
the treatment centres. Therefore, the implementation of clinical daily surveillance or prophylaxis
after exposure (PEP) with favipiravir, health care worker training, and the provision of personal
protective equipment (PPE) items may all contribute to the reduction of infection rates within
Ebola treatment centres. By doing this, the Ebola disease will gradually die from the population.
In the near future, the study will be extended to conduct an optimal control analysis into the Ebola
disease by considering the results reported in this current study.
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