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Abstract 
 
Alzheimer's disease is a prevalent neurological disorder affecting millions of people worldwide, often 
associated with the aging process, leading to the death of nerve cells in the brain and loss of connections. 
Recently, promising results have been demonstrated in diagnosing Alzheimer's disease using deep learning 
models, and various approaches for early diagnosis have been proposed. However, the imbalance in health 
datasets, particularly those containing rare cases, can lead to performance losses and misleading results 
during model training. This study focuses on these imbalance issues, evaluating the effectiveness of 
different balancing methods using the Alzheimer's MRI dataset. In this context, the performance of 
SMOTE, ADASYN, and Weight Balancing methods is compared using a custom model. Experimental 
results indicate that, compared to the original imbalanced dataset, Weight balancing outperforms in terms 
of accuracy, precision, recall, and F1 score. While SMOTE and ADASYN show improvement in various 
metrics, they are considered inferior to the Weight Balancing method. This study contributes to selecting 
data-balancing methods to enhance the accuracy of deep learning models in Alzheimer's disease 
classification and emphasizes the importance of addressing class imbalances in health datasets.  
 
Keywords: Deep learning, Convolutional neural networks, SMOTE, ADASYN, Weight balancing 
 

Alzheimer Hastalığı Sınıflandırması için Veri Dengeleme Yöntemlerinin 
Karşılaştırmalı Bir Çalışması 

 
Öz 
 
Alzheimer hastalığı, dünya genelinde milyonlarca insanı etkileyen yaygın bir nörolojik bozukluktur ve 
genellikle yaşlanma süreciyle ilişkilidir; beyinde sinir hücrelerinin ölümüne ve bağlantı kaybına neden olur. 
Son zamanlarda, derin öğrenme modelleri kullanılarak Alzheimer hastalığının teşhisi konusunda umut 
verici sonuçlar elde edilmiş ve erken teşhis için çeşitli yaklaşımlar önerilmiştir. Ancak, özellikle nadir 
durumları içeren sağlık veri setlerindeki dengesizlik, model eğitimi sırasında performans kayıplarına ve 
yanıltıcı sonuçlara yol açabilir. Bu çalışma, bu dengesizlik sorunlarına odaklanarak, Alzheimer MRI veri 
seti için farklı dengeleme yöntemlerinin etkinliğini değerlendirmektedir. Bu bağlamda, özel bir model 
kullanılarak SMOTE, ADASYN ve Ağırlık Dengesi yöntemlerinin performansı karşılaştırılmaktadır. 
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Deneysel sonuçlar, orijinal dengesiz veri setine kıyasla Ağırlık Dengesi yönteminin doğruluk, hassasiyet, 
geri çağrı ve F1 skoru açısından daha üstün olduğunu göstermektedir. SMOTE ve ADASYN, çeşitli 
metriklerde iyileşme göstermesine rağmen, Ağırlık Dengesi yöntemine kıyasla daha düşük performansa 
sahip oldukları gözlemlenmiştir. Bu çalışma, Alzheimer hastalığı sınıflandırmasında derin öğrenme 
modellerinin doğruluğunu artırmak için veri dengeleme yöntemlerinin seçimine katkıda bulunur ve sağlık 
veri setlerinde sınıf dengesizliğinin ele alınmasının önemini vurgular. 
 
Anahtar Kelimeler: Derin öğrenme, Evrişimsel sinir ağları, SMOTE, ADASYN, Ağırlık dengeleme 
 
1. INTRODUCTION 
 
Alzheimer's disease, a prevalent neurological 
disorder that impacts approximately 50 million 
individuals globally, presents a significant 
challenge in the field of healthcare [1]. As this 
neurodegenerative disease progresses, it poses a 
serious threat to an individual's general health, 
potentially leading to death in the event of complete 
brain failure. Because of the broad loss of nerve 
cells across the brain, Alzheimer's has a far-
reaching impact, extending to basic skills such as 
writing, speaking, and reading. Notably, people in 
the cognitive stages of Alzheimer's disease may 
have difficulty identifying their family members.  
 
The insidious nature of Alzheimer's disease, 
distinguished by its gradual onset of symptoms, 
makes accurate and early diagnosis difficult [2]. 
The importance of early-stage identification, on the 
other hand, cannot be stressed, as it allows for rapid 
intervention and therapy, ultimately contributing to 
a better prognosis for people suffering from this 
complicated neurodegenerative disorder [3]. In this 
context, developing efficient diagnostic methods is 
critical to improving our ability to combat 
Alzheimer's disease and lessen its devastating 
effects on people and society as a whole. 
 
Deep learning algorithms have seen substantial 
success in a variety of fields [4-7]. Consequently, 
the importance of deep learning-based approaches 
in the diagnosis of Alzheimer's disease has been 
rapidly increasing [8-11]. Various methods have 
been presented in this field to assist clinicians in 
making educated medical decisions as diagnostic 
aids for Alzheimer's disease. Lu et. al. [12] 
introduced an innovative multimodal deep neural 
network employing a multistage technique for the 
detection of dementia. Their method demonstrated 

notable success, achieving an accuracy of 82.4% in 
predicting mild cognitive impairment (MCI) and 
identifying individuals who later developed 
Alzheimer's disease within three years. The model 
exhibited a notable sensitivity of 94.23% in 
Alzheimer's disease detection and achieved an 
accuracy of 86.3% for the non-demented class. 
Ahmed et. al. [13] proposed an ensemble CNN 
model for Alzheimer's disease (AD) diagnosis that 
used a feature extractor and the Softmax classifier. 
The model, designed to avoid overfitting, 
performed well, obtaining an accuracy of 90.05% 
by utilizing MRI images centered on the left and 
right hippocampal sections. Liu et. al. [14] utilized 
siamese neural networks to assess whole-brain 
volumetric asymmetry. They used the MRI cloud 
approach to produce low-dimensional descriptors 
for designated atlas brain structures. They 
employed a unique non-linear kernel method to 
normalize features, eliminating batch effects across 
different datasets and populations. Using the ADNI 
dataset, the networks achieved a balanced accuracy 
of 92.72% in the classification of MCI and 
Alzheimer's disease. Sarraf et. al. [15] suggested a 
deep learning pipeline for feature categorization 
that focused on processes that don't change with 
scale or shift and included a CNN model trained on 
a large dataset. The model performed well, with 
accuracy rates of 94.32% for functional MRI and 
97.88% for MRI images.  
 
The analysis of datasets in the field of healthcare 
typically begins with the challenges encountered in 
the process of collecting samples related to specific 
health conditions or diseases. One of these 
challenges arises from the rarity of certain health 
conditions or the limited number of samples 
belonging to specific classes, leading to an 
imbalance in the datasets. The collection of samples 
associated with rarely occurring diseases or specific 
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health conditions can adversely affect the 
effectiveness of analysis and classification models. 
This imbalance can lead to performance losses and 
misleading outcomes during model training. This 
study focuses on addressing the imbalance issues in 
healthcare datasets and investigates the 
performance of methods developed to overcome 
this challenge.  
 
In the case of Alzheimer's disease diagnosis with 
deep learning algorithms, imbalanced datasets are a 
common issue. This occurs when one class has 
significantly more examples than the other. For 
instance, in Alzheimer’s disease, the number of 
non-diseased individuals typically far exceeds that 
of diseased individuals. This imbalance negatively 
impacts the performance of classification models. 
In imbalanced datasets, the model tends to overfit 
the majority class and fails to learn accurately from 
the minority class. Consequently, it correctly 
classifies majority class examples but performs 
poorly on minority class examples. This leads to 
significant performance issues, especially when the 
minority class is critically important. In 
Alzheimer’s disease, misclassification of the 
minority class can have serious consequences, such 
as missed opportunities for early intervention and 
treatment. Although overall accuracy might appear 
high, these metrics can be misleading for the 
minority class. In this context, the performance of 
dataset balancing methods is analyzed using the 
Alzheimer's MRI dataset. 
 
2. MATERIALS AND METHODS 
 
This section covers the dataset, model, strategies for 
dealing with data imbalances, training details, and 
metrics.  
In this study, the Alzheimer's MRI Dataset [16] 
from the Kaggle website was used, which included 
four separate classes: non-demented, very mild, 
mild, and moderate. It is important to highlight that 
the dataset is unbalanced. The class distributions are 
as follows: Non-demented (3200 samples), very 
mild (2240 samples), moderate (64 samples), and 
mild (896 samples). Figure 1 shows a histogram 
indicating the distribution of each class. This 
dataset comprises a total of 6400 MRI images 
representing various levels of dementia.  

 
Figure 1. Class distribution of the Alzheimer's 

MRI dataset 
 

The dataset was partitioned into three independent 
subsets during the training process-training, testing, 
and validation sets-to properly evaluate the model's 
performance. Specifically, 85% of the dataset has 
been set aside for training, with the remaining 15% 
set aside for testing. Furthermore,15% of the 
training dataset has been put aside to serve as the 
validation set to assess the model's generalization 
abilities. Figure 2 shows several random samples 
from the dataset 

 

 
Figure 2. Random samples from the Alzheimer's 

MRI dataset 
 
A. Model 
 
To assess the performance of proposed 
interventions for the data imbalance problem, a 
custom model was created. The primary objective 
of this model is to classify a given input image and 
generate probability distributions for four different 
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classes as outputs. The model incorporates 
convolutional layers for feature extraction and 
complexity reduction, activation functions to 
introduce non-linearity, pooling layers to decrease 
the size of feature maps, batch normalization layers 

to normalize inputs for each layer within the 
network, and dense layers for classification 
purposes. In Figure 3, details of each layer used in 
the model, such as the number of kernels, kernel 
size, input, and output dimensions, are provided. 

 

 
Figure 3. A custom model created for comparing various approaches to address the issue of data imbalance 
 
B. Methods for Addressing Data Imbalance 
 
In this section, we discuss dataset balancing 
methods for imbalanced classification problems, 
where there is a skewed distribution of classes in the 
dataset and one class (usually the minority class) 
has significantly fewer examples than the others.  

 
1. SMOTE (Synthetic Minority Over-Sampling 
Technique) [17]: This method draws inspiration 
from a technique used in handwritten character 
recognition, aiming to produce synthetic examples 
for the minority class. Rather than resorting to 
replacement over-sampling, a more specific 
approach is introduced by producing synthetic 
examples in the feature space as opposed to the data 
space.  
 
The minority class is the focus of this method, and 
synthetic examples are constructed by extending 
along line segments linking any or all of its k nearest 
neighbours. The number of neighbours chosen at 
random from the k nearest neighbours is determined 

by the degree of oversampling. The current 
implementation makes use of information from the 
five closest neighbours. For example, if a 200% 
over-sampling is desired, two neighbours are 
chosen at random from the five closest neighbours, 
and a synthetic example is constructed in each 
direction.  

 
Creating synthetic examples entails calculating the 
difference between the current example's feature 
vector and its nearest neighbor. This difference is 
then multiplied by a number between 0 and 1, and 
the result is added to the feature vector. As a result, 
a point is generated randomly within the line 
segment connecting two specific features. This 
novel method efficiently broadens the deciding 
zone of the minority class, encouraging broader 
representation. 
 
SMOTE offers several advantages and 
disadvantages for addressing class imbalances in 
datasets. Advantages include improved minority 
class representation by generating synthetic 
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examples, enhanced model performance in terms of 
accuracy, recall, and F1 score by providing a 
balanced training dataset and reducing overfitting 
by creating varied samples instead of duplicating 
minority class samples. Additionally, SMOTE 
helps establish better decision boundaries by 
broadening the minority class's decision zone and 
applies to various classification algorithms, making 
it a versatile tool. 
 
Disadvantages include the potential introduction of 
synthetic noise into the dataset, which can 
negatively impact model performance if the 
generated samples are not representative of the true 
data distribution. The method also increases 
computational complexity as synthetic samples are 
generated and the k-nearest neighbors are 
determined, particularly for large datasets. There is 
a risk of overgeneralization, where the classifier 
may become too lenient in distinguishing between 
classes, reducing specificity. Furthermore, 
SMOTE’s effectiveness is sensitive to parameter 
settings, such as the number of nearest neighbors (k) 
and the degree of over-sampling; poorly chosen 
parameters can adversely affect performance. In 
high-dimensional feature spaces, the nearest 
neighbor search and synthetic sample generation 
can become less effective, potentially leading to 
suboptimal results. 
 
2. ADASYN (Adaptive Synthetic Sampling) [18]: 
In this method, an adaptive approach, inspired by 
recently successful synthetic methods such as 
SMOTE [17], SMOTEBoost [19], and 
DataBoostIM [20], is proposed to make learning 
from imbalanced datasets. The dual goal is to 
decrease bias while also enabling adaptive learning. 
The fundamental concept underlying the ADASYN 
algorithm involves employing a density distribution 
as a criterion to autonomously determine the 
number of synthetic samples required for each 
minority data instance. The degree of class 
imbalance is initially estimated using Equation 1 as 
follows: 
 
𝑑 ൌ 𝑚௦/𝑚௟   (1) 
 
Where 𝑑 ∈ ሺ0, 1ሿ defines 𝑚௦ and 𝑚௟ as the 
quantities of minority and majority class instances, 

respectively. If d is less than a predefined threshold 
for the maximum tolerable degree of class 
imbalance, Equation 2 determines the required 
amount of synthetic data samples for the minority 
class. This ratio 𝑑 ∈ ሺ0, 1ሿ indicates the extent of 
imbalance in the dataset. A lower value of 𝑑 
signifies a higher degree of imbalance. 
 
𝐺 ൌ ሺ𝑚௟ െ 𝑚௦ሻ 𝑥 𝛽 (2) 
 
The total number of synthetic samples 𝐺 needed for 
the minority class is determined by the difference 
between the majority class instances 𝑚௟  and the 
minority class instances 𝑚௦, multiplied by the 
balance level parameter 𝛽. This ensures that the 
dataset moves towards a balanced state as defined 
by 𝛽.  The parameter β ∈ [0, 1] indicates the targeted 
balance level following synthetic data generation. A 
value of β = 1 signifies the creation of a completely 
balanced dataset after the augmentation process. 
For each instance, 𝑥௜ in the minority class, the K 
nearest neighbors are identified based on Euclidean 
distance in an n-dimensional space, and the 𝑟௜ ratio 
is calculated as follows: 
 

𝑟௜ ൌ
∆೔

௄
,     𝑖 ൌ 1, 2, 3, … , 𝑚௦  (3) 

 
Where ∆௜ represents the count of instances in the K 
nearest neighbors of 𝑥௜ that are from the majority 
class, resulting in 𝑟௜ ∈ [0, 1]. This ratio helps in 
identifying how challenging it is for the model to 
classify the minority instance correctly. 𝑟௜ is then 
normalized as follows: 
 
�̂� ௜ ൌ  𝑟௜/ ∑ 𝑟௜

௠ೞ
௜ୀଵ  (4) 

 
Where �̂� ௜ represents a density distribution. This 
ensures that the synthetic samples are generated in 
proportion to the difficulty of the minority 
instances. The computation of the quantity of 
synthetic data samples to generate for each minority 
instance 𝑥௜ is determined as follows:  
 
𝑔௜ ൌ  �̂� ௜ 𝑥 𝐺   (5) 
 
Where G denotes the overall quantity of synthetic 
data instances needed for the minority class, as 
specified in Equation (2). This adaptive approach 
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ensures that more synthetic samples are generated 
for the harder-to-learn minority instances. For each 
minority class data instance 𝑥௜, a loop from 1 to 𝑔௜ 
is created, and synthetic data samples are generated 
using the following equation. 
 
𝑠௜ ൌ  𝑥௜ ൅ ሺ𝑥௭௜ െ 𝑥௜ሻ 𝑥 𝜆  (6) 
 
A randomly selected minority data instance, 𝑥௭௜, is 
chosen from the K nearest neighbors of data 𝑥௜. 
Here, (𝑥௭௜ െ 𝑥௜) is the vector of distinction in an n-
dimensional space, and λ is a random number: λ ∈ 
[0,1]. Physically, it is a metric that evaluates how 
weights are distributed among various instances 
within the minority class, considering their 
respective difficulty levels in learning. The dataset 
obtained after applying ADASYN not only 
achieves a balanced representation of the data 
distribution based on the specified balance level 
(determined by the β coefficient) but also directs the 
learning algorithm to focus on these particularly 
challenging instances. This is a significant 
distinction, particularly when compared to the 
SMOTE, where an equal number of synthetic 
samples are produced for each minority data 
instance. 
 
ADASYN offers several advantages and 
disadvantages for addressing class imbalance in 
datasets. Advantages involve adaptive sample 
creation, which creates more synthetic examples for 
harder-to-learn instances, allowing the model to 
focus on challenging cases. This adaptive approach 
can improve overall classifier performance, 
particularly in terms of recall for the minority class. 
ADASYN provides dynamic balancing by adjusting 
the number of synthetic samples based on the 
density distribution of the minority class, resulting 
in a more balanced and representative dataset. 
Additionally, by generating synthetic samples 
based on the local data distribution, ADASYN 
helps reduce the risk of overfitting compared to 
methods that simply duplicate minority class 
samples. Disadvantages include increased 
computational complexity due to the need to 
calculate nearest neighbors and density 
distributions, especially for large datasets. The 
method can potentially introduce noise if the 
synthetic examples do not accurately represent the 

underlying data distribution. The performance of 
ADASYN is sensitive to parameters such as the 
number of nearest neighbors (K) and the balance 
level (β), and improper parameter settings can lead 
to suboptimal results. In high-dimensional spaces, 
the nearest neighbor search and the generation of 
synthetic samples can become less effective, 
leading to poor model performance. Furthermore, 
the adaptive nature of ADASYN can make it more 
complex to implement and tune compared to 
simpler over-sampling methods. 
 
3. Weight balancing [21]: While most deep 
learning algorithms tend to struggle with biased 
class data, the effectiveness of these models can be 
significantly enhanced by adapting existing training 
algorithms to accommodate the skewed distribution 
of classes. This adaptation involves assigning 
distinct weights to both majority and minority 
classes, thereby influencing the classification 
dynamics during the training phase. The primary 
objective is to penalize misclassifications made by 
the minority class by augmenting its class weight, 
while simultaneously diminishing the weight of the 
majority class. 
 
One commonly employed method in this context is 
weight balancing, frequently utilized in 
classification models. This method entails the 
assignment of varying weights to different classes, 
aiming to increase the model's sensitivity to the 
minority class. Many classification algorithms offer 
the flexibility to assign class weights during 
training, with higher weights allocated to the 
minority class. This strategic weighting makes 
misclassifications of minority class instances more 
impactful in terms of the overall loss function, 
motivating the model to prioritize and improve 
predictions for the minority class. Weighting is 
applied to different classes in a dataset, taking into 
account the distribution of example counts across 
the classes, as illustrated below. 
 
𝑤௜ ൌ

ே௦

ே௖ ௫ ே௦೔
  (7) 

 
Where 𝑤௜ represents the weight assigned to each 
class, 𝑁𝑠 denotes the total sample count, 𝑁𝑐 refers 
to the total count of unique classes within the target 
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variable, 𝑁𝑠௜ represents the total number of rows 
associated with the respective class i. By dividing 
the total number of samples by the product of the 
number of classes and the samples corresponding to 
each class, the formula dynamically calculates 
weights that reflect the relative proportions of each 
class in the dataset. This ensures a more nuanced 
and balanced consideration of different classes 
during the model training process, contributing to 
improved performance, especially in scenarios with 
imbalanced class distributions. 
 
Weight balancing offers several advantages and 
disadvantages in addressing class imbalance in 
datasets. One significant advantage is its ability to 
enhance model sensitivity by increasing the weights 
of the minority class, thus improving recall and 
precision for these instances. Moreover, it is a 
versatile technique that can be easily applied to 
various machine learning and deep learning 
frameworks, making it flexible and adaptable. 
Additionally, weight balancing contributes to 
overall performance enhancement by reducing bias 
towards the majority class, thereby improving 
metrics such as F1-score and AUC. It can also be 
seamlessly integrated into different classification 
algorithms, further enhancing its utility. From an 
implementation standpoint, weight balancing is 
relatively simple, often requiring only minor 
adjustments to the loss function or training process. 
 
However, weight balancing is not without its 
drawbacks. One potential issue is the risk of 
overcompensation, where setting weights too high 
for the minority class can lead to overfitting and 
poor generalization of new data. Furthermore, 
altering weights during training might result in 
computational costs, especially for massive datasets 
with many classes. The effectiveness of weight 
balancing is heavily dependent on accurately 
estimating class distribution, and incorrect weight 
assignments can result in suboptimal performance. 
Tuning weight values to find the optimal balance 
requires careful validation, which can be time-
consuming and computationally expensive. Lastly, 
weight balancing may have a limited impact on 
severely imbalanced datasets, necessitating the use 
of additional techniques such as synthetic data 
generation for better results. 

C. Training Details 
 

The model was trained for 20 epochs from scratch, 
with a categorical loss function used throughout the 
training phase. Because of its known success with 
large datasets and complex models, the Adam 
algorithm [22] was used as the optimizer. During 
training, validation accuracy was continually 
assessed to evaluate model performance and 
minimize overfitting. In the convolutional and 
dense layers, ReLU activation functions were 
utilized, whereas the softmax activation function 
was utilized in the final fully connected layer. For 
each data imbalance approach, the model was 
trained from scratch. 
 

D. Metrics 
 

The confusion matrix is a commonly used set of 
metrics for determining how effectively 
classification models perform. The confusion 
matrix encompasses four distinct concepts: True 
Positive (TP), False Positive (FP), True Negative 
(TN), and False Negative (FN). A confusion matrix 
is typically represented in the following tabular 
format: 
 

Table 1. The confusion matrix breaks down 
predictions into four categories: TP when 
the actual class is positive and the model 
correctly predicts it as positive; FP when 
the actual class is negative, but the model 
incorrectly predicts it as positive; TN when 
the actual class is negative, and the model 
correctly predicts it as negative; FN when 
the actual class is positive, but the model 
incorrectly predicts it as negative 

 Positive Negative 
Predicted positive TN FP 
Predicted negative FN TP 

 

To evaluate method performance through the 
confusion matrix, four metrics were used: accuracy, 
precision, recall, and F1 score. Accuracy assesses 
the proportion of correctly predicted instances by a 
model, serving as a comprehensive measure to 
evaluate the overall effectiveness of a classification 
model. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ  
்௉ା்ே

்௉ା்ேାி௉ାிே
       (8) 
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The precision metric assesses the accuracy of a 
model's positive predictions by determining the 
proportion of correctly identified positive instances. 
This metric specifically focuses on minimizing the 
occurrence of false positive predictions in a 
classification model. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
்௉

்௉ାி௉
    (9) 

 
The recall metric assesses a model's ability to 
accurately identify positive instances, providing the 
percentage of real positive values that were 
correctly predicted. The goal of this metric is to 
reduce the number of incorrect negative predictions 
in a classification model. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ  
்௉

்௉ାிே
  (10) 

 
The F1 score is a metric that represents the 
harmonic mean of precision and recall metrics, 
offering a balanced measure that considers both 
false positive and false negative predictions 
generated by a classification model. 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ 2 𝑥
௉௥௘௖௜௦௜௢௡ ௫ ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
       (11) 

 
3. EXPERIMENT AND RESULTS 
 
This section presents a quantitative comparison of 
the SMOTE, ADASYN, and Weight balancing 
methods for the Alzheimer MRI dataset with 
unbalanced sample counts among classes. In this 
context, we first trained a custom model from 
scratch using the existing dataset and then analyzed 
its performance. The classification report of the 
model is presented in Table 2. 

 
Table 2. Model performance without dataset 

balancing 
 Precision Recall F1-score 

0 0.98 0.97 0.98 
1 0.94 0.96 0.95 
2 0.99 0.95 0.97 
3 1.0 0.83 0.91 

Accuracy  0.97 
Macro Avg 0.98 0.93 0.95 

Weighted Avg 0.97 0.97 0.97 
 

In the absence of applying a dataset balancing 
method, an accuracy value of 97% was obtained. 
Upon analyzing the overall classification 
performance through macro avg, encompassing 
precision, recall, and f1-score metrics, scores of 
98%, 93%, and 95% were respectively achieved. 
Macro avg provides a comprehensive overview, 
particularly beneficial in evaluating performance 
metrics collectively in multi-class classification 
problems. It takes into account the imbalance 
among classes by treating each class's contribution 
equally. It computes and subsequently averages 
performance metrics for each class, considering 
their contributions. This approach ensures a fair 
evaluation of overall performance, irrespective of 
significant variations in performance across classes. 
When evaluated for specific classes, Class 3, with a 
limited number of instances, shows significantly 
low recall and F1-score metrics. Figure 4 depicts the 
validation loss and accuracy graphs for the relevant 
model. 
 

 
Figure 4. Validation loss and accuracy graphs of 

the model trained without applying data 
balancing. 
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Figure 5 (a) presents the confusion matrix for the 
unbalanced dataset. Notably, 13 instances from the 
non-demented class are misclassified as very mild, 
while the remaining 499 instances are correctly 
classified. Similarly, in the very-mild class, 12 
instances are misclassified as non-demented, 1 as 
mild, and the remaining 296 instances are correctly 
classified. For the mild class, 6 instances are 
misclassified as very-mild, while the remaining 127 
instances are correctly classified. Lastly, in the 
moderate class, 1 instance is misclassified as very 
mild, and the remaining 5 instances are correctly 
classified. 
 
In the second stage, the model performance was 
examined by applying the data balancing process 
using the SMOTE method. In this approach, the 
sample count for each class was designed to be the 
same as the class with the highest number of 
instances. Accordingly, the imbalance was 
addressed, ensuring that the sample count for each 
class was adjusted to 3200. 
 

 
Figure 5. Comparison of confusion matrix results: 

(a) Unbalanced, (b) SMOTE balanced, 
(c) ADASYN balanced, and (d) Weight 
balanced. 

 
Table 3 presents the performance report for the 
relevant method. When the SMOTE method is used 
for balancing, a decrease in model performance is 
observed. The accuracy value has decreased from 
97% to 94% compared to the original dataset. 
Similarly, precision and f1-score decrease, while 
the recall value increases by 1%.  

Table 3. Model performance when the SMOTE 
data balancing method is applied. 
 Precision Recall F1-score 

0 0.99 0.98 0.99 
1 0.91 0.87 0.89 
2 0.90 0.91 0.90 
3 0.97 1.0 0.98 

Accuracy  0.94 
Macro Avg 0.94 0.94 0.94 

Weighted Avg 0.94 0.94 0.94 
 

Figure 6 shows the validation and loss graphs for 
the model trained using the relevant approach. In 
addition, Figure 5(b) shows the confusion matrix 
for the model trained using the SMOTE approach.  
In the non-demented class (510 examples), 6 are 
very mild, 1 is mild, and the rest are correctly 
classified. For the very mild class (466 examples), 
5 are non-demented, 48 are mild, 9 are moderate, 
and the remaining are correctly classified. In the 
mild class (472 examples), 2 are non-demented, 31 
are very mild, 8 are moderate, and the rest are 
correctly classified. In the moderate class (472 
examples), 1 is misclassified as very mild, and the 
rest are correctly classified. 
 

 
Figure 6. Validation loss and accuracy graphs of 

the model trained to apply the SMOTE 
data balancing method. 
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In the third stage, the model's performance was 
assessed using the ADASYN method, and Table 4 
displays the corresponding performance report. 
Results indicate superior performance with 
ADASYN compared to the original and SMOTE 
methods for the Alzheimer's MRI Dataset. For the 
class with the fewest examples, i.e., 3, the original 
model had a recall and f1 scores of 83% and 91%, 
respectively. These scores were 100% and 98% in 
the SMOTE method, respectively, while the 
ADASYN method achieved 100% performance in 
both metrics. Overall averages show 97% accuracy 
in the original dataset, %94 with SMOTE, and 98% 
with ADASYN. 

 

Table 4. Model performance when the ADASYN 
data balancing method is applied. 
 Precision Recall F1-score 

0 0.99 0.97 0.98 
1 0.95 0.98 0.96 
2 0.96 0.92 0.94 
3 1.0 1.0 1.0 

Accuracy  0.98 
Macro Avg 0.97 0.97 0.97 

Weighted Avg 0.98 0.98 0.98 
 

Figure 5(c) presents the confusion matrix derived 
from the training process employing the ADASYN 
method. Within the non-demented class, which 
included 493 examples, 10 instances were classified 
as very mild, 3 as mild, and the remaining were 
accurately classified. In the very mild class, which 
consisted of 330 examples, 5 were designated as 
non-demented, 3 as mild, and the remainder were 
correctly classified. The mild class, which consisted 
of 127 examples, saw two cases classified as non-
demented, eight as very mild, and the remainder 
correctly classified. Ultimately, within the moderate 
class, comprising 481 examples, all instances were 
accurately classified. Figure 7 illustrates the 
validation and accuracy graphs of the model trained 
using the ADASYN data balancing method. 

 
Figure 7. Validation loss and accuracy graphs of 

the model trained to apply the ADASYN 
data balancing method. 

 
Finally, the model's performance was assessed 
using the Weight-balancing method. In this 
approach, the dataset is not augmented; instead, 
weights are assigned based on the distribution of 
examples in the dataset. The goal is to increase the 
weight of the minority class to enhance the model's 
attention to it. In this context, considering the 
number of examples in the dataset, weight values of 
0.5, 0.71, 1.79, and 25.0 were assigned to the non-
demented, very mild, mild, and moderate classes, 
respectively. Table 5 summarizes the results from 
training the model with this method.  
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Table 5. Model performance when the Weight 
balancing method is applied. 
 Precision Recall F1-score 

0 0.98 0.97 0.98 

1 0.96 0.97 0.96 

2 0.99 0.99 0.99 

3 1.0 1.0 1.0 

Accuracy  0.97 

Macro Avg 0.98 0.98 0.98 

Weighted Avg 0.97 0.97 0.97 

 
Upon examining Table 5, it is observed that the 
highest scores are obtained, particularly for the 
minority class, i.e., moderate. Looking at the macro 
average scores, the model achieved the highest 
performance scores, reaching 98% for precision, 
recall, and f1-score. When compared to the model 
trained with the original dataset, there is a 5% 
increase in the recall metric and a 3% increase in the 
f1-score metric. In Figure 5(d), the confusion matrix 
obtained when the model is trained using the weight 
balancing method is provided. The results show 
that, out of 512 examples in the non-demented class, 
13 were classified as very mild, 1 as mild, and the 
rest were correctly classified. In the very mild class, 
with 309 examples, 10 were misclassified as non-
demented, while the others were correctly 
classified. In the mild class with 133 examples, only 
1 example was incorrectly classified as very mild. 
Finally, in the moderate class with six examples, all 
were correctly classified. Figure 8 displays the 
validation loss and accuracy graphs obtained when 
the model is trained using the weight balancing 
method. 

 
Ultimately, the test dataset was separated before 
applying data balancing methods, and the 
performance of the methods was evaluated in this 
manner. Table 7 reveals that similar to previous 
experimental results, the weight-balancing method 
outperforms the others. The SMOTE approach 
produces worse results than the model trained on the 
original dataset. Similarly, the ADASYN method 
also yields better results than the original model. 
 

Table 6. Performance comparison of data balancing 
methods on test dataset 

 Accuracy Precision Recall 
F1 

score 
SMOTE 94.17 94.05 94.03 94.02 

ORJINAL 96.56 93.01 97.63 95.12 
ADASYN 97.90 96.84 97.30 97.05 

Weight 
balancing 

97.40 98.32 98.20 98.26 

 

 
Figure 8. Validation loss and accuracy graphs of 

the model trained to apply the Weight 
balancing method. 

 
4. CONCLUSION 
 
This study aimed to address the challenges posed by 
imbalanced datasets in Alzheimer's disease 
classification, focusing on the effectiveness of three 
data balancing methods: SMOTE, ADASYN, and 
Weight Balancing. The experiments were 
conducted using the Alzheimer's MRI dataset, and 
a custom deep-learning model was used for 
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evaluation. The results indicate that, compared to 
the original imbalanced dataset, the Weight 
Balancing method consistently outperforms in 
terms of accuracy, precision, recall, and F1 score. 
The method assigns weights based on class 
distribution, enabling the model to pay more 
attention to the minority class, which is particularly 
beneficial in the context of imbalanced health 
datasets. While SMOTE and ADASYN methods 
improve various metrics, they are considered 
inferior to the Weight Balancing method. The 
ADASYN method, in particular, demonstrated 
superior performance, achieving the highest scores 
for precision, recall, and F1 score, especially for the 
minority class, i.e., moderate. The study emphasizes 
the critical role of addressing class imbalances in 
health datasets for accurate and reliable model 
training. It contributes valuable insights into 
selecting data balancing methods to enhance the 
accuracy of deep learning models in Alzheimer's 
disease classification. The Weight Balancing 
method, with its ability to adapt class weights 
during training, stands out as a robust approach for 
improving model performance in scenarios with 
imbalanced class distributions. In future work, 
further exploration of different data balancing 
methods and validation on diverse datasets could 
provide additional perspectives on optimizing deep 
learning models for Alzheimer's disease 
classification. 
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