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Abstract 

In this study, a comprehensive comparative analysis of Convolutional Neural Network (CNN) architectures for binary 

image classification is presented with a particular focus on the benefits of transfer learning. The performance and accuracy 

of prominent CNN models, including MobileNetV3, VGG19, ResNet50, and EfficientNetB0, in classifying skin cancer 

from binary images are evaluated. Using a pre-trained approach, the impact of transfer learning on the effectiveness of 

these architectures and identify their strengths and weaknesses within the context of binary image classification are 

investigated. This paper aims to provide valuable insights for selecting the optimal CNN architecture and leveraging 

transfer learning to achieve superior performance in binary image classification applications, particularly those related to 

medical image analysis. 

Keywords: Convolutional Neural Networks (CNNs), Transfer Learning, Binary Image Classification, CNN Architecture 

Comparison, Skin Cancer Detection. 

 

 

 

İkili Görüntü Sınıflandırma için Evrişimsel Sinir Ağı Mimarilerinin 

Karşılaştırmalı Analizi: Cilt Kanseri Tespitinde Bir Vaka Çalışması 

 

Öz 

Bu çalışmada, ikili görüntü sınıflandırması için Evrişimsel Sinir Ağı (CNN) mimarilerinin kapsamlı bir karşılaştırmalı 

analizi sunulmuş ve transfer öğreniminin faydalarına vurgu yapılmıştır. MobileNetV3, VGG19, ResNet50 ve 

EfficientNetB0 gibi önde gelen CNN modellerinin ikili görüntülerden cilt kanseri sınıflandırmadaki performans ve 

doğruluğu değerlendirilmiştir. Önceden eğitilmiş bir yaklaşım kullanılarak, transfer öğreniminin bu mimarilerin etkinliği 

üzerindeki etkisi araştırılmış ve ikili görüntü sınıflandırması bağlamında güçlü ve zayıf yönleri belirlenmiştir. Bu makale, 

optimal CNN mimarisinin seçimi ve transfer öğreniminden yararlanarak ikili görüntü sınıflandırma uygulamalarında, 

özellikle tıbbi görüntü analiziyle ilgili olanlarda, üstün performans elde etme konusunda değerli içgörüler sağlamayı 

amaçlamaktadır. 

Anahtar Kelimeler: Evrişimsel Sinir Ağları (CNN'ler), Transfer Öğrenimi, İkili Görüntü Sınıflandırma, CNN Mimari 

Karşılaştırması, Cilt Kanseri Tespiti.  
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1. Introduction 

 

Skin cancer, comprising melanoma and non-melanoma skin cancers, is a pervasive and 

increasingly prevalent form of cancer, primarily arising from melanocytes and epidermal cells 

(Craythorne and Al-Niami, 2017). The urgent need for accurate and efficient skin cancer detection 

methods drives this study, which explores the transformative potential of transfer learning for binary 

image classification. Given the high incidence of skin cancer and its potential impact on public health, 

the utilization of CNN architectures with transfer learning has shown promise in improving diagnostic 

accuracy, as demonstrated in numerous studies, including the work by Dildar et al. (2021). 

Conventional skin cancer detection techniques typically depend on dermatologists manually 

examining patients; in this case, the keen eyes of experienced professionals are vital in spotting 

possible lesions. However, the development of artificial intelligence, particularly CNNs, is causing a 

paradigm shift in dermatological diagnosis, as it does in many other fields. This technological 

advancement creates opportunities for automated analysis of dermatoscopic images, showing promise 

for more accurate and reliable skin lesion detection. 

The challenge in skin cancer detection extends beyond simply designing robust CNN 

architectures. The complexity lies in effectively refining their performance for accurate binary image 

classification. While CNNs offer a systematic and objective approach to analyzing dermatoscopic 

images, surpassing the subjectivity of traditional methods, optimizing their capabilities for accurate 

cancer identification remains a key focus in this evolving field. However, these CNNs' efficacy isn't 

only a function of how sophisticated their architecture is; it also has to do with how well they adjust 

to the unique characteristics of dermatological photos. The focus of binary classification for skin 

cancer diagnosis is on differentiating critical characteristics that clearly indicate the presence or 

absence of malignancy. 

The primary objective of this paper is to assess different CNN architectures' performance while 

taking transfer learning's subtle effects into account. We want to know how well models like VGG-

19, ResNet50, MobileNetV3, AlexNet, and EfficientNetB0 adapt to the complexity of skin cancer 

binary classification by using pre-trained weights. The objective of this research is to expose the 

innate advantages and disadvantages of every design, offering valuable perspectives on their 

suitability and efficiency in practical situations. 

The significance of this study lies in its potential to identify optimal CNN architectures for 

binary image classification in skin cancer diagnosis. It is also anticipated that this research will 

elucidate the strategic application of transfer learning to enhance the performance of these systems, 

especially in scenarios characterized by limited datasets. By conducting a comparative analysis of 
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models trained on the "Skin Cancer Binary Classification Dataset," valuable insights are sought that 

are expected to shape the future trajectory of automated skin cancer detection. 

The rest of the paper is organized as follows: section 2 gives a brief summary of the literature, 

section 3 describes the dataset, and the CNN methods used, section 4 gives the results and the final 

concluding marks are given in section 5. 

 

2. Related Works 

 

CNNs have emerged as a powerful tool for image classification, demonstrating exceptional 

ability to automatically extract relevant features from input data (Ullah & Mahmoud, 2021). Within 

the domain of medical image analysis, CNNs have shown significant promise for automating 

diagnostic tasks, including skin cancer detection (Dildar et al., 2021). 

Previous research has explored the performance of various CNN architectures for binary image 

classification, including prominent models such as ResNet, MobileNet and EfficientNet (Tan, 2019). 

These studies highlight the importance of selecting architectures that balance accuracy with 

computational efficiency, particularly when applied to resource-constrained settings (Sobczak & 

Kapela, 2022). 

Transfer learning has further enhanced the capabilities of CNNs by allowing models to leverage 

knowledge gained from previous training on large datasets (Prima & Bouhorma, 2020). This approach 

has proven particularly valuable in medical image analysis, where datasets are often limited, and has 

been successfully applied to classify Alzheimer's disease stages using neuroimaging data (Tufail et 

al., 2021). The use of pre-trained models can significantly improve the performance of CNNs in tasks 

like anomaly detection and classification, which has implications for fields like malware detection 

and cognitive radio (Suciu et al., 2019; Geng et al., 2022). 

Despite these advancements, challenges remain in optimizing CNN architectures for specific 

medical image analysis tasks, particularly for accurate and robust skin cancer detection. Existing 

research often focuses on general image classification tasks, such as hyperspectral image 

classification (Bai et al., 2019), or utilizes datasets that may not fully represent the complexity and 

variability of dermatoscopic images. 

Transfer learning techniques are widely adopted due to the limited size of medical datasets. 

Abdulridha and Savaş (2022) employed data augmentation to mitigate the class imbalance in the ISIC 

dataset, significantly enhancing model performance. Their DenseNet121 model reached a 99.6% 

accuracy, surpassing other state-of-the-art techniques like ResNet-50 and EfficientNet, which 

achieved accuracies of 98.1% and 98.5%, respectively. Similarly, Islam and Panta (2024) applied five 

transfer learning approaches, including ResNet-50, MobileNet, InceptionV3, DenseNet-169, and 
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InceptionResNetV2, to the ISIC dataset, with ResNet-50 yielding an accuracy of 93.5%.They  utilized 

data augmentation and fine-tuned transfer learning models, where ResNet-50 again stood out with a 

precision of 0.94 and an F1 score of 0.86. Rashid et al. (2022) applied MobileNetV2 to classify 

melanoma and benign lesions using the ISIC-2020 dataset, achieving an accuracy of 98.2%. 

This research addresses these limitations by conducting a comprehensive comparative analysis 

of prominent CNN architectures specifically tailored for binary image classification in skin cancer 

detection. We utilize a specialized dataset and investigate the impact of transfer learning on model 

performance, seeking to identify optimal architectures and strategies for achieving superior accuracy 

in this critical diagnostic domain. 

 

3. Material and Methods 

 

The method used to classify skin cancer using the Kaggle Skin Cancer Binary Classification 

Dataset is described in this section. A total of five different CNN architectures—VGG19, 

MobileNetV3, AlexNet, ResNet50, and EfficientNetB0—were included in the comparison. These 

previously trained models were adjusted and assessed on different test sets using transfer learning. 

Furthermore, effective model training was enabled by Kaggle's cloud-based architecture with T4X2 

GPU acceleration. By employing these approaches, the research seeks to improve the models' 

capacity to identify patterns in skin cancer, with an emphasis on effectiveness, efficiency, and 

generalization over a range of complexity. 

 

3.1. Dataset Description 

 

The Kaggle Skin Cancer Binary Classification Dataset was used in this study. The dataset 

consists of a total of 288 skin lesion images, evenly distributed between the two classes. There are 

144 images labeled as "Cancer" and 144 images labeled as "Non-Cancer." 

There are two primary subdirectories within the dataset organization: 

1. Cancer Class Images: 

● Training Images: cancer/training/ 

● Testing Images: cancer/testing/ 

● Total Images: 144 

2. Non-Cancer Class Images: 

● Training Images: non_cancer/training/ 

● Testing Images: non_cancer/testing/ 

● Total Images: 144 
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          The JPEG format ensures a consistent representation for model compatibility across all 

pictures. The image distribution between the 'Cancer' and 'Non-Cancer' classes is balanced with an 

equal number of images in each, which is essential to avoid biases during model training and 

evaluation. 

          The dataset was preprocessed using many procedures in order to make it ready for model 

training: For every class, the original data set was divided into testing and training sets. In order to 

assess the model's generalization ability, this part enables it to be trained on an independent set of 

pictures and assessed on an independent set. During pre-processing, each class's picture file names 

were randomly shuffled. By doing this, inadvertent biases that may result from categorizing the 

photos are reduced. Keras ImageDataGenerator was used to apply data augmentation to the training 

set, producing augmented images through arbitrary transformations like rotation, flipping, and 

zooming. This process exposes the model to a wider range of variables, enhancing its generalization 

capacity. 

 

3.2. CNN Architectures for Comparison 

 

Figure 1 illustrates the process of transfer learning using a pre-trained CNN, which enables a 

model to adapt to a new task by leveraging insights from prior training. It delineates the process into 

distinct phases: first, input images for model training are introduced, either pre-processed or raw; 

second, a pre-trained CNN, potentially from large datasets like ImageNet, transfers its parameters to 

the initial layers of the new model. Subsequently, fine-tuning adjusts these parameters for the specific 

task through iterative training with the new dataset. The model's efficacy is then evaluated using 

metrics like accuracy and precision, leading to the reporting of performance and findings. 

Additionally, the diagram underscores the versatility of employing diverse pre-trained CNN models 

such as MobileNetV3, VGG19, EfficientNetB0, ResNet50, and AlexNet, across various tasks, 

including cancer classification.   
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Figure 1. General architecture of the proposed research study. 

 

3.2.1 VGG19 

 

VGG19, a 19-layer Deep Convolutional Neural Network architecture, is known for its structural 

simplicity and efficient training on large datasets due to its numerous parameters (Li et al., 2022). It 

primarily comprises completely linked layers after a series of sequentially stacked, small-sized (3x3) 

convolutional layers. 

Its construction is simple structurally. Its tiny depth and core size can improve learning capacity. 

Because there are a lot of parameters, it can be trained efficiently on big data sets. 

Numerous applications, including the automated diagnosis of retinopathy of prematurity, have 

made extensive use of VGG19 (Huang et al., 2020). Furthermore, for better performance, VGG19 

has been used in conjunction with other models. As an example, ensemble networks that include 

several VGG19 designs have demonstrated great accuracy in the identification of diabetic retinopathy 

(Hasan & Aleef, 2019). Also, VGG19 has been effectively incorporated into a number of architectures 

to improve voice processing. As an illustration of the potency of merging these models, (Kashani et 

al., 2019) integrated VGG19 into the VGG19-UNet architecture for voice augmentation. 

Furthermore, Jia & Li (2022) demonstrated the adaptability of VGG19 in various applications by 

using it in AE-VGG19 models for feature extraction. These integrations demonstrate how versatile 

and effective VGG19 is at improving speech-related tasks by combining creative architectural 

designs. 
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3.2.2   MobileNetV3 

 

MobileNetV3, a specialized architecture renowned for its efficient and light design, is geared 

for mobile and edge device performance (Sandler et al., 2018). It stands out for being straightforward, 

having little processing overhead, and utilizing cutting-edge methods like inverse residuals and linear 

bottlenecks. The model's activation and input preprocessing properties amplify its distinct qualities. 

MobileNetV3 is well-suited for on-device inference on devices with constrained resources since it 

integrates modules such as Inverted Bottleneck blocks to develop inventive designs like Self-

Attention MobileNet (Garg et al., 2021). 

It is a simple model with few parameters and a cheap computing cost. It uses cutting-edge 

methods including linear bottlenecks and inverse residuals. Its input preprocessing and activation 

features make it noteworthy. 

In addition, MobileNetV3 integrates the h_swish activation function and the SE attention 

mechanism to improve network performance, especially in situations where computing resources are 

few (Guo-zhan et al., 2023). Tasks including vehicle-pedestrian detection and skin disease 

categorization have demonstrated its efficiency and flexibility, demonstrating its versatility across 

various applications (Hu et al., 2022; Deng & Wu, 2022). 

 

3.2.3   AlexNet 

 

After winning the 2012 ImageNet competition, AlexNet, a groundbreaking deep learning 

architecture, has had a major impact on computer vision research (Russakovsky et al., 2015). 

Compared to earlier models, this architecture's eight layers provided a deeper structure and larger 

convolutional filters, which made it possible to learn more complicated features. Its capabilities were 

further improved by the use of Rectified Linear Unit (ReLU) activation functions and Local Response 

Normalization (LRN) layers (Tinnathi & Sudhavani, 2022). 

Compared to earlier models, a deeper structure and larger size convolutional filters enable the 

learning of more complex features. It makes use of Local Response Normalization (LRN) layers and 

ReLU activation functions. 

Additionally, AlexNet has been improved and changed in many research to increase its 

effectiveness in particular activities. To improve feature extraction capabilities, for example, 

researchers have suggested adding new layers and modules (Xu et al., 2021); talking about how 

different preprocessing techniques and convolution kernel sizes affect model performance (Bu et al., 

2022); and using AlexNet as a feature extractor in conjunction with other algorithms, such as SVM, 

for classification tasks (Al-Mekhlafi et al., 2022). 
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3.2.4 ResNet50 

 

ResNet50 is a 50-layer deep neural network design that is well-known for using residual blocks 

to make deep neural network training easier. Identity Mapping requires features like small-sized 

convolutions and transition layers, which are included in the architecture of ResNet50 (Mvoulana et 

al., 2021). Because they solve the problem of disappearing gradients, these residual blocks are 

essential in facilitating the development of deeper networks (Liu et al., 2022). 

Deeper networks may be created thanks to the connections found in residual blocks, which 

lessen the issue of vanishing gradients. Features like small-sized convolutions and transition layers 

are part of Identity Mapping. 

In order to improve feature extraction and resilience, researchers have also improved the 

ResNet50 model by adding more modules like the convolutional block attention module (CBAM) 

(Du et al., 2023). Furthermore, research has demonstrated that ResNet50's convolutional layers' depth 

is adequate for completely extracting visual features, improving performance on tasks like image 

classification (Wang et al., 2022). 

 

3.2.5 EfficientNetB0 

 

The base model of the EfficientNet series, EfficientNetB0, is renowned for its balanced 

construction and composite scaling approach that maximizes depth, width, and resolution (Kamiri et 

al., 2022). This model's efficiency in terms of both classification accuracy and computing complexity 

has led to its widespread implementation in a variety of applications (Laschowski et al., 2021). 

The model's structure is balanced, and its depth, breadth, and resolution are all increased. A 

good place to start for advanced transfer and feature learning. 

Its application in the diagnosis of retinal diseases and the prediction of picture credibility in the 

identification of fake news highlights its wide range of applications and influence in several fields 

(Singh & Sharma, 2021). 

 

3.3 Transfer Learning Implementation 

 

Using the procedures listed below, five CNN transfer learning models were developed and 

applied to the dataset. 

1. A Dense layer with two output units that corresponded to the binary classification job was 

used to replace the final classification layer of each pre-trained model. 



The Black Sea Journal of Sciences 14(4), 2008-2022, 2024 2016 

2. During training, all of the base models' layers aside from the recently added Dense layers 

were frozen to protect previously learned data. 

3. Models were trained with categorical cross-entropy loss and assembled using the Adam 

optimizer with a learning rate of 0.00001. Models were assessed on a different test set after 

training on enhanced training data. 

Through the use of these transfer learning methodologies, models are better able to distinguish 

between patterns associated with skin cancer within the particular dataset utilized in this work by 

using characteristics from a varied dataset like ImageNet. 

In conclusion, this approach used a variety of CNN architectures with transfer learning to 

classify skin cancer cases. The method took performance and efficiency into account at different 

model complexity levels. To give a more reliable assessment, every model was also trained and 

evaluated thirty times, with the results averaged. The models' resilience and capacity for 

generalization were intended to be enhanced by the chosen preprocessing methods and transfer 

learning approaches. 

 

3.4 Experimental Setup 

 

Using the T4X2 GPU that Kaggle offered, we were able to utilize its cloud-based architecture 

to harness the computational capacity needed to train deep neural networks, greatly accelerating the 

model training process. Additionally, it made optimal use of processing resources and allowed for 

quicker iterations. Kaggle Notebooks, a platform that gives users access to powerful GPUs, was used 

to conduct the research, with the T4X2 GPU providing substantial processing power for the quick 

training of intricate deep learning models. 

 

4. Result and Discussion 

 

This section presents a thorough comparison study of CNN architectures for binary image 

classification tasks, with a focus on the Skin Cancer dataset. The evaluation was conducted using the 

following metrics also summarized in Table 1: Average Accuracy, Total Execution Time, Precision 

(Cancer), Recall (Cancer), F1-Score (Cancer), Precision (Non-Cancer), Recall (Non-Cancer), F1-

Score (Non-Cancer), and Overall Accuracy. The analysis clarifies the subtleties of various CNN 

architectures' effectiveness, particularly when using transfer learning strategies. Through an 

examination of individual outcomes for every model, this research offers valuable perspectives on 

the wider consequences of CNN architecture choice and transfer learning techniques in relation to the 

categorization of skin cancer. 
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4.1 AlexNet 

 

Despite being a CNN architectural pioneer, AlexNet only showed an average accuracy of 

66.78% over 30 iterations. There appears to be a significant imbalance between the cancer (35%) and 

non-cancer (89%) accuracy scores. With a recall of 67%, Cancer performed comparatively better. 

But the overall classification report and accuracy indicate that AlexNet might not be as reliable for 

this particular binary image classification task. It has the fastest execution with 333.09 seconds. 

 

Table 1. Performance metrics and definitions. 

Metric Definition 

Average Accuracy The average percentage of skin cancer images correctly classified by each 

model 

Total Execution Time The time taken by each model to complete the classification task  

Precision (Cancer) The proportion of images correctly classified as cancerous out of all images 

the model classified as cancerous. 

Recall (Cancer) The proportion of cancerous images correctly identified by the model. 

F1-Score (Cancer) The harmonic mean of Precision (Cancer) and Recall (Cancer), providing 

a balanced measure of model performance for cancer classification. 

Precision (Non-Cancer) The proportion of images correctly classified as non-cancerous out of all 

images the model classified as non-cancerous. 

Recall (Non-Cancer) The proportion of non-cancerous images correctly identified by the 

model. 

F1-Score (Non-Cancer) The harmonic mean of Precision (Non-Cancer) and Recall (Non-Cancer), 

providing a balanced measure of model performance for non-cancer 

classification. 

Overall Accuracy The average accuracy of each model across classifying both cancerous and 

non-cancerous images. 

 

 

4.2 EfficientNet 

 

EfficientNet achieved an average accuracy of 69.36%, outperforming AlexNet. Better 

discriminative capacity was demonstrated by the precision values for both cancer (38%) and non-

cancer (86%), which were more evenly distributed. Recall numbers (non-cancer: 78%, cancer: 50%) 

add to a performance that is generally more dependable. The reduced execution time of 512.05 

seconds highlights the effectiveness of EfficientNet in managing activities related to binary image 

categorization. 
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4.3 MobileNetV3 

 

With precision and recall numbers showing disparities between Cancer (precision: 25%, recall: 

60%) and Non-Cancer (precision: 83%, recall: 53%), MobileNetV3 demonstrated an average 

accuracy of 59.97%. It's possible that MobileNetV3 isn't the best option for this particular binary 

image classification task because of its lower accuracy and differences in performance measures. To 

improve its performance, more research or adjustment might be required. It has an average execution 

time compared to others, with a total execution time of 399.00 seconds. 

 

4.4 ResNet50 

 

ResNet showed itself to be a strong performer, averaging 75.10% accuracy. A robust 

discriminative model was bolstered by the well-balanced accuracy values for Cancer (39%) and Non-

Cancer (90%). The recall values (72%, 72%, and 69% for cancer and non-cancer, respectively) 

highlight Resnet's superior performance in binary image classification tasks. With a total execution 

time of 471.04 seconds, ResNet strikes a balance between efficiency and precision, making it a strong 

option. 

 

4.5 VGG19 

 

VGG19 showed competitive performance, averaging 72.63% accuracy. The precision values 

for Non-Cancer (95%) and Cancer (43%) show that the categorization strategy is balanced. The 

effectiveness of VGG19 was further supported by the well-distributed recall values for both classes. 

For real-time applications, the 828.54 second total execution time presents certain practical issues. 

 

4.6 Overall Comparison 

 

This study shows that CNN architectures for skin cancer classification trade off performance 

balance, accuracy, and speed. ResNet50 is the best at both accurately classifying skin cancer and 

striking a balance between precision and recall, as seen by its superior average accuracy (75.10%) 

and F1-Score (Cancer) (50%). Even though it loses some accuracy, MobileNetV3 has the quickest 

execution time (399.00s), which makes it perfect for applications where speed is of the essence, such 

as real-time screening. While VGG19 has the greatest F1-Score (Non-Cancer) (81%) and emphasizes 

non-cancer categorization, it is not as accurate overall as ResNet50. In the end, the best model 

selection depends on the requirements of the application. MobileNetV3 may be appropriate if real-
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time screening is the top priority. ResNet50 could be the ideal option for a conclusive diagnosis 

requiring a high degree of precision. VGG19 may be useful for applications that need to strike a 

compromise between accuracy and non-cancer categorization. 

 

Table 2. Quantitative classification results of different CNN architectures. 

 AlexNet   EfficientNet MobilNetV3 ResNet50 VGG19 

Mean Accuracy        66.78% 69.36%        59.97% 75.10% 72.63% 

Total Runtime 333s      512s 399s 471s 823s 

Precision (Cancer) 35%      38% 25% 39% 43% 

Recall (Cancer) 67%      50% 60% 69% 86% 

F1-Score (Cancer) 46%      43% 35% 50% 57% 

Precision (Non-Cancer) 89%      86% 83% 90% 95% 

Recall  (Non-Cancer) 67%      78% 53% 72% 70% 

F1-Score (Non-Cancer) 76%      82% 65% 80% 81% 

Overall Accuracy 67%      73% 54% 71% 74% 

 

 

5. Conclusion 

 

To sum up, this research explored the field of binary image classification for the purpose of 

identifying skin cancer, with a particular emphasis on comparing different CNN architectures and 

making strategic use of transfer learning. The study employed well-known CNN models to the Skin 

Cancer Binary Classification Dataset, such as ResNet50, MobileNetV3, VGG19, AlexNet and 

EfficientNet. 

The results show that the models' performance in binary image classification tasks is highly 

influenced by the CNN architecture selected. Top performances EfficientNet and ResNet50 

demonstrated a fair trade-off between execution time and accuracy. However, MobileNetV3 

performed worse, highlighting how crucial it is to choose the right architecture for a given task. 

The results highlight how transfer learning might improve CNN's performance in diagnosing 

skin cancer, especially in situations when datasets are few.  

For future studies, scientists may try optimizing CNN architectures to perform better on 

particular subtypes of skin cancer or look at how well models generalize to a variety of dermatological 

datasets. Furthermore, improvements in transfer learning methodologies and the investigation of new 

CNN architectures may enhance the precision and effectiveness of automated systems for the 

detection of skin cancer. 
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This study makes a significant contribution to the area of medical image analysis by directing 

the development of automated techniques for detecting skin cancer and encouraging further 

advancements in diagnostic precision. 

 

Authors’ Contributions 

 

All authors contributed equally to the study. 

 

Statement of Conflicts of Interest 

 

There is no conflict of interest between the authors. 

 

Statement of Research and Publication Ethics 

 

The author declares that this study complies with Research and Publication Ethics. 

 

References 

 

Al-Mekhlafi, Z.G., Senan, E.M., Rassem, T.H., Mohammed, B.A., Makbol, N.M. et al. (2022). Deep learning 

and machine learning for early detection of stroke and haemorrhage. Computers, Materials & Continua, 

72(1), 775-796. https://doi.org/10.32604/cmc.2022.024492 

Al-saedi, D. K. A., & Savaş, S. (2022). Classification of Skin Cancer with Deep Transfer Learning Method. 

IDAP-2022 : International Artificial Intelligence and Data Processing Symposium, 202-210. 

https://doi.org/10.53070/bbd.1172782 

Bai, X., Shang, X., Zhong, S., Hu, P., & Chang, C. (2019, May). Iterative constrained energy minimization 

convolutional neural network for hyperspectral image classification. Algorithms, Technologies, and 
Applications for Multispectral and Hyperspectral Imagery XXV. https://doi.org/10.1117/12.2519046 

Bu, Y., Jiang, X., Tian, J., Hu, X., Han, L., Huang, D., … & Luo, H. (2022). Rapid argnondestructive detecting 

of sorghum varieties based on hyperspectral imaging and convolutional neural network. Journal of the 
Science of Food and Agriculture, 103(8), 3970-3983. https://doi.org/10.1002/jsfa.12344 

Craythorne, E., & Al-Niami, F. (2017). Skin tumours: Skin cancer. Medicine, 45(7), 431-434. 

https://doi.org/10.1016/j.mpmed.2017.04.003 

Deng, T. and Wu, Y. (2022). Simultaneous vehicle and lane detection via mobilenetv3 in car following scene. 

Plos One, 17(3), e0264551. https://doi.org/10.1371/journal.pone.0264551 

Dildar, M., Akram, S., Irfan, M., Khan, H. U., Ramzan, M., Mahmood, A. R., … & Mahnashi, M. H. (2021). 

Skin cancer detection: a review using deep learning techniques. International Journal of Environmental 
Research and Public Health, 18(10), 5479. https://doi.org/10.3390/ijerph18105479 

Du, X., Si, L., Li, P., & Yun, Z. (2023). A method for detecting the quality of cotton seeds based on an 

improved resnet50 model. Plos One, 18(2), e0273057. https://doi.org/10.1371/journal.pone.0273057 

Garg, S., Mohanty, D. P., Thota, S. P., & Moharana, S. (2021). A simple approach to image tilt correction with 

self-attention mobilenet for smartphones. In Proceedings of the British Machine Vision Conference 2021 

(pp. 1-12). https://doi.org/10.48550/arxiv.2111.00398 

Geng, Y., Huang, J., Yang, J., & Zhang, S. (2022). Spectrum sensing for cognitive radio based on feature 

extraction and deep learning. Journal of Physics Conference Series, 2261(1), 012016. 

https://doi.org/10.1088/1742-6596/2261/1/012016 

https://doi.org/10.32604/cmc.2022.024492
https://doi.org/10.53070/bbd.1172782
https://doi.org/10.1117/12.2519046
https://doi.org/10.1002/jsfa.12344
https://doi.org/10.1016/j.mpmed.2017.04.003
https://doi.org/10.1371/journal.pone.0264551
https://doi.org/10.3390/ijerph18105479
https://doi.org/10.1371/journal.pone.0273057
https://doi.org/10.48550/arxiv.2111.00398
https://doi.org/10.1088/1742-6596/2261/1/012016


The Black Sea Journal of Sciences 14(4), 2008-2022, 2024 2021 

Guo-zhan, W., Feng, A., Gu, C., & Liu, X. (2023). Yolo-dfd: a lightweight method for dog feces detection 

based on improved yolov4. Journal of Sensors, 2023, 1-11. https://doi.org/10.1155/2023/5602595 

Hasan, M.K., & Aleef, T.A. (2019). Automatic Mass Detection in Breast Using Deep Convolutional Neural 

Network and SVM Classifier. https://doi.org/10.48550/arxiv.1907.04424 

Hu, J., Qi, Y., & Wang, J. (2022). Skin disease classification using mobilenet-rsesk network. Journal of 

Physics: Conference Series, 2405(1), 012017. https://doi.org/10.1088/1742-6596/2405/1/012017 

Huang, Y., Vadloori, S., Chu, H., Kang, E., Wu, W., & Fukushima, Y. (2020). Deep learning models for 

automated diagnosis of retinopathy of prematurity in preterm infants. Electronics, 9(9), 1444. 

https://doi.org/10.3390/electronics9091444 

Islam, M. S., & Panta, S. (2024). Skin cancer images classification using transfer learning techniques. arXiv.  

Jia, X., & Li, D. (2022). TFCN: Temporal-Frequential Convolutional Network for Single-Channel Speech 

Enhancement. https://doi.org/10.48550/arxiv.2201.00480 

Kamiri, J., Wambugu, G. M., & Oirere, A. M. (2022). A comparative study of deep learning and transfer 

learning in detection of diabetic retinopathy. International Journal of Computer Applications 

Technology and Research, 11(07), 247-254. https://doi.org/10.7753/ijcatr1107.1001 

Kashani, H. B., Jodeiri, A., Goodarzi, M. M., & Rezaei, I. S. (2019). Speech enhancement via deep spectrum 

image translation network. In Proceedings of the 2019 26th National and 4th International Iranian 

Conference on Biomedical Engineering (ICBME) (pp. 1-7). IEEE. 

https://doi.org/10.1109/ICBME49163.2019.9030421 

Laschowski, B., McNally, W., Wong, A., & McPhee, J. (2021). Computer vision and deep learning for 

environment-adaptive control of robotic lower-limb exoskeletons. In Proceedings of the Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4631-

4635). IEEE. https://doi.org/10.1109/EMBC46164.2021.9630064 

Li, Y., Zheng, H., Huang, X., Chang, J., Hou, D., & Lu, H. (2022). Research on lung nodule recognition 

algorithm based on deep feature fusion and mkl-svm-ipso. Scientific Reports, 12(1). 

https://doi.org/10.1038/s41598-022-22442-3 

Liu, Y., Tang, K., Cai, W., Chen, A., Zhou, G., Li, L., … & Liu, R. (2022). MPC-STANet: Alzheimer’s disease 

recognition method based on multiple phantom convolution and spatial transformation attention 

mechanism. Frontiers in Aging Neuroscience, 14. https://doi.org/10.3389/fnagi.2022.918462 

Mvoulana, A., Kachouri, R., & Akil, M. (2021). Fine-tuning convolutional neural networks: A comprehensive 

guide and benchmark analysis for glaucoma screening. In Proceedings of the 2020 25th International 

Conference on Pattern Recognition (ICPR) (pp. 4677-4684). IEEE. 

https://doi.org/10.1109/icpr48806.2021.9412199 

Prima, B. and Bouhorma, M. (2020). Using transfer learning for malware classification. The International 

Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XLIV-4/W3-2020, 

343-349. https://doi.org/10.5194/isprs-archives-xliv-4-w3-2020-343-2020 

Rashid, J., Ishfaq, M., Ali, G., Saeed, M. R., Hussain, M., Alkhalifah, T., Alturise, F., & Samand, N. (2022). 

Skin cancer disease detection using transfer learning technique. Applied Sciences, 12(11), 5714. 

https://doi.org/10.3390/app12115714 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … & Li, F. (2015). ImageNet large scale 

visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252. 

https://doi.org/10.1007/s11263-015-0816-y 

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. (2018). Mobilenetv2: inverted residuals and 

linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/cvpr.2018.00474 
Singh, B. and Sharma, D. K. (2021). Predicting image credibility in fake news over social media using multi-

modal approach. Neural Computing and Applications, 34(24), 21503-21517. 

https://doi.org/10.1007/s00521-021-06086-4 

Sobczak, S., & Kapela, R. (2022). Hybrid restricted Boltzmann machine–convolutional neural network model 

for image recognition. IEEE Access, 10, 24985-24994. https://doi.org/10.1109/access.2022.3155873 

Suciu, O., Coull, S. E., & Johns, J. (2019). Exploring adversarial examples in malware detection. 2019 IEEE 

Security and Privacy Workshops (SPW), 8-14. https://doi.org/10.1109/spw.2019.00015 

Tan, M. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. International 

Conference on Machine Learning (ICML). https://doi.org/10.48550/arxiv.1905.11946 

Tinnathi, S., & Sudhavani, G. (2022). Copy-move forgery detection using superpixel clustering algorithm and 

enhanced GWO-based AlexNet model. Cybernetics and Information Technologies, 22(4), 91-110. 

https://doi.org/10.2478/cait-2022-0041 

https://doi.org/10.1155/2023/5602595
https://doi.org/10.48550/arxiv.1907.04424
https://doi.org/10.1088/1742-6596/2405/1/012017
https://doi.org/10.3390/electronics9091444
https://doi.org/10.48550/arxiv.2201.00480
https://doi.org/10.7753/ijcatr1107.1001
https://doi.org/10.1109/ICBME49163.2019.9030421
https://doi.org/10.1109/EMBC46164.2021.9630064
https://doi.org/10.1038/s41598-022-22442-3
https://doi.org/10.3389/fnagi.2022.918462
https://doi.org/10.1109/icpr48806.2021.9412199
https://doi.org/10.5194/isprs-archives-xliv-4-w3-2020-343-2020
https://doi.org/10.3390/app12115714
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1007/s00521-021-06086-4
https://doi.org/10.1109/access.2022.3155873
https://doi.org/10.1109/spw.2019.00015
https://doi.org/10.48550/arxiv.1905.11946
https://doi.org/10.2478/cait-2022-0041


The Black Sea Journal of Sciences 14(4), 2008-2022, 2024 2022 

Tufail, A., Ma, Y., Kaabar, M., Rehman, A., Khan, R., & Cheikhrouhou, O. (2021). Classification of initial 

stages of Alzheimer’s disease through PET neuroimaging modality and deep learning: Quantifying the 

impact of image filtering approaches. Mathematics, 9(23), 3101. https://doi.org/10.3390/math9233101 

Ullah, I., & Mahmoud, Q. (2021). Design and development of a deep learning-based model for anomaly 

detection in IoT networks. IEEE Access, 9, 103906-103926. 

https://doi.org/10.1109/ACCESS.2021.3094024 

Wang, Y., Chun, X., Zhu, B., Wang, M., Wang, T., Ni, P., …, & Hu, J. (2022). A new non-invasive tagging 

method for leopard coral grouper (Plectropomus leopardus) using deep convolutional neural networks 

with PDE-based image decomposition. Frontiers in Marine Science, 9, 1093623. 

https://doi.org/10.3389/fmars.2022.1093623 

Xu, Y., Zhao, B., Zhai, Y., Chen, Q., & Zhou, Y. (2021). Maize diseases identification method based on multi-

scale convolutional global pooling neural network. IEEE Access, 9, 27959–27970. 

https://doi.org/10.1109/access.2021.3058267 

 

https://doi.org/10.3390/math9233101
https://doi.org/10.1109/ACCESS.2021.3094024
https://doi.org/10.3389/fmars.2022.1093623
https://doi.org/10.1109/access.2021.3058267

