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1 Introduction

In 1980, Nikodem [13] introduced the convex stochastic processes in his article. Later in 1995, Skowron-
ski [9] presented some further results on convex stochastic processes. Moreover, in 2011, Kotrys [7] de-
rived some Hermite-Hadamard type inequalities for convex stochastic processes. In 2014, Maden et.al.
[24] introduced the convex stochastic processes in the first sense and proved Hermite-Hadamard type
inequalities to these processes. Also in 2014, Set et.al. [25] presented the convex stochastic processes
in the second sense and they investigated Hermite-Hadamard type inequalities for these processes.
Moreover, in recent papers [22, 23], strongly λ-GA-convex stochastic processes and preinvex stochastic
processes has been introduced.

A function f : I → R, where I ⊆ R is an interval, is said to be a convex function on I if the
inequality

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) (1)

holds for all x, y ∈ I and t ∈ [0, 1]. If the reversed inequality in (1) holds, then f is concave. For some
recent results related to this classic result, see the books [2, 4, 5, 6] and the papers [14, 15, 16, 17, 18,
19, 20, 21] where further references are given.
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Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers and a < b. The
following double inequality

f(
a + b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

(2)

is well known in the literature as Hadamard’s inequality. Both inequalities hold in the reversed direction
if f is concave.

Recently, log-convex functions have gained much interest in mathematics and its sub-areas such
as optimization theory. Let f : I → R be a function where I is an interval of real numbers. f is said
to be convex on I if the following inequality holds for all x, y ∈ I and λ ∈ [0, 1].

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) (3)

A function f : I → [0,∞) is said to be log-convex (or multiplicatively convex) if log(f) is convex or
namely the following inequality

f(λx + (1− λ)y) ≤ [f(x)]λ[f(y)](1−λ) (4)

holds for all x, y ∈ I and λ ∈ [0, 1]. Moreover, any log-convex function is a convex function since the
inequality

[f(x)]λ[f(y)](1−λ) ≤ λf(x) + (1− λ)f(y) (5)

holds for all x, y ∈ I and λ ∈ [0, 1]. [1, p.7]
Let f : I ⊆ R → [0,∞) be a log-convex function defined on the interval I of real numbers and

a < b. The following double inequality

f(
a + b

2
) ≤ exp

[
1

b− a

∫ b

a

ln f(x)dx

]
≤

√
f(a)f(b) (6)

is well known in the literature as Hermite-Hadamard inequality for log-convex functions. Both in-
equalities hold in the reversed direction if f is concave.[18]

Furtermore, in [16], Dragomir and Mond proved that the following inequalities of Hermite–
Hadamard type hold for log-convex functions:

f

(
a + b

2

)
≤ exp

[
1

b− a

∫ b

a

ln f(t)dt

]
(7)

≤ 1
b− a

∫ b

a

G (f (t) + fa + b− t) dt

≤ 1
b− a

∫ b

a

f (t) dt

≤ L (f (a) , f(b))

More information about log-convex functions and their properties can be found in [1, 10, 11, 12].
In this paper we propose the generalization of convexity of this kind for stochastic processes.
Let (Ω,F , P ) be an arbitrary probability space. A function X : Ω → R is called a random variable

if it is F − measurable. Let (Ω,F , P ) be an arbitrary probability space and let T ⊂ R be time. A
collection of random variables X (t, w), t ∈ T with values in R is called a stochastic process. If
X (t, w) takes values in S = Rd, it is called a vector− valued stochastic process. If the time T can be
a discrete subset of R, then X (t, w) is called a discrete time stochastic process. If time is an interval,
R+ or R, it is called a stochastic process with continuous time. For any fixed ω ∈ Ω, one can regard
X (t, w) as a function of t. It is called a sample function of the stochastic process. In the case of a
vector − valued process, it is a sample path, a curve in Rd. Throughout the paper, we restrict our
attention stochastic processes with continuous time, i.e. , index set T = [0,∞).
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Definition 1.1. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval. We say that a
stochastic process X : T × Ω → R is

i. convex if
X (λu + (1− λ) v, ·) ≤ λX (u, ·) + (1− λ)X (v, ·)

for all u, v ∈ T and λ ∈ [0, 1]. . This class of stochastic process are denoted by C.

ii. λ−convex (where λ is a fixed number in (0, 1) if

X (λu + (1− λ) v, ·) ≤ λX (u, ·) + (1− λ) X(u, ·)

for all u, v ∈ T and λ ∈ (0, 1). This class of stochastic process is denoted by Cλ.

iii. Wright-convex if

X (λu + (1− λ) v, ·) + X ((1− λ)u + λv, ·) ≤ X (u, ·) + X (v, ·)

for all u, v ∈ T and λ ∈ [0, 1]. This class of stochastic process is denoted by W .

iv. Jensen-convex if

X

(
u + v

2
, ·

)
≤ X (u, ·) + X (v, ·)

2

[7, 8, 9, 13]

Clearly, C ⊆ Cλ ⊂ W and C 1
2
⊆ Cλ, for all λ ∈ (0, 1). [9]

Definition 1.2. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval. We say that the
stochastic process X : T × Ω → R is called

i. continuous in probability in interval T if for all t0 ∈ T

P − limX (t, ·) = X (t0, ·)
t→t0

where P − lim denotes the limit in probability;

ii. mean-square continuous in the interval T if for all t0 ∈ T

P − lim
t→t0

E [X(t, ·)−X (t0, ·)] = 0

where E [X(t, ·)] denotes the expectation value of the random variable X(t, ·);
iii. increasing (decreasing) if for all u, v ∈ T such that t < s,

X (u, ·) ≤ X (v, ·) , (X (u, ·) ≥ X (v, ·))

iv. monotonic if it is increasing or decreasing;

v. differantiable at a point t ∈ T if there is a random variable X ′(t, ·) : T × Ω → R

X ′(t, ·) = P − lim
t→t0

X (t, ·)−X (t0, ·)
t− t0

We say that a stochastic process X : T × Ω → R is continuous (differantiable) if it is continuous
(differantiable) at every point of the interval T . [7, 8, 9, 13]

Definition 1.3. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval with E[X(t)2] < ∞
for all t ∈ T . Let [a, b] ⊂ T , a = t0 < t1 < ... < tn = b be a partition of [a, b] and Θk ∈ [tk−1, tk] for
k = 1, ..., n. A random variable Y : Ω → R is called mean-square integral of the process X(t, ·) on
[a, b] if the following identity holds:



Journal of New Theory 2 (2015) 23-32 26

lim
n→∞

E[(X(Θk (tk − tk−1)− Y )2] = 0.

Then we can write
b∫

a

X(t, ·)dt = Y (·) (a.e.).

Also, mean square integral operator is increasing, that is,

b∫

a

X(t, ·)dt ≤
b∫

a

Z(t, ·)dt (a.e.),

where X(t, ·) ≤ Z(t, ·) (a.e.) in [a, b] [3].

In throughout the paper, we will consider the stochastic processes that is with continuous time
and mean-square continuous.

Now, we give the well-known Hermite-Hadamard integral inequality for convex stochastic processes:
If X : T × Ω → R is Jensen-convex and mean-square continuous in the interval T × Ω, then for

any u, v ∈ T , we have [7]

X

(
u + v

2
, ·

)
≤ 1

v − u

∫ v

u

X(t, ·)dt ≤ X(u, ·) + X(v, ·)
2

(8)

The main subject of this paper is to extend some well-known results concerning log-convex func-
tions to log-convex stochastic processes. Also, we investigate the relationship between log-convex
stochastic processes and convex stochastic processes. Moreover, we propose well-known Hermite-
Hadamard type inequalities for log−convex stochastic processes by the help of aritmetic and geometric
means.

2 Hermite-Hadamard Inequality For log−Convex

Stochastic Process

Definition 2.1. Let (Ω, A, P ) be a probability space and T ⊂ R be an interval. We say that a
stochastic process X : T × Ω → [0,∞) is log−convex if

X (λs + (1− λ) t, ·) ≤ [X (s, ·)]λ [X (t, ·)]1−λ (9)

for all s, t ∈ T and λ ∈ [0, 1].
This class of stochastic process is denoted by Cl.

Proposition 2.2. If X : T×Ω → [0,∞) is a log-convex stochastic process, then X is convex stochastic
process. That is, Cl ⊆ C for all λ ∈ [0, 1] .

Proof. The proof is obvious from (9) and the arithmetic-geometric mean inequality which is known as
the inequality

[X (s, ·)]λ [X (t, ·)]1−λ ≤ λX (s, ·) + (1− λ) X (t, ·) (10)

for all s, t ∈ Tand λ ∈ [0, 1].

Proposition 2.3. Let f : T → [0,∞) and X : T ×Ω → [0,∞) be a function and a stochastic process,
respectively. If f and X are convex and f is increasing, then f ◦X is convex.



Journal of New Theory 2 (2015) 23-32 27

Proof. Since f and X are convex and f is increasing

(f ◦X) (λs + (1− λ) t, ·) = f(X (λs + (1− λ) t, ·))
≤ f (λX (s, ·) + (1− λ) X (t, ·))
≤ λf(X (s, ·)) + (1− λ) f(X (t, ·))
= λ (f ◦X) (s, ·) + (1− λ) (f ◦X) (X (t, ·))

for all s, t ∈ T and λ ∈ [0, 1].
Let us recall the Hermite-Hadamard inequality

X

(
u + v

2
, ·

)
≤ 1

v − u

∫ v

u

X (t, ·) dt ≤ X (u, ·) + X (v, ·)
2

where X : T × Ω → R is a convex stochastic process on the interval T × Ω, u, v ∈ T and u < v.

Note that if we apply the above inequality for the log−convex stochastic process X : T×Ω → (0,∞)
, we have that

ln
[
X

(
u + v

2
, ·

)]
≤ 1

v − u

∫ v

u

ln [X (t, ·)] dt ≤ ln [X (u, ·)] + ln [X (v, ·)]
2

(11)

from which we get

X

(
u + v

2
, ·

)
≤ exp

[
1

v − u

∫ v

u

ln [X (t, ·)] dt

]
≤

√
X (u, ·)X (v, ·) (12)

which is an inequality of Hadamard’s type for log-convex stochastic process.
Let us denote by A(u, v) the arithmetic mean of the nonnegative real numbers, and by G(u, v) the

geometric mean of the same numbers.
Note that, by the use of these notations, Hadamard’s inequality (8) can be written in the form:

X (A(u, v), ·) ≤ 1
v − u

∫ v

u

A(X (t, ·) + X (u + v − t, ·))dt ≤ A(X (u, ·) + X (v, ·))

It is easy to see this as
∫ v

u

X (t, ·) dt =
∫ v

u

X (u + v − t, ·) dt

We now prove a similar result for log-convex stochastic process and geometric means.

Theorem 2.4. Let X : T ×Ω → [0,∞) be a log-convex stochastic process on T ×Ω and u, v ∈ T with
u < v. Then one has the inequality:

X (A(u, v), ·) ≤ 1
v − u

∫ v

u

G(X (t, ·) , X (u + v − t, ·))dt ≤ G(X (u, ·) , X (v, ·)) (13)

Proof. Since X is log-convex, we have that

X (λs + (1− λ) t, ·) ≤ [X (s, ·)]λ [X (t, ·)]1−λ

for all λ ∈ [0, 1] and

X ((1− λ)s + λt, ·) ≤ [X (s, ·)]1−λ [X (t, ·)]λ

for all λ ∈ [0, 1].
If we multiply the above inequalities and take square roots, we obtain
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G(X (λs + (1− λ) t, ·) , X ((1− λ)s + λt, ·)) ≤ G(X (u, ·) , X (v, ·))
Integrating this inequality on [0, 1] over λ, we get

∫ 1

0

G(X (λs + (1− λ) t, ·) , X ((1− λ)s + λt, ·))dλ ≤ G(X (u, ·) , X (v, ·))

If we change the variable t := λu + (1− λ)v, λ ∈ [0, 1], we obtain

∫ 1

0

G(X (λs + (1− λ) t, ·) , X ((1− λ)s + λt, ·))dλ

=
1

v − u

∫ v

u

G(X (t, ·) , X (u + v − t, ·))dt

and the second inequality in (13) is proved.
Now, by (9) , for λ = 1

2 , we have that

X

(
s + t

2
, ·

)
≤ G(X (s, ·) , X (t, ·))

for all u, v ∈ T .
If we choose s := λu + (1− λ)v, t := (1− λ)u + λv, we get the inequality

X

(
u + v

2
, ·

)
≤ G(X (λu + (1− λ)v, ·) , X ((1− λ)u + λv, ·)) (14)

for all λ ∈ [0, 1]. Integrating this inequality on [0, 1] over λ, the first inequality in (13) is proved.

Corollary 2.5. With the above assumptions, u ≥ 0 and X nondecreasing on T × Ω, we have the
inequality:

X (G(u, v), ·) ≤ 1
v − u

∫ v

u

G(X (t, ·) , X (u + v − t, ·))dt ≤ G(X (u, ·) , X (v, ·)) (15)

The following result offers another inequality of Hadamard type for convex stochastic process.

Corollary 2.6. Let X : T × Ω → [0,∞) be a convex stochastic process on T × Ω and u, v ∈ T with
u < v. Then one has the inequalities:

X

(
u + v

2
, ·

)
(16)

≤ ln
[

1
b− a

∫ v

u

exp [X (t, ·) + X (u + v − t, ·)] dt

]

≤ X (u, ·) + X (v, ·)
2

Proof. Define the mapping g : T → (0,∞), g(t) = exp(X(t, ·)) , which is clearly log-convex on I.
Now, if we apply Theorem 2.4, we obtain

expX(
u + v

2
, ·) ≤ 1

b− a

∫ v

u

√
exp X(t, ·)X(u + v − t, ·)dt ≤

√
expX(u, ·)X(v, ·),

which implies (16).

The following theorem for log-convex stochastic process also holds.
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Theorem 2.7. Let X : T ×Ω → (0,∞) be a log-convex stochastic process on T ×Ω and u, v ∈ T with
u < v. Then, one has the inequalities:

X

(
u + v

2
, ·

)
≤ exp

[
1

v − u

∫ v

u

ln [X (t, ·)] dt

]
(17)

≤ 1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt

≤ 1
v − u

∫ v

u

X (t, ·) dt

≤ L (X (u, ·) , X (v, ·)) ,

where L (p, q) := p−q
ln p−ln q if p 6= q and L (p, p) := p.

Proof. The first inequality in (17) was proved before. We now have that

G (X (t, ·) + X (u + v − t, ·)) = exp [ln G (X (t, ·) + X (u + v − t, ·))]

for all t ∈ [u, v].
Integrating this equality on [u, v] and using the well-known Jensen’s integral inequality for the

convex mapping exp(·), we have that

1
v − u

∫ v

u

G (X (t, ·) + X (u + v − t, ·)) dt (18)

=
1

v − u

∫ v

u

exp [ln (G (X (t, ·) + X (u + v − t, ·)))] dt

≥ exp
[

1
v − u

∫ v

u

ln (G (X (t, ·) + X (u + v − t, ·))) dt

]

= exp
[

1
v − u

∫ v

u

ln X (t, ·) + ln X (u + v − t, ·)
2

dt

]

= exp
[

1
v − u

∫ v

u

ln X (t, ·) dt

]
.

It is clear that
∫ v

u

ln X (t, ·) dt =
∫ v

u

ln X (u + v − t, ·) dt.

By the aritmetic mean -geometric mean inequality we have that

G (X (t, ·) , X (u + v − t, ·)) ≤ X (t, ·) + X (u + v − t, ·)
2

, t ∈ [u, v]

from which, by integration, we get

1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt ≤ 1
v − u

∫ v

u

X (t, ·) dt

and the third inequality in (18) is proved.
To prove the last inequality, we observe, by the log-convexity of X, that

X (λu + (1− λ) v, ·) ≤ [X (u, ·)]λ [X (v, ·)]1−λ (19)

for all u, v ∈ T .
Integrating (19) over λ in [0, 1] , we have
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∫ 1

0

X (λu + (1− λ) v, ·) dλ ≤
∫ 1

0

[X (u, ·)]λ [X (v, ·)]1−λ
dλ.

As
∫ 1

0

X (λu + (1− λ) v, ·) dλ =
1

v − u

∫ v

u

X (t, ·) dt

and
∫ 1

0

[X (u, ·)]λ [X (v, ·)]1−λ
dλ = L [X (u, ·) , X (v, ·)] ,

the theorem is proved.

Corollary 2.8. Let X : T ×Ω → R be a convex stochastic process on T ×Ω and u, v ∈ T with u < v.
Then one has the inequalities:

exp
[
X

(
u + v

2
, ·

)]
≤ exp

[
1

v − u

∫ v

u

X (t, ·) dt

]
(20)

≤ 1
v − u

∫ v

u

exp
[
X (t, ·) + X (u + v − t, ·)

2

]
dt

≤ 1
v − u

∫ v

u

exp [X (t, ·)] dt

≤ E (X (u, ·) , X (v, ·)) ,

where E is the exponential mean, i.e.,

E(p, q) :=
exp p− exp q

p− q
for p 6= q and E(p, p) = p.

Remark 2.9. Note that the inequality

exp
(

1
v − u

∫ v

u

ln [X (t, ·)] dt

)
(21)

≤ 1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt (22)

≤ 1
v − u

∫ v

u

X (t, ·) dt

holds for every strictly positive and integrable stochastic process X : I × Ω → R and the inequality

exp
[

1
v − u

∫ v

u

ln X (t, ·) dt

]
(23)

≤ 1
v − u

∫ v

u

exp
(

X (t, ·) + X (u + v − t, ·)
2

)
dt (24)

≤ 1
v − u

∫ v

u

exp X (t, ·) dt

holds for every X : T × Ω → R an integrable stochastic on [u, v] .
Taking into account that the above two inequalities hold, we can assert that for every X : T ×Ω →

(0,∞) an integrable stochastic process on [u, v] we have the inequalities:
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exp
(

1
v − u

∫ v

u

lnX (t, ·) dt

)
(25)

≤ 1
v − u

∫ v

u

G (X (t, ·) , X (u + v − t, ·)) dt

≤ 1
v − u

∫ v

u

X (t, ·) dt

≤ ln
[

1
v − u

∫ v

u

exp A (X (t, ·) , X (u + v − t, ·))
]

dt

≤ ln
[

1
v − u

∫ v

u

exp X (t, ·) dt

]
,

which is of interest in itself.
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[12] M. Tunç, Some integral inequalities for logarithmically convex functions, Journal of the Egyptian
Mathematical Society, Volume 22 (2014), 177-181

[13] K. Nikodem, On convex stochastic processes, Aequationes Mathematicae 20 (1980) 184-197.

[14] S.S. Dragomir, J.E. Pecaric, J. Sandor, A note on the Jensen–Hadamard inequality, Anal. Num.
Theor. Approx. 19 (1990) 29–34.
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