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1 Introduction

By a sequence space, we mean any vector subspace of ω, the space of all real or complex valued
sequences x = (xk). The well-known sequence spaces that we shall use throughout this paper are as
following:

`∞: the space of all bounded sequences,
c: the space of all convergent sequences,
c0: the space of all null sequences,
bs: the space of all sequences which forms bounded series,
cs: the space of all sequences which forms convergent series,
`1: the space of all sequences which forms absolutely convergent series,
`p: the space of all sequences which forms p-absolutely convergent series,

where 1 < p < ∞.
Let λ, µ be two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers

ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from λ into µ, and we denote it
by writing A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform
of x, is in µ; where

(Ax)n =
∑

k

ankxk, (n ∈ N). (1)

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to
∞. By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus, A ∈ (λ : µ) if
and only if the series on the right side of (1) converges for each n ∈ N and every x ∈ λ, and we have
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Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ. A sequence x is said to be A-summable to α if Ax converges to
α which is called as the A-limit of x.

If a normed sequence space λ contains a sequence (bn) with the property that for every x ∈ λ there
is a unique sequence of scalars (αn) such that

lim
n→∞

‖x− (α0b0 + α1b1 + ... + αnbn)‖ = 0,

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

αkbk which has the sum x is
then called the expansion of x with respect to (bn), and written as x =

∑
αkbk.

The β−dual of a subset X of ω is defined by

Xβ =
{
a = (ak) ∈ ω : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
.

The shift operator P is defined on ω by (Px)n = xn+1 for all n ∈ N. A Banach limit L is
defined on `∞, as a non-negative linear functional, such that L(Px) = L(x) and L(e) = 1. A sequence
x = (xk) ∈ `∞ is said to be almost convergent to the generalized limit α if all Banach limits of x are
α [1], and denoted by f − limxk = α. Let P j be the composition of P with itself j times and define
tmn(x) for a sequence x = (xk) by

tmn(x) =
1

m + 1

m∑

j=0

(P jx)n for all m,n ∈ N.

Lorentz [1] proved that f − limxk = α if and only if limm→∞ tmn(x) = α, uniformly in n. It is well-
known that a convergent sequence is almost convergent such that its ordinary and generalized limits
are equal. By f and f0, we denote the space of all almost convergent sequences and almost convergent
to zero sequences, respectively, i.e.,

f =
{

x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑

k=0

xn+k

m + 1
= α uniformly in n

}

and

f0 =
{

x = (xk) ∈ ω : lim
m→∞

m∑

k=0

xn+k

m + 1
= 0 uniformly in n

}
.

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all n ∈ N. It is trivial
that A(Bx) = (AB)x holds for triangle matrices A,B and a sequence x. Further, a triangle matrix U
uniquely has an inverse U−1 = V that is also a triangle matrix. Then, x = U(V x) = V (Ux) holds for
all x ∈ ω. We write by U and U0 for the sets of all sequences with non-zero terms and non-zero first
terms, respectively. For u ∈ U , let 1/u = (1/un).

Let us give the definition of some triangle limitation matrices which are needed in the text. Let
q = (qk) be a sequence of positive reals and write

Qn =
n∑

k=0

qk, (n ∈ N).

Then the Cesàro mean of order one, Riesz mean with respect to the sequence q = (qk) and Ar− mean
with 0 < r < 1 are respectively defined by the matrices C1 = (cnk), Rq = (rq

nk) and Ar = (ar
nk); where

cnk =

{ 1
n + 1

, (0 ≤ k ≤ n),

0, (k > n),
rq
nk =

{ qk

Qn
, (0 ≤ k ≤ n),

0, (k > n),

and

ar
nk =





1 + rk

1 + n
, (0 ≤ k ≤ n),

0, (k > n),
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for all k, n ∈ N. Additionally, the Euler mean of order r and the weighted mean matrix and the
double band matrix are respectively defined by the matrices Er = (er

nk), G(u, v) = (gnk) and B(r, s) =
{bnk(r, s)}; where

er
nk =

{ (n

k

)
(1− r)n−krk, (0 ≤ k ≤ n)

0, (k > n)
and gnk =

{
unvk, (0 ≤ k ≤ n),
0, (k > n),

and

bnk(r, s) =





r, (k = n),
s, (k = n− 1),
0, otherwise

for all k, n ∈ N and u, v ∈ U and r, s ∈ R\{0}.
For a sequence space λ, the matrix domain λA of an infinite matrix A is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ} , (2)

which is a sequence space. Although in the most cases the new sequence space λA generated in the
limitation matrix A from a sequence space λ is the expansion or the contraction of the original space λ,
it may be observed in some cases that those spaces overlap. Indeed, one can deduce that the inclusions
λS ⊂ λ strictly holds for λ ∈ {`∞, c, c0}. As this, one can deduce that the inclusions `p ⊂ bvp and
λ ⊂ λ∆1 also strictly hold for λ ∈ {c, c0}, where 1 ≤ p ≤ ∞ and the space (`p)∆(1) = bvp has been
studied by Başar and Altay [2], (see also Çolak and Et and Malkowsky [3]). However, if we define
λ = c0⊕z with z = ((−1)k), that is, x ∈ λ if and only if x = s+αz for some s ∈ c0 and some α ∈ C, and
consider the matrix A with the rows An defined by An = (−1)ne(n) for all n ∈ N, we have Ae = z ∈ λ
but Az = e /∈ λ which lead us to the consequences that z ∈ λ \ λA and e ∈ λA \ λ, where e(n) denotes
the sequence whose only non-zero term is a 1 in nth place for each n ∈ N and e = (1, 1, 1, ...). That
is to say that the sequence spaces λA and λ overlap but neither contains the other. The approach
constructing a new sequence space by means of the matrix domain of a particular limitation method
has been recently employed by Wang [4], Ng and Lee [5], Aydın and Başar [6], Altay and Başar [7],
and Altay et all. [8]. They introduced the sequence spaces (`∞)Nq and cNq in [4], (`p)C1 = Xp in [5],
(c0)Ar = ar

0 and cAr = ar
c in [6], (c0)Er = er

0 and cEr = er
c in [7], (`p)Er = er

p and (`∞)Er = er
∞ in [8];

where 1 ≤ p < ∞.
In this study, we summarize some knowledge in the existing literature on the almost A−null and

almost A−convergent sequence spaces derived by using the domain A−limitation matrix. Additionally,
we introduce the new sequence spaces f̄0(r, s, t) and f̄(r, s, t) and examine some properties of these
sequence spaces.

2 Domain of the A−limitation matrix in the se-

quence spaces f0 and f

In this section, we shortly give the knowledge on the sequence spaces derived by the A−limitation ma-
trix from well-known almost convergent and almost null sequence spaces. For the concerning literature
about the domain µA of an infinite limitation matrix A in a sequence space µ, Table 1 may be useful.

µ A µA refer to
f0, f B(r, s) f̂ , f̂0 [9]
f0, f C1 f̃ , f̃0 [14]
f0, f Rq fRq , {f0}Rq [15]
f0, f Ar ar

f , ar
f0

[16]
f0, f G(u, v) f0(G), f(G) [17]
f0, f Er f(E), f0(E) [18]
f0, f B(r, s, t) f(B), f0(B) [19]
f0, f Aλ Aλ(f0), Aλ(f) [20]

Table 1: The domains of the certain A−limitation matrix in the sequence spaces f0 and f
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The matrix domain of a certain limitation method on the sequence spaces f0 and f firstly were
studied by Başar and Kirişçi [9].

Başar and Kirişçi introduced the sequence spaces f̂0 and f̂ in [9] as follows:

f̂0 : =
{

x = (xk) ∈ ω : lim
m→∞

m∑

j=0

sxk−1+j + rxk+j

m + 1
= 0 uniformly in k

}
,

f̂ : =
{

x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑

j=0

sxk−1+j + rxk+j

m + 1
= α uniformly in k

}
.

It is trivial that the sequence spaces f̂0 and f̂ are the domain of the matrix B(r, s) in the spaces f0

and f , respectively. Thus, with the notation of (2) we can redefine the spaces f̂0 and f̂ by

f̂0 := {f0}B(r,s) and f̂ := {f}B(r,s).

Define the sequence y = (yk) by the B(r, s)−transform of a sequence x = (xk), i.e.,

yk := sxk−1 + rxk for all k ∈ N. (3)

Since the matrix B(r, s) is triangle, one can easily observe that x = (xk) ∈ X̂ if and only if y =
(yk) ∈ X, where the sequences x = (xk) and y = (yk) are connected with the relation (3), and X
denotes any of the sequence spaces f0 and f . Therefore, one can easily see that the linear operator
T : X̂ → X, Tx = y = B(r, s)x which maps every sequence x in X̂ to the associated sequence y in X,
is bijective and norm preserving, where ‖x‖ bX = ‖B(r, s)x‖X . This gives the fact that X̂ and X are
norm isomorphic.

Başar and Kirişçi [9] proved that the sequence space f is a BK−space with the norm ‖.‖∞ and
non-separable closed subspace of `∞. So, the sequence space f has no Schauder basis. Jarrah and
Malkowsky [12] showed that the matrix domain λA of a normed sequence space λ has a basis whenever
A = (ank) is triangle. Then; our corollary concerning the space f̂0 and f̂ is about their Schauder basis:

Corollary 2.1. [9, Corollary 4.2] The space f̂ has no Schauder basis.

The gamma- and beta-duals of the spaces f̂0 and f̂ are determined. Also, some matrix transfor-
mations on these sequence spaces are characterized.

Quite recently, E. E. Kara and K. Elmaag̃aç [21] introduced the sequence space ĉu as follows:

ĉu =
{

x = (xk) ∈ ω : ∃α ∈ C 3 lim
m→∞

m∑

j=0

uk+jxk+j + uk−1+jxk−1+j

m + 1
= α uniformly in k

}
.

It is trivial that the sequence space ĉu is the domain of the matrix Au = (au
nk) in the space f ,

where the matrix Au = (au
nk) is defined by

au
nk =

{
(−1)n−kuk, n− 1 ≤ k ≤ n,
0, 0 ≤ k < n− 1 or k > n,

for all k, n ∈ N. Also, they show that ĉu is linearly isomorphic to the space ĉ. Further, they compute
the β−dual of the space ĉu and characterize the classes of infinite matrices related to sequence space
ĉu.

3 Spaces of Ā(r, s, t)−almost null and Ā(r, s, t)−almost

convergent sequences

In this section, we study some properties of the spaces of the Ā(r, s, t)−almost null and Ā(r, s, t)−almost
convergent sequences.
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For any sequences s, t ∈ ω, the convolution s ∗ t is a sequence defined by

(s ∗ t)n =
n∑

k=0

sn−ktk; (n ∈ N).

Throughout this section, let r, t ∈ U and s ∈ U0. For any sequence x = (xn) ∈ ω, we define the
sequence x̄ = (x̄n) of generalized means of x by

xn =
1
rn

n∑

k=0

sn−ktkxk; (n ∈ N), (4)

that is xn = (s ∗ tx)n/rn for all n ∈ N. Further, we define the infinite matrix Ā(r, s, t) of generalized
means by

{Ā(r, s, t)}nk =

{ sn−ktk
rn

, 0 ≤ k ≤ n,

0, k > n
(5)

for all n, k ∈ N. Then, it follows by (4) that x̄ is the Ā(r, s, t)−transform of x, that is x̄ = (Ā(r, s, t)x)
for all x ∈ ω.

It is obvious by (5) that Ā(r, s, t) is a triangle. Moreover, it can easily be seen that Ā(r, s, t) is
regular if and only if sn−i = o(rn) for each i ∈ N,

∑n
k=0 |sn−ktk| = O(|rn|) and (s∗t)n/rn → 1 (n →∞).

The above definition of the matrix Ā(r, s, t) of generalized means given by (5) includes the following
special cases:

(1) If rn = (s∗t)n 6= 0 for all n, then Ā(r, s, t) reduces to the matrix (N, s, t) of generalized Nörlund
means [22, 23]. In particular, if t = e then Ā(r, s, t) reduces to the familiar matrix of Nörlund means
[30, 4].

(2) If α > 0, rk = Γ(α+k+1)
k!Γ(α+1) , sk = Γ(α+k)

k!Γ(α) and tk = 1 for all k, then Ā(r, s, t) reduces to the matrix
(C, α) of Cesàro means of order α [24, 25]. In particular, if α = 1 then Ā(r, s, t) reduces to the famous
matrix (C, 1) of arithmetic means [5, 26].

(3) If 0 < α < 1, rk = 1
k! , sk = (1−α)k

k! and tk = αk

k! for all k, then Ā(r, s, t) reduces to the matrix
(E, α) of Euler means of order α [7, 10, 8].

(4) If tn > 0 and rn =
∑n

k=0 tk for all n, then Ā(r, s, t) reduces to the matrix (N, t) of weighted
means [12, 27].

(5) If 0 < α < 1, rk = k + 1, sk = 1 and tk = 1 + αk for all k, then Ā(r, s, t) reduces to the matrix
Aα studied by Aydın and Başar [6, 28].

(6) If s = e(0) and t = e, then Ā(r, s, t) reduces to the diagonal matrix D1/r studied by de Malafosse
[29].

Now, since Ā(r, s, t) is a triangle, it has a unique inverse which is also a triangle. More precisely,
by making a slight generalization of a work done in [30], we put D

(s)
0 = 1/s0 and

D(s)
n =

1
sn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1 s0 0 0 · · · 0
s2 s1 s0 0 · · · 0
s3 s2 s1 s0 · · · 0
...

...
...

...
. . .

...
sn−1 sn−2 sn−3 sn−4 · · · s0

sn sn−1 sn−2 sn−3 · · · s1

∣∣∣∣∣∣∣∣∣∣∣∣∣

; (n = 1, 2, ...).

Then the inverse of Ā(r, s, t) is the triangle B̄ = (b̄nk)∞n,k=0 defined by

b̄nk =





(−1)n−kD
(s)
n−krk

1
tn

, (0 ≤ k ≤ n),

0, (k > n),

for all n, k ∈ N. For an arbitrary subset X of ω, the set X(r, s, t) has recently been introduced in [31]
as the matrix domain of the triangle Ā(r, s, t) in X.

We introduce the sequence spaces f̄(r, s, t) and f̄0(r, s, t) as the sets of all sequences whose
Ā(r, s, t)−transforms are in the spaces f0 and f , that is
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f̄0(r, s, t) =
{

x = (xk) ∈ ω : lim
m→∞

1
m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn
= 0 uniformly in n

}
,

f̄(r, s, t) =
{

x = (xk) ∈ ω : ∃l ∈ C 3 lim
m→∞

1
m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn
= l uniformly in n

}
.

With the notation of (2), we can redefine the spaces f̄(r, s, t) and f̄0(r, s, t) as follows:

f̄(r, s, t) = {f}Ā(r,s,t) and f̄0(r, s, t) = {f0}Ā(r,s,t).

It is worth mentioning that the general forms of the well-known matrices of Nörlund, Cesàro, Euler
and weighted means can be obtained as special cases of the matrix Ā(r, s, t) of generalized means.
Therefore, all of the sequence spaces in Tablo 1 can be obtained by special choice from the sequence
spaces f̄(r, s, t) and f̄0(r, s, t) which are defined by using matrix domain of the matrix Ā(r, s, t).

Theorem 3.1. The sequence spaces f̄(r, s, t) and f̄0(r, s, t) are BK−spaces with the same norm given
by

‖x‖f̄(r,s,t) = ‖Ā(r, s, t)x‖f = sup
m,n∈N

|tmn(Ā(r, s, t)x)|, (6)

where

tmn(Ā(r, s, t)x) =
1

m + 1

n∑

j=0

(Ā(r, s, t)x)n+j

=
1

m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn

for all m,n ∈ N.

Proof. f0 and f endowed with the norm ‖.‖∞ are BK−spaces [24, Example 7.3.2 (b)] and Ā(r, s, t) is
a triangle matrix, Theorem 4.3.2 of Wilansky [32, p.61] gives the fact that f̄(r, s, t) and f̄0(r, s, t) are
BK−spaces with the norm ‖.‖f̄(r,s,t).

Remark 3.2. It can easily be seen that the absolute property does not hold on the spaces f̄(r, s, t)
and f̄0(r, s, t), that is ‖x‖f̄(r,s,t) 6= ‖|x|‖f̄(r,s,t) for at least one sequence x in each of these spaces, where
|x| = (|xk|). Thus, the spaces f̄(r, s, t) and f̄0(r, s, t) are BK−spaces of non-absolute type.

Theorem 3.3. The sequence spaces f̄(r, s, t) and f̄0(r, s, t) are norm isomorphic to the spaces f and
f0, respectively.

Proof. Since the fact f̄0(r, s, t) ∼= f0 can be similarly proved, we consider only the case f̄(r, s, t) ∼= f .
To prove this, we should show the existence of a linear bijection between the spaces f̄(r, s, t) and f
which preserves the norm. Consider the transformation T defined, with the notation of (4), from
f̄(r, s, t) to f by x 7→ x̄ = Tx = Ā(r, s, t)x. The linearity of T is clear. Further, it is trivial that x = θ
whenever Tx = θ and hence T is injective.

Let us take any x̄ = (x̄k) ∈ f and define the sequence x = (xn) by

xn =
1
tn

n∑

k=0

(−1)n−kD
(s)
n−krkx̄k; for all n ∈ N. (7)

Then, it is immediate that

n+j∑

k=0

sn+j−ktkxk

rn
=

n+j∑

k=0

sn+j−ktk
rn

1
tk

k∑

i=0

(−1)k−iD
(s)
k−irix̄i

= x̄n+j
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which gives by a short calculation that

1
m + 1

m∑

j=0

n+j∑

k=0

sn+j−ktkxk

rn
=

1
m + 1

m∑

j=0

x̄n+j .

Therefore, we have

lim
m→∞

1
m + 1

m∑

j=0

{Ā(r, s, t)x}n+j = lim
m→∞

1
m + 1

m∑

j=0

x̄n+j = l uniformly in n.

This means that x ∈ f̄(r, s, t) and hence T is surjective. Thus, one can easily see from (6) that T is a
norm preserving transformation. This completes the proof.

Remark 3.4. It is known from Corollary of Başar and Kirişçi [9] that the Banach space f has no
Schauder basis. It is also known from Theorem 2.3 of Jarrah and Malkowsky [12] that the domain λA

of a matrix A in a normed sequence space λ has a basis if and only if λ has a basis whenever A = (ank)
is a triangle. Combining these two facts one can immediately conclude that both the space f̄(r, s, t)
and the space f̄0(r, s, t) have no Schauder basis.

Now, we give the beta- and gamma-duals of the sequence spaces f̄(r, s, t) and f̄0(r, s, t). For this,
we need the following lemmas:

Lemma 3.5. [11] A = (ank) ∈ (f : `∞) if and only if

sup
n∈N

∑

k

|ank| < ∞. (8)

Lemma 3.6. [11] A = (ank) ∈ (f : c) if and only if (8) holds, and there are αk, α ∈ C such that

lim
n→∞

ank = αk for each k ∈ N, (9)

lim
n→∞

∑

k

ank = α, (10)

lim
n→∞

∑

k

∣∣∆(ank − αk)
∣∣ = 0. (11)

Theorem 3.7. Define the sets F1(r, s, t), F2(r, s, t), F3(r, s, t), F4(r, s, t), F5(r, s, t) as follows:

F1(r, s, t) =
{

a = (ak) ∈ ω : sup
n∈N

n∑

k=0

∣∣∣∣
n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

∣∣∣∣ < ∞
}

,

F2(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj exists

}
,

F3(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

n∑

k=0

[ n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

]
− exists

}
,

F4(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

n∑

k=0

∣∣∣∣
n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

∣∣∣∣ = 0
}

,

F5(r, s, t) =
{

a = (ak) ∈ ω : lim
n→∞

∞∑

k=n+1

∣∣∣∣
∞∑

j=n+1

(∆ājk − αk)
∣∣∣∣ = 0

}
.

Then, the β−dual of the sequence space f̄(r, s, t) is

5⋂

i=1

Fi(r, s, t).
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Proof. Let a = (ak) ∈ ω and consider the equality

n∑

k=0

akxk =
n∑

k=0

[
1
tk

k∑

j=0

(−1)k−jD
(s)
k−jrj x̄j

]
ak

=
n∑

k=0

[ n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

]
x̄k = {F̄ (r, s, t)x̄}n, (12)

where F̄ (r, s, t) = {f̄nk(r, s, t)} is defined by

f̄nk(r, s, t) =





n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj (0 ≤ k ≤ n),

0 (k > n)

(13)

for all n, k ∈ N. Thus, we deduce from Lemma 3.6 with (12) that ax = (akxk) ∈ cs whenever
x = (xk) ∈ f̄(r, s, t) if and only if F̄ (r, s, t)x̄ ∈ c whenever x̄ = (x̄k) ∈ f , where F̄ (r, s, t) = {f̄nk(r, s, t)}
is defined by (13). Therefore, we derive from (8), (9), (10) and (11) that

sup
n∈N

∑

k

∣∣∣∣
n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

∣∣∣∣ < ∞,

lim
n→∞

n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj = αk for each fixed k ∈ N,

lim
n→∞

∑

k

n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj = α,

lim
n→∞

∑

k

∣∣∣∣∆
[ n∑

j=k

1
tj

(−1)j−kD
(s)
j−krkaj

]∣∣∣∣ = 0

which shows that

{f̄(r, s, t)}β =
5⋂

i=1

Fi(r, s, t).

Theorem 3.8. The γ−dual of the sequence spaces f̄(r, s, t) and f̄0(r, s, t) is the set F1(r, s, t).

Proof. This is similar to the proof of Theorem 3.7 with Lemma 3.5 instead of Lemma 3.6. So, we omit
the detail.

4 Matrix Transformations Related to The Sequence

Space f̄ (r, s, t)

In the present section, we characterize the matrix transformations from f̄(r, s, t) into any given sequence
space µ.

Since f̄(r, s, t) ∼= f , it is trivial that the equivalence ”x ∈ f̄(r, s, t) if and only if x̄ ∈ f” holds.

Theorem 4.1. Suppose that the entries of the infinite matrices A = (ank) and E = (enk) are connected
with the relation

enk =
∞∑

j=k

1
tj

(−1)j−kD
(s)
j−krkanj (14)

for all n, k ∈ N and µ is any given sequence space. Then A ∈ (f̄(r, s, t) : µ) if and only if {ank}k∈N ∈
{f̄(r, s, t)}β for all n ∈ N and E ∈ (f : µ).
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Proof. Let µ be any given sequence space. Suppose that (14) holds between A = (ank) and E = (enk),
and take into account that the spaces f̄(r, s, t) and f are linearly isomorphic.

Let A ∈ (f̄(r, s, t) : µ) and take any x̄ = (x̄k) ∈ f . Then EĀ(r, s, t) exists and {ank}k∈N ∈
∩5

i=1Fi(r, s, t) which yields that {enk}k∈N ∈ `1 for each n ∈ N. Hence, Ex̄ exists and thus
∑

k

enkx̄k =
∑

k

ankxk

for all n ∈ N. We have that Ex̄ = Ax which leads us to the consequence E ∈ (f : µ).
Conversely, let {ank}k∈N ∈ {f̄(r, s, t)}β for each n ∈ N and E ∈ (f : µ) hold, and take any

x = (xk) ∈ f̄(r, s, t). Then, Ax exists. Therefore, we obtain from the equality

m∑

k=0

ankxk =
m∑

k=0

[ m∑

j=k

1
tj

(−1)j−kD
(s)
j−krkanj

]
x̄k

for all n ∈ N, as m → ∞ that Ex̄ = Ax and this shows that A ∈ (f̄(r, s, t) : µ). This step completes
the proof.

By changing the roles of the spaces f̄(r, s, t) and µ in Theorem (4.1), we have:

Theorem 4.2. Suppose that the elements of the infinite matrices A = (ank) and C = (cnk) are
connected with the relation

cnk =
1
rn

n∑

j=0

sn−jtjajk for all n, k ∈ N.

Let µ be any given sequence space. Then, A = (ank) ∈ (µ : f̄(r, s, t)) if and only if C ∈ (µ : f).

Proof. Let z = (zk) ∈ µ and consider the following equality

m∑

k=0

cnkzk =
1
rn

n∑

j=0

sn−jtj

( m∑

k=0

ajkzk

)
for all m,n ∈ N,

which yields as m →∞ that (Cz)n = {Ā(r, s, t)(Az)}n for all n ∈ N. Therefore, one can observe from
here that Az ∈ f̄(r, s, t) whenever z ∈ µ if and only if Cz ∈ f whenever z ∈ µ. This completes the
proof.

Of course, Theorems 4.1 and 4.2 have several consequences depending on the choice of the sequence
space µ. Define a(n, k), a(n, k, m) and ∆ank for all k, m, n ∈ N as follows;

a(n, k) =
n∑

j=0

ajk, a(n, k, m) =
1

m + 1

m∑

j=0

an+j,k and ∆ank = ank − an,k+1.

Prior to giving some results as an application of this idea, we give the following basic lemma, which
is the collection of the characterizations of matrix transformations related to almost convergence:

Lemma 4.3. Let A = (ank) be an infinite matrix. Then, the following statements hold:
(i) [33, J. P. Duran]A = (ank) ∈ (`∞ : f) if and only if (8) holds and

∃αk ∈ C 3 f − lim ank = αk for all k ∈ N, (15)

∃αk ∈ C 3 lim
m→∞

∑

k

|a(n, k, m)− αk| = 0 uniformly in n (16)

also hold .
(ii) [33, J. P. Duran]A = (ank) ∈ (f : f) if and only if (8) and (15) hold, and

∃α ∈ C 3 f − lim
∑

k

ank = α, (17)
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∃αk ∈ C 3 lim
m→∞

∑

k

∣∣∣∣∆
[
a(n, k, m)− αk

]∣∣∣∣ = 0 uniformly in n (18)

also hold .
(iii) [34, J. P. King]A = (ank) ∈ (f : f) if and only if (8), (15) and (17) hold .
(iv) [35, Başar and Çolak]A = (ank) ∈ (cs : f) if and only if (15) holds, and

sup
n∈N

∑

k

|∆ank| < ∞ (19)

also holds .
(v) [36, Başar and Solak]A = (ank) ∈ (bs : f) if and only if (15) and (19) hold, and

lim
k→∞

ank = 0 for all n ∈ N, (20)

∃αk ∈ C 3 lim
q→∞

∑

k

1
q + 1

∣∣∣∣
q∑

i=0

∆
[
a(n + i, k)− αk

]∣∣∣∣ = 0 uniformly in n (21)

also hold .
(vi) [37, Başar]A = (ank) ∈ (f : cs) if and only if the following conditions hold:

sup
n∈N

∑

k

|a(n, k)| < ∞, (22)

∃αk ∈ C 3
∑

n

ank = αk for all k ∈ N, (23)

∃α ∈ C 3
∑

n

∑

k

ank = α, (24)

∃αk ∈ C 3 lim
n→∞

∑

k

∣∣∣∣∆
[
a(n, k)− αk

]∣∣∣∣ = 0. (25)

Now, we can give the following two corollaries as a direct consequence of Theorems 4.1 and 4.2
and Lemma 4.3:

Corollary 4.4. The following statements hold:
(i) A = (ank) ∈ (f̄(r, s, t) : `∞) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (8) holds with enk

instead of ank.
(ii) A = (ank) ∈ (f̄(r, s, t) : c) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (8), (9), (10) and (11)

hold with enk instead of ank.
(iii) A = (ank) ∈ (f̄(r, s, t) : bs) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (22) holds with enk

instead of ank.
(iv) A = (ank) ∈ (f̄(r, s, t) : cs) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (22), (23), (24) and (25)

hold with enk instead of ank.
(v) A = (ank) ∈ (f̄(r, s, t) : f) if and only if {ank}k∈N ∈ {f̄(r, s, t)}β and (8), (15), (17) and (18)

hold with enk instead of ank.

Corollary 4.5. The following statements hold:
(i) A = (ank) ∈ (`∞ : f̄(r, s, t)) if and only if (8), (15) and (17) hold with enk instead of ank.
(ii) A = (ank) ∈ (f : f̄(r, s, t)) if and only if (8), (15), (17) and (18) hold with enk instead of ank.
(iii) A = (ank) ∈ (c : f̄(r, s, t)) if and only if (8), (15) and (17) hold with enk instead of ank.
(iv) A = (ank) ∈ (bs : f̄(r, s, t)) if and only if (15), (19), (20) and (21) hold with enk instead of

ank.
(v) A = (ank) ∈ (cs : f̄(r, s, t)) if and only if (15) and (19) hold with enk instead of ank.
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[7] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J.
57(1)(2005), 1-17.
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[35] F. Başar, R. Çolak, Almost conservative matrix transformations, Turk. J. Math. 13(3) (1989),
91-100.
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